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Chapter 4
Alternatives to Monitoring Instrumentation 

Alternatives to the installation of traditional CEM sys- alternative method depends upon the application and
tems have been, and can be, used to monitor how the data will be used.  To assist in such
emissions.  These alternatives are often applicable to decisions, the basic principles of these techniques as
sources where independent  monitoring instrumenta- well as their advantages and limitations will be dis-
tion may not be required to meet the goals of a regula- cussed in this chapter.            
tory program.  To monitor process and control equip-                                         
ment performance, certain NSPS sources employ "pa- 4.1 Parameter Monitoring                
rameters," such as pressure drop, temperature, or wa- Parameter monitoring has been used in a variety of
ter injection  rates (see Chapter 2, NSPS Parameter ways in regulatory programs.  These are summarized
Monitoring Requirements and Table 2-3), instead of in Figure 4-1.          
installing CEM systems.  Similar provisions are
included in other federal and state monitoring require- Beginning with the original application of the monitor-
ments.  Sources regulated under the air toxics or the ing process and control equipment performance, pa-
"enhanced monitoring" provisions of the 1990 Clean rameter monitoring has extended to providing a basis
Air Act Amendments are likely to have the flexibility to for the calculation of source emissions.  Emission cal-
consider such options.  culations have been performed since the original devel-
                                         opment of air pollution control equipment in the form
Alternative monitoring options include: 1) using param- of engineering design calculations (for example, see
eters as indicators of proper operation and Mycock, 1995).  Design engineers typically will
maintenance practices, 2) using parameter values di- attempt to determine equipment performance from op-
rectly as surrogates for emissions determinations, 3) erational parameters.  In terms of air pollution control
using parameters in models that calculate emissions, equipment, the question facing the engineer is, if I vary
4) performing mass balance calculations, or 5) employ- this parameter, or if I vary that parameter, will the pol-
ing a CEM system to monitor a more easily analyzed lutant emissions increase or decrease?
gas as a surrogate for one that is more difficult  to
analyze.   Deciding  whether  to  use  an

Figure 4-1.  Uses of parameter monitoring in regulatory programs.
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This question also has drawn the attention of regula- a higher inaccuracy than that generally acceptable
tory agencies, and due to relationships between pa- (e.g., >20% of the reference method or >10% of
rameter values and emissions, has led to the report- the standard), but may still be defensible.  For exam-
ing of parameter data to both federal and state agen- ple, if a stable source has a VOC emission limit of 50
cies.  The original regulatory use of parameter data ppm, but normally emits 5 ppm, even with 100%
and CEM data was to indicate whether process and uncertainty (±5 ppm), one could still assume that
control equipment were being operated properly.  A the source is in compliance.  However, the accept-
continued record of unsatisfactory parameter data ability of such uncertainty depends on the use of the
could result in a notice and finding of violation of op- data.  Moreover, this scenario may not be acceptable
eration and maintenance requirements.  A subsequent if the emission limit is 10 ppm or the data were to be
requirement to perform a source test for determining used in a market trading program.   
compliance with an emission standard might also re-
sult.

A more direct application of parameter data is to use
it as a surrogate for emissions.  Rather than requiring
the determination of emissions by CEM systems or a
manual method, a surrogate parameter level is estab-
lished which is correlated to the emissions standard.
An exceedance of this parameter level could then be
used for enforcement  and a  source test  may not
be necessary (depending upon the applicable regula-
tion or permit requirements).

An extension of the use of parameter data is to "pre-
dict" the performance of the process or control equip-
ment from the parameter data.  If the process is well
understood, first principle (i.e, theoretical or phenom-
enological) calculations may be performed.  Another
technique is to "correlate" parameter data to emis-
sions data.  An initial study is performed by varying
and monitoring process and control equipment pa-
rameters while monitoring emissions using reference
methods or CEM systems.  One can then correlate
the data to develop a statistical model that can "pre-
dict" emissions. 

Both theoretical and statistical emission models
based on process and control parameter inputs are
used today to meet emission monitoring re-
quirements.  A number of states have accepted their
use, and the federal proposals addressing the 1990
Clean Air Act enhanced monitoring requirements have
been receptive to their application (USEPA, 1993,
Bivins, 1996). 
  
The different uses of parameters, illustrated in Figure
4-1, provide a means for agencies to track control
equipment performance and emissions without the
application of CEM systems or performing source
tests.  Although in some cases the data may not be
as accurate as that obtained from independent test
methods, such levels of accuracy may not be neces-
sary.  For stable, nonfluctuating sources having low
emissions relative to the compliance limit, data that
can assure compliance with the standard may have

4.2 Parameters and Sensors
A parameter is a  property whose value can charac-
terize or determine the performance of process or
control equipment.  Such properties may be tempera-
ture, pressure drop, liquid to gas ratios, percent oxy-
gen, or even the position of a damper.

The values of parameters are determined by
"sensors."  In the broadest sense, a sensor is "a de-
vice that receives and responds to a signal or stimu-
lus (Fraden, 1993)."  A thermocouple or resistance
temperature device (RTD) may be used to measure
temperature, a pressure transducer to measure pres-
sure drop,  flow monitors to measure liquid to gas
ratio, an oxygen monitor sensor to measure percent
oxygen, and a simple on-off switch to monitor the
damper position.  Sensors normally are assumed to
be some mechanical, electrical, or chemical device
that generates an electrical response, but human per-
ception also can serve to determine parameter values.
For example, the visible emissions observer perform-
ing EPA Method 9 is determining a value for the pa-
rameter, opacity, which may characterize the perfor-
mance of a bag house or an electrostatic precipitator.
Or, in an iron and steel plant (NSPS subpart AA),
each shift operator may note the furnace static pres-
sure, again a parameter.

In process and control equipment, sensors tend to be
simple devices that generate an electrical response.
They do not, in general, incorporate sophisticated
linearization and calibration features such as those
used in CEM systems.  They are basically the
stripped down version, the sensing elements incorpo-
rated in CEM systems.  For example, the zirconium
oxide electrocatalytic cells used in many CEM oxygen
analyzers are the same type of cells used as "sen-
sors" in automobiles for engine and emissions con-
trol.
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4.3 Parameter Monitoring Used as an 
Indicator of Equipment Operation 
and Maintenance

As discussed in Chapter 2, plant operational para-
meters or control equipment parameters have been
specified in the New Source Performance Standards
for certain source categories.  In these applications,
the parameter data are intended to determine whether
the process or control equipment is operating prop-
erly.  Proper operation, in turn, means that the plant
equipment is operating in a manner such that the
emissions limits (standards) are most likely being
met.  In NSPS applications, parameter data may indi-
cate possible problems in plant performance, but
compliance with emission standards  traditionally has
been determined by source testing (or in some cases,
CEM systems) under specified operating conditions.

The use of the parameter values varies depending
upon the regulation.  In the simplest case, a regula-
tion merely may require that the parameter values be
determined, such as in the NSPS requirements for
monitoring the pressure drop across wet scrubbers
used to control particulate emissions in the phos-
phate fertilizer industry, coal preparation plants, am-
monium sulfate manufacture, etc. (CFR Subparts T,
U, V, W, Y, and PP, respectively).  No recording or
reporting requirements are given for these examples,
but the required permanent record can be used by the
regulatory agency to assess plant operations and
target problem facilities for follow-up actions.

State programs also have used parameter monitoring
for determining the adequacy of plant operation and
maintenance practices.  Many programs include gen-
eral provisions in state implementation plans re-q-
uiring good engineering practice in the operation and
maintenance of control equipment. 

4.4 Parameter Monitoring Used as a 
Surrogate for Emissions

An extension to requirements for monitoring and
recording operational parameters is to establish some
trigger value for the parameter.  Here, a parameter
baseline or trigger value is established during a
source test, where the source test is conducted to
determine compliance with the emissions standard
(lbs/hr, ppm, etc.).  This trigger value then can be
used in one of two ways: 1) it can trigger a reporting
requirement, analogous to reporting excess emissions
by sources with CEM systems, or 2) it can be used
directly as a surrogate for an emission compliance
limit.

4.4.1 Parameter Monitoring as a Surrogate for Re-
porting Excess Emissions

Parameter values can be used as surrogates for emis-
sion values to report problems in the operation and
maintenance of emission control equipment.  A typi-
cal regulatory  statement for parameter monitoring for
particulate control equipment is:

"...report to the Administrator, on a semiannual
basis, all measurements (pressure loss and wa-
ter supply pressure) over any 3-hour period that
average more than 10% below the average lev-
els maintained during the most recent perfor-
mance test in which the affected facility
demonstrated compliance with the mass stan-
dards..." (40 CFR 60.143 Subpart N).

Here, one assumes that the facility is operating at or
below its compliance value and that the parameter
values reflect the operating conditions of the control
device (usually a wet scrubber) at that level.  If pa-
rameter levels fall within a range of acceptable values
established during the compliance test, one assumes
that the scrubber is continuing to operate in a manner
where the facility is in compliance with the underly-
ing emission limit.   In this sense, the parameter
value stands in as a surrogate for the emission com-
pliance value.

Note, however, in the example given, that the trigger
level is not at the parameter level determined during
the compliance test, but at a level 10% lower.  In a
typical venturi scrubber, an increase in pressure drop
increases the particulate removal efficiency of the
scrubber.  A decrease in the pressure drop means
that less particulate matter will be removed.  Since
the sensor measurement accuracy may be ±5% and
since some inaccuracies may have occurred in the
source testing, the pressure drop is allowed to de-
crease by 10% from the baseline level before it is
required to be reported.  For even greater flexibility,
some regulations allow a reduction of 30% before
reporting is required (see for example, 40 CFR 60,
Subpart HH, lime manufacturing plants).

Many other examples could be given of this use of
parameters as surrogates for emissions. In Subpart
GG, gas turbines using water injection to control NOx

emissions must report any one hour period where the
water-to-fuel ratio falls below the value determined to
demonstrate compliance.  Incinerator temperatures in
Subpart MM, RR, and other coatings operations are
to be reported when they change from some speci-
fied compliance level.
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If parameter values fall below such trigger levels, the That established parameter value has been called the
agency may require the source to improve its opera- "demonstrated compliance parameter limit," or DCPL.
tion and maintenance practices, or may require a Although the proposed enhanced monitoring rule was
compliance test be performed to determine if the withdrawn in April 1995, the concept of the DCPL,
source is meeting its emissions standards.  Also, if the stand-in or surrogate emissions standard, still re-
sensors installed to monitor equipment performance mains.  
are not operating properly, parameter data will no
longer be useful and a compliance test again may The question as to how parameter limits actually re-
become necessary. late quantitatively to emission values depends on the

4.4.2 Parameter Monitoring for Direct the emission measurement method, averaging peri-
Compliance ods, and other factors.  To answer this in practice,

A new approach appeared in a 1993 proposal for en- one must obtain further information by testing at dif-
hanced monitoring (EPA, 1993) where parameter ferent operational levels.  One can correlate the pa-
monitoring was proposed as a method for determin- rameter values with emissions over a narrow range of
ing directly the compliance of a source with operating conditions to establish the DCPL.  A typical
emissions standards.  In this approach, the source performance curve for a venturi scrubber is given in
owner or operator would be required to "justify that Figure 4-2.  Here, as the pressure drop across the
a known and consistent relationship exists between venturi throat increases, the efficiency in removing
the emissions subject to an applicable limitation or particulate matter increases. 
standard and the parameters being monitored."  This
is not much different from using parameters as a sur- At some point on the curve, a pressure drop will cor-
rogate limit in excess emissions monitoring, as pre- respond to the compliance value, the emissions stan-
scribed in certain NSPS requirements.  The dif- dard for the facility.   Some variability will exist in the
ferences are that: testing procedures used to establish the correlation

• The parameter level is used as a surrogate for )P.  This range of variability is shown by the confi-
the emissions standard. dence intervals in the figure. The agency may there-

• The source owner would be required to es- sions standard and the correlation, but establish the
tablish the parameter value or values that surrogate standard, P , at a higher value to account
would assure that the source is in compliance for the variability.  If the pressure drop  is  maintained
with the emissions standard. at  the  DCPL  value  or  higher,

underlying relationship, the accuracy and precision of

and in the accuracy of the sensor used to determine

fore not accept a 1:1 correlation between the emis-

std

Figure 4-2.  Operational parameters correlated to emissions.  Establishing  the demonstrated compliance
parameter limit (DCPL).
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some assurance exists that the emissions standard is the agency.  In a predictive method, emissions values
being met, within the uncertainty of the correlation. calculated by the model from parameter values are

Many examples of using parametric monitoring to
demonstrate compliance with emissions regulations
have been published.  Bills (Bills, 1995) describes
applications in the pharmaceutical industry for ther-
mal oxidation systems, condensers, and adsorption
systems used to control VOC emissions.  In these
applications, direct  measurements of multiple gas-
eous components in the process gas streams became
overly complicated and resource intensive.  Instead of
using sophisticated monitoring instrumentation, sim-
pler parameter monitoring approaches were adopted
in exchange for accepting more stringent "worst
case" DCPLs. 

This use of parameter surrogates in place of using
CEM systems to monitor emissions may appear
straightforward.  However, as in all emission monitor-
ing techniques, the method is application dependent.
In determining the appropriateness of the method,
one should consider the following factors:

• The relationship between the parameter or
parameters should be straightforward. 

• The relationship should hold for all operating
conditions.

• The correlation between emissions and the
parameter should have a high degree of con-
fidence with narrow confidence and tolerance
intervals. 

Parameter surrogates are most appropriate when the
relationship is a simple one, such as in using incinera-
tor temperature for VOC control, or water-to-fuel ratio
for gas turbine NO  control.  For the method to bex

practical, no other operating variables  should  affect
the correlation significantly.  If they do, they should
be included in the correlation, which will then make
the correlation more complicated and more uncertain.
 These  issues  are  discussed  in  detail  by  Evans
(Evans, 1994).

The DCPL approach is similar to a predictive method
since the DCPL value is established on past data or
performance data to predict present compliance with
emissions standards.  It differs from the  statistical
predictive emission monitoring (PEM) models in that
it is less refined (see Evans, 1994) and is established
over a narrow range of operating  conditions.  In a
DCPL approach, parameter values such as  pressure
drop, temperature, or supply pressure are reported to

reported to the agency.

4.5 Emission Modeling - Predictive 
Emissions Monitoring Systems

Many applications occur where parameter relation-
ships to emissions are more complicated than estab-
lishing a simple DCPL and sensor determined parame-
ters might be better incorporated into a predictive
emission monitoring (PEM) model, or system.  In the
PEM model approach, emission values are calculated
by the model from the input parameter values.

When developing a predictive model, parameter and
emissions data are accumulated under various operat-
ing conditions.  Then the data are used to develop
the model.  Two approaches are possible: 

1) If the source or control equipment operation is
well understood, first principles calculations can
be made to determine the emissions.  Based
upon the physical and chemical effects of operat-
ing parameters on emissions, the actual
emissions may be determined. This approach is
o f t e n  called the "first principles" or
"phenomenological" approach.               

2) If the effects of operating parameters on emis-
sions are not well understood, or if theoretical
calculations become too complicated, statistical
methods may be applied.  Linear and nonlinear
regression techniques have been used success-
fully in many situations.  Neural net methods also
have become popular in these applications.  

No one modeling approach can be said to be the
"best."  As with CEM systems, one must consider
tradeoffs in each application.  Both first principle and
statistical models have passed relative accuracy tests
in specific applications (Hung, 1994, Clapsaddle,
1995, Clapsaddle, 1996).

Predictive systems are basically empirical models.
Even the first principle approaches use past data for
evaluation purposes.  The theory establishes the form
and mathematical functions of the model, and test
data commonly are used to introduce empirical con-
stants to fine-tune the model.  In building these mod-
els a test program must be developed that can pro-
vide representative emissions and parameter data
over the probable, expected range of operating condi-
tions of the emission source.
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4.5.1 First Principle Models Hung (Hung, 1993) has developed a semi-empirical
Models can be developed from the fundamental the- model for annular (can) type gas turbines to calculate
ory associated with the operation of a process or a NO  emissions.  Based on operating conditions, ambi-
pollution control device.  Depending on the process, ent conditions, combustor geometry, and the type of
principles of thermodynamics, chemical kinetics, fluid fuel used, the model has been used to generate data
flow, and so on, may be applied.   First principle comparable to that obtained from CEM systems.  The
models have been applied to calculate nitrogen oxide strength of the model does depend upon the quality
emissions for can-type gas turbines (Hung, 1993, and amount of test data used in the semi-empirical
1994, 1995).  Also, theoretical design equations correlation (Hung, 1994).
have been developed for most types of air pollution
control equipment: particulate scrubbers, gas absorb- 4.5.1.2 Mass Balance Calculations
ers, condensers, electrostatic precipitators, etc.  A much simpler version of the theoretical approach is

First principle models provide for an understanding of cally, for an uncontrolled emissions source, "what
a process and the relative importance of the input goes in should go out."  For fossil-fuel-fired boilers,
parameters to its performance.  A pure first principles sampling and analysis for sulfur in fuel has been al-
model does not depend upon historical data and can lowed as an option to CEM systems for certain Part
be used over the full range of process operation.  60 and Part 75 sources regulated by EPA.  Fuel anal-

4.5.1.1 Semi-empirical Models boilers, where fuel flow rates are easily determined
Theoretical design equations can give good qualita- and the sulfur content is homogeneous.  For coatings
tive information, but quantitative information having operations the emission of volatile organic
the accuracy necessary to be legally enforceable usu- compounds (VOCs) can be calculated from the VOC
ally is not obtainable without empirical correlation. content of the coating (paint) and solvents and the
Not all of the effects of process variables may be amount of paint and solvent used.  Mass transfer
known and the values of the necessary input parame- calculations have been used for estimating emissions
ters may not be of sufficient accuracy to give correct in very small emission sources such as those found
results.  The problem here is that most devices are in electroplating operations and degreasers (Siebert,
too complex.  Calculating emissions from first princi- 1995).
ples often requires too much information to be practi-
cal.  For example, in the "infinite throat model" for Comparisons between mass balance calculations and
Venturi particulate scrubbers a knowledge of the par- CEM systems do not always come out as expected.
ticle size and droplet size is necessary (Yung, 1977). When the plant operating engineer's mass balance
In practice, one would have to integrate over the par- calculations and the environmental engineer's CEM
ticle size distribution to obtain a realistic number. results do not agree, winning the argument may be
Unfortunately, the distribution of particle sizes in a less important than who is right, especially where
flue gas is both difficult and expensive to determine emissions up the stack correspond to loss of product.
accurately.  The model may be good for design appli- In the case of heat rate calculations vs CEM systems,
cations, but because of the requirement for accurate Cashin (Cashin, 1996) has addressed the many is-
input data, is limited in practical applications for sues involved in such debates.
emissions calculations.

A compromise to this problem is to develop a semi- When developing a model from physical, chemical, or
empirical model.  In a Venturi scrubber example, the engineering principles is not possible, a statistical
"contact power" theory (Calvert, 1972), the ef- approach may be applicable.  Beginning with the ef-
ficiency of the scrubber in removing particulate mat- fect of only one parameter on equipment per-
ter is related to the power required to move the pro- formance, we could first assume a linear relationship
cess gas and liquid through the system.  The expo- between the parameter and emissions.  That is, if a
nential relation developed depends upon empirical change occurs in the parameter x, the emissions y
constants determined by experiment.  The net result will change by a constant factor, b, according to:
is a model that incorporates some physical
understanding of the process, but which is fine-tuned                      y = a + bx
with experimental data --- the semi-empirical model.

x

to calculate mass balances in the process.  Theoreti-

ysis is particularly convenient for oil and gas fired

4.5.2 Empirical Modeling

where a and b are the intercept and the slope,
respectively, of the regression equation. 
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In practice, one desires a model that will be valid un-
der a range of values of x.  Thus, a number of tests
would be conducted to obtain data that might appear
as that shown in Figure 4-3.

Figure 4-3.  Test data.  Emissions as a function of such that
the parameter values, x.

Obviously scatter occurs in the emissions data.  The
scatter in y is due to uncertainties and variability in One can show that the values for a and b which de-
the emissions measurements because of problems in fine the line of minimum deviation (the regression
measurement, difficulties in keeping process variables line), can be calculated from n data sets (x , y ) as
(parameters) other than x constant during the testing, follows:
and to unknown variables that may be affecting the                     
process.                        3x 3y  - 3x3xy

In the statistical methods, the goal is to find an equa-                         n3x  - (3x )
tion that best summarizes the test data and predicts
emissions to within an acceptable level of                         n3xy  - 3x3y   
confidence.  Based upon the quality of the input data               b  =  )))))))))))))))))
and the choice of parameter or parameters or, based                         n3x  - (3x )
on past data, how confident are we in our equation
predicting future values? The calculations are tedious if performed manually,

Statistics can answer these questions for us and such routine calculations easily and rapidly.   
many statistical methods have been developed to fit
curves to data and qualify the results.  The least The determination of a and b is not a matter of guess
squares linear regression and multiple linear regres- or iteration.  In this statistical method, an underlying
sion techniques are very useful in this regard.  The assumption is that the value of x has negligible error
extended statistical method of neural nets has also or is free from error.  It assumes that the deviation
been useful in providing greater flexibility for nonlin- lies principally in the measurement of y, in this case,
ear expressions. the emissions. 

4.5.2.1 Least Squares Linear Regression Other assumptions in the method exist, but the main
Techniques point here is that the values of a and b are mathemat-

The least squares technique is one of the simplest ically determined and depend only on the original test
methods used to fit a line to emissions/parameter data.  If the dependence of y on x should change be-
data.  In the example above, if y is a linear function cause of a change in operations, system  degenera-
of the parameter x, the line y = a + bx is such that tion, or faulty determination of x, the best line will no
if one takes the deviation from each point to the line longer be valid.
and squares the deviations, the constants a and b in
the equation will be such that the sum of the squares
is the smallest possible value (Figure 4-4).

Figure 4-4.  Linear regression of test data.

In mathematical terms a and b are calculated to be

        3(y  - (a + bx ))  = a minimum valuei i
2

i i

i i i i i
2

              a  =  ))))))))))))))))))
i i
2 2

i i i i

2 2
i

however. Computer programs are available to do
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4.5.2.2 Multiple Linear Regression              y = a + x
More than one parameter may influence the value of
y (the emissions).  The equation for y may then ap-         y = a +  log(bx)
pear as:

  y = b  + b x  + b x  + b x  + .... + b x         0 1 1 2 2 3 3 k k  

for k parameters.  This is the more likely case in
emissions applications and techniques of multiple
linear regression can be used.  The approach is simi-
lar to that given for simple linear regression, but a set
of k simultaneous linear equations are solved to de-
termine the values of b  to b .   In multiple regres-o  k

sion, the effect of one parameter on the emissions
can be determined while the other parameters are
kept constant.

Linear regression statistical techniques have been
used widely to develop PEM system models.  Pub-
lished examples most often address monitoring NOx

emissions from industrial boilers.  Evans (1995) has
developed a PEM NO  model for a gas-fired boiler us-x

ing two parameters, % excess O  and flue gas tem-2

perature.  Macak (Macak, 1988), using multiple linear
regression techniques, developed a model for a natu-
ral gas-fired boiler using three equations, each used
over different load ranges, and each using two to
three different parameters.  

4.5.2.3 Higher Order Multiple Linear Regression
Higher order linear models may be used to provide
curve fits to data (Draper, 1981).  In the case of
more than one parameter, the regression expression
may include higher orders of the input variables and
incorporate expressions such as:

           y = a + bx + cx  2

For multiple input parameters both polynomials and
polynomial cross-products may be included:

  y = b +b x +b x +b x x +b x x  + .....o 1 1 2 2 3 1 2 4 1 2
2 2

These expressions are termed linear regression equa-
tions since they are linear in terms of the regression
coefficients.  The first expression is a second order
linear equation.  The second expression is a third or-
der linear equation.

4.5.2.4 Nonlinear Least Squares Regression  
Nonlinear models express the model output (emis-
sions) as a nonlinear function of the regression coeffi-
cients (a, b,...).  The nonlinear function may be a
power function, or a logarithmic or exponential func-
tion of the regression coefficients.  Examples of non-
linear models include: 

b

             y = a +  e-bx

The constants for nonlinear models are determined by
iteration techniques similar to those in linear regres-
sion.  Some non-linear forms present significant
mathematical complexity and require numerical
methods rather than analytic solutions.

Many more mathematical options are available in the
nonlinear and multiple order curve-fitting techniques.
One may be able to represent the initial input data
well with such models, but a danger exists in "over-
fitting" the data.  One can "correlate" or fit a curve
between any two sets of numbers, but if no actual
relationship exists between them, future predictions
will not necessarily be valid.  

Clapsaddle (Clapsaddle, 1995, 1996) has used poly-
nomial expressions to represent emissions in gas and
oil-fired boilers.  Four to six parameters such as fuel
oil flow rate, air flow rate, excess O , fuel gas flow2

rate, air damper position, air heater outlet tempera-
ture, fuel bound nitrogen, were used in the various
models.  Snyder, et. al. (Snyder 1996) used up to
five parameters in nonlinear models for predicting NOx

and CO emissions from stationary gas turbines.

4.5.2.5 Neural Network Models
Neural network models have been applied recently to
model source emissions.  Although the neural net-
work methods are inherently mathematical, analogies
can be made to biological learning processes.  The
regression methods discussed so far provide a model
that is calculated by using a set of equations.  In the
neural net method, the model constants are not cal-
culated, but are determined by iteration.  The con-
stants in the model are varied incrementally until a
set of constants is obtained that will reproduce the
actual emissions of the input data set.  Least squares
regression methods are still used in neural net models
to minimize the residual differences between the test
emission data and the model predicted emissions.

In developing neural network models, extra sets of
constants are introduced into what are called "hidden
layers (or nodes)."  These constants, in conjunction
with nonlinear functions, can weight the importance
or unimportance of different input parameters in con-
tributing to a given result.  This "weighting" also is
done by an iterative process.  This weighting process
is similar to what neurons do in the brain, hence the
word "neural."  
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Neural network procedures are somewhat of a "brute damper,  can  easily  invalidate  any  model (Evans,
force" approach in statistical model development. 1994).
The procedures use the iterative capabilities of the
computer to choose optimum constants that best A model should be developed over a sufficient period
represent how a process operates.  The method is of time where a full range of operating conditions can
powerful since most process operations are compli- be correlated to the emissions.  During this time both
cated and the interrelation between input parameters accurate emissions data and sensor data are required.
is not always well understood.  The approach is simi- If either inaccurate sensor or emissions data are used
lar to using a computer to numerically integrate an to build the model, the model itself will be inaccurate.
integral that is too complex to solve analytically.

Neural network models do offer some greater flexibil- Usually more than one model is examined when de-
ity in optimizing system operations.  Since the contri- veloping a PEM system.  Different combinations of
bution of the various parameters to the operations is parameters and both linear and nonlinear regression
better understood, this information can be fed back equations may be used to examine those having the
to improve system performance.  Neural network pro- best fit with the data.  An examination of residuals,
cess optimization models have been said to have confidence intervals, and regression coefficients typi-
been developed for the chemical, petro-chemical, cally are examined in the evaluation process (Evans,
semiconductor, and mining industries (Keeler, 1993). 1995).  

In one study, 21 input parameters, selected from A relative accuracy test audit (RATA) used to certify
120, were used to develop an NO  prediction model CEM systems is not necessarily sufficient to validatex

for a gas fired boiler (Collins, 1994).  Clements, et. a PEM model (Eghneim, 1996).  The RATA normally
al. (Clements, 1996) applied both multiple linear re- is conducted at only one operating condition of the
gression methods and neural network techniques to source.  For a PEM system, if that operating condi-
develop PEM models to predict NO , CO, O , and tion were to be one under which the correlation werex  2

stack gas flow rates for gas turbines and reciprocat- developed, the system should obviously pass.  A
ing gas engines.  In this study comparing the two truer evaluation would be to conduct a RATA, or
types of models, regression coefficient (R ) values RATAs, at operating conditions different from those2

were found to be better for the neural network analy- used to develop the correlation.  To be "predictive,"
sis than for linear regression analysis.  Note:  R  val- the model must provide true emissions values from2

ues give a measure of the "fit" of the model to the parameter data not previously provided to the model.
data, but are not necessarily an indicator of which
model will provide the best prediction from new data 4.5.4 Model Quality Assurance
(Evans, 1995). In NSPS requirements for operations monitoring, sen-

4.5.3 Model Development ally.  The manufacturer of a sensor is expected to
A typical approach to model development is to first deliver a product to specified levels of precision and
review all potential operational parameters that affect accuracy.  These levels are chosen to be within an
emissions, determine the full operating range for each acceptable range for the intended application, usually
parameter, examine potential cross para-meter inter- ±5% of reading.  However, users often assumed
action, and then develop a test matrix to evaluate the incorrectly that the performance of a sensor will re-
effect of parameter changes on the emissions main constant with time.  The calibration may drift
(Clapsaddle, 1996).  The emissions are then charac- over time, the sensor may become fouled, or it might
terized according to the test plan and a regression not work at all.  Plant maintenance routines provide
model developed from the test data.  Evans (Evans, for inspection of these devices, but the sensors most
1994) proposes a similar approach that emphasizes critical to plant operation usually receive the most
care in the selection of model parameters.  The test attention.
must concentrate on parameters that have an effect
on emissions.  Inclusion of parameters that have neg- If a parameter monitoring program is to be initiated,
ligible effects will complicate the test without com- the sensors used to provide parameter values for a
mensurate improvements in the model.  The main model or correlated relation must provide values at
problem in developing models is in not recognizing consistent levels of precision and accuracy.  To do
parameters that can affect emissions.  This "lurking otherwise leads to faulty data, just as would a poorly
parameter", being as simple as an open or closed calibrated or malfunctioning analyzer of a CEM sys-

sor  calibrations are  required  to be checked annu-

tem.  A quality assurance program institu-ted to as-
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sure that the sensor data continues to be valid is as
essential in PEM systems as a preventive main-
tenance program is in a CEM system (Macak, 1996,
DeFriez, 1996).  The "once yearly" check for a sen-
sor may no longer be sufficient  and quarterly or
monthly preventive maintenance procedures may be
necessary to ensure the continued validity of the
model.  

PEM systems do, however, have the capability of
performing self-diagnostics and making adjustments
for poor sensor data.  If redundant sensors are
installed in a system, the PEM system might switch
to another operating sensor after one fails.
Algorithms can be instituted to perform cross-checks,
or reality checks