Hg CEMs: A Researcher's Perspective

Jeff Ryan

Office of Research and Development National Risk Management Research Laboratory Air Pollution Prevention and Control Division Air Pollution Technology Branch email: ryan.jeff@epa.gov

Hg CEMs: Potential Applications

- Research
- Source Characterization
- Process optimization/control
- Regulatory

Hg CEMs: Research Applications

- Understanding Hg species is key to understanding Hg control
 - Fundamental studies
 - Hg chemistry in combustion processes
 - Fundamental control research
 - Control technology evaluations
 - Pilot-plant and Field studies
- Source Characterization
 - Emission profiles
 - Source variability

Total vs. Speciating?

Most Hg CEMs measure total Hg
Speciating Hg CEM valuable

Research tool
Process monitor

Speciation by difference (total – elem.)
Speciated Hg meas. more complicated

Hg CEMs: State-of-the-Art

- Hg CEMs routinely used in Europe
 In US, Hg CEMs primarily used for research purposes
 - Diverse measurement environments
 - Majority prototype systems
 - Commercial systems current focus of performance testing
- Many vendors now exist
- Recent field test programs have done much to advance the technology

Wet vs. Dry Conversion Systems

Wet chemistry reduction systems most proven

Intensive to operate
Chemical handling issues

Dry systems less proven, but have much greater advantages

ORD/NRMRL Hg CEM Research

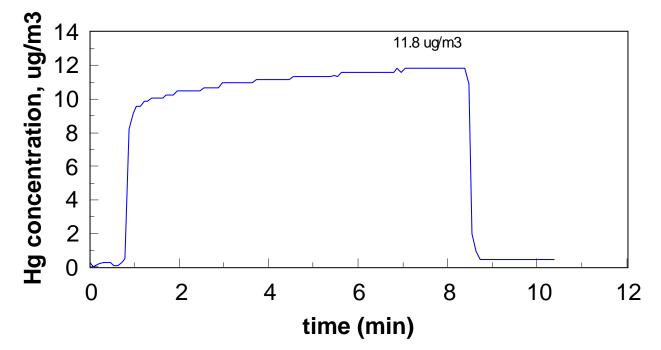
- Hg CEMs needed to support our research
- Data quality critical
- Main areas of emphasis:
 - Development of diagnostic and QA/QC tools
 - Investigation of measurement issues (biases, interferences, etc)
 - Performance testing (Pilot-scale and field)

Development of QA/QC Tools

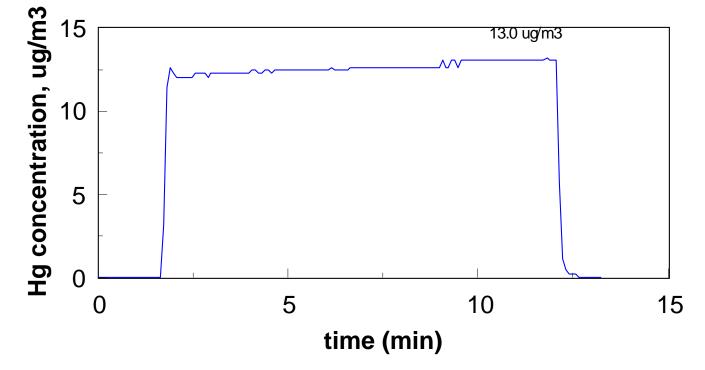
Elemental Hg gas standard

 Drift checks, system bias, calibration

 Oxidized Hg (HgCl2) gas standard


 System bias checks, sample transport, converter efficiency, etc

Elemental Hg Gas Standard


Tank stability
Tank concentration
Delivery issues

HgCl₂ Gas Standard

Hg species
Stability
Accuracy
Transport

HgCl₂ Gas Standard

Investigation of Measurement Issues

Interferences

 SO₂, SO₃, Cl₂, HCI, NO_x, NH₃, PM

 Biases

 Sample transport/reactivity of oxidized forms

- Conversion efficiency
- Particulate-phase capture/oxidation

Performance Testing

- Focus on commercial systems
- Research application issues consistent with other applications
- Collaboration is key
- NRMRL/ETV Pilot-Scale Tests
- ETV/DOE MWFA Incinerator Tests
 EPA/OAQPS Coal Utility Tests

NRMRL/ETV Hg CEM Tests

OAQPS Field Hg CEM Tests

Future Plans

Continued field testing
Focus on APCD inlet environments
Evaluation of inertial PM probes
Evaluation of dry thermal/catalytic conversion systems

Message

 Continued field testing of Hg CEMs critical to development

- Opportunities limited
- Current OAQPS tests represent majority of commercially available systems

Field Evaluation of Mercury CEMS: Coal-fired Electric Utilities

Bill Grimley & Barrett Parker Emissions Measurement Center (EMC), EMAD, OAQPS, OAP, USEPA

Jeff Ryan APPCD, NRMRL, ORD, USEPA

Outline

- Positive Findings to date
- Project Background
 - Regulatory need
 - Mercury monitoring: Options and CEMS
- EMC Activities
 - Phase 1 and Phase 2 field work
 - Phase 3 Plans

Positive Findings to Date

- Elemental (Hg^o) calibration cylinders proved very useful to check CEMS calibration and verify sampling system.
- "HOVACAL" HgCl₂ standards generator proved very useful to challenge CEMS converters, and verify sampling system.

Findings, cont.

 Wet converter CEMS passed second RATA on 10 of 15 runs with RA of 9.5%.

 Dry converter CEMS #2 modifications, (between first and second RATAs) materially improved performance on second RATA, for about a week.

Background: Regulatory Need

2 Potential regulatory pathways

CAA / Utility MACT
NEP / multi-pollutant legislation

Utility MACT finding on Dec 2000

Propose regs by Dec 2003
Promulgate regs by Dec 2004
Compliance date of Dec 2007

Background: Mercury Monitoring Options

Mercury CEMS

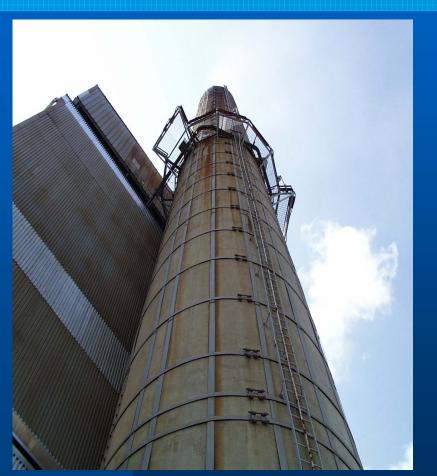
- Manual stack testing
- Extended Period Integrated Sampling
 using absorption media

 Material Balance by (Hg in fuel) – (Hg in non-gaseous combustion by-products)

Background: Mercury CEMS

- Europe has applied certified mercury CEMS
- But lack of field demonstration data on sources with co-pollutant mix typical of US sources
- Decision to focus on total gaseous mercury
- Existence of Draft PS 12

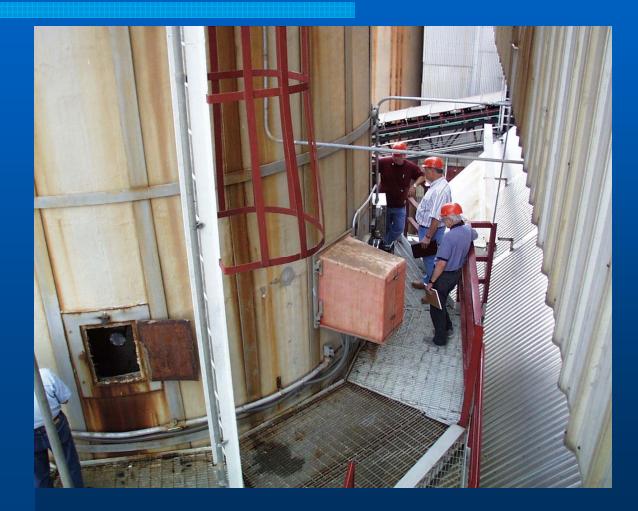
EMC Activities


- Evaluate CEMS for Application to Coal-fired Electric Utilities
 - Site selection: 140 MW tangentially-fired pulverized coal boiler with cold-side ESP, burning eastern bituminous
 - Calibration of detectors and sample handling system with mercury standards
 - Conduct RATAs with "Ontario Hydro"
 - Collect Data for 3 months on performance criteria

First Phase

- May Jul 01: Contact Vendors

 "Dry" versus "Wet" ionic Hg converters
 Other factors
- Aug Sept 01: Installation, begin CEMS operation
 - Direct calibration with cylinder standards
 - Sampling system check with cylinder standards and "HOVACAL"


Sampling Location

Sample routing: Probe to cal/bias manifold; to 120' TFE Teflon sample line; to sample manifold in trailer; all maintained @ 360 ° F

- All fittings interior TFEcoated
- Sample line changed to PFA Teflon Oct 01
- Sampling bias check "up and back"

Sampling Location

First Phase cont.

- Oct 01: First RATA
 12 runs
- Nov 01: Vendors service units
 - catalytic converter issues
 - mechanical problems

First Phase cont.

Jan 02: APPCD, NRMRL Installs a Third CEMS Wet Converter CEMS, "on stack" location

Mar 02: Second RATA Series

 15 "Ontario Hydro" Runs versus 12
 Coal: Source Change

First Phase, CEMS manifold

First Phase, temperature controls

- CEMS challenged by
 - Elemental mercury cylinder gas
 - HgCl₂ generated by a "Hovacal" (see right)
 - HgCl₂ produced using precision mass flowrate controller

Dry conversion CEMS # 1

- Catalyst converts oxidized to elemental mercury
- Cold vapor atomic adsorption UV photometer detects mercury

- Dry Conversion CEMS # 2
 - Catalyst coverts oxidized to elemental mercury
 - Cold vapor atomic adsorption UV photometer detects mercury

- APPCD's Wet conversion CEMS added to test
 - Converter unit illustrated
 - Located near stack port

First Phase Results

- Standards, sampling system field verified
- Wet conversion system RATA
- Ontario Hydro confirms expected Hg species split
- Vendor awareness increased

RATA #2: Wet Converter CEMS

Run #	CEMS	RM	Diff.
1	4.5	3.9	-0.6
2	4.4	4.3	-0.1
8	9.1	8.0	-1.1
9	8.6	7.7	-0.9
10	9.4	9.1	-0.3
11	7.8	7.8	0.0

RATA #2: Wet Converter CEMS

Run #	CEMS	RM	Diff.
12	8.3	8.5	0.2
13	9.8	11.5	1.7
14	9.5	10.1	0.6
15	7.0	8.5	1.5
Avg.	7.8	7.9	0.1
S.D.			0.9
C.C.			0.7

Relative Accuracy: 9.5 %

RATA #2: Dry Converter CEMS # 2

Run #	CEMS	RM	Diff
1	5.2	3.9	-1.3
2	6.6	4.3	-2.3
3	5.2	3.7	-1.5
4	3.1	3.6	0.5
5	3.8	4.2	0.4
6	3.6	4.3	0.7
7	4.0	3.3	-0.7

RATA #2: Dry Converter CEMS # 2

Run #	CEMS	RM	Diff
8	5.3	8.0	2.7
9	5.4	7.7	2.3
10	7.3	9.1	1.8
11	1.3	7.8	6.5
12	3.2	8.5	5.3
13	3.4	11.5	8.1
14	1.8	10.1	8.3
15	1.3	8.5	7.2

Second Phase

 June 02: resurveyed vendors to locate more participants

 Aug 02: acquired and installed 2 "new" dry converter CEMS, arrangements made to further modify old dry converter CEMS #2

 Sept '02: relocated wet converter CEMS to trailer

Sept 02: added EPRI integrated sample monitoring system
Sept 02: completed third RATA series
Oct 02: added two additional dry converter CEMS, one with "new" measurement technology
Dec 02: fourth RATA series planned



Current Evaluation Status

Hg Standards
Sampling System
RATA Test Results
CEMS Availability

What's Next?

Electric Utility MACT

 Assess Mercury Limit & Standard
 Total vs. Speciated
 Percent Reduction vs. Limit

 Prepare Monitoring & Testing Recommendations

Proposal or Request for Comment

What's Next ? (continued)

Electric Utility MACT (continued)
 – Adjust draft PS-12 as needed

Conduct Phase III if required

- Bituminous with wet scrubber and ESP
- Adsorbent injection with hot side ESP
- Subbituminous with SCR (or SNCR)

What's Next ? (continued)

Multipollutant Legislation
 – Track Progress and Content

- Administration, Jeffords, Others
- Instrument Mandate, Trading Provisions,
 Speciated Limits, Implementation Schedule

Consent Decrees for Hg CEMS

 Offer Advice and Assistance
 PSEG Mercer (NJ) & Others

What's Next ? (continued)

 Hazardous Waste Combustors Review ETV Results from Oak Ridge Mercury Cell Chlor-Alkali Plants - Develop Test Program with Chlorine Institute State Regulations Share Information with Massachusetts and Others

Acknowledgements

Bill Maxwell & Bob Wayland, ESD
Ralph Roberson, RMB Consultants
Utility site personnel
CEMS vendors
MRI and Arcadis personnel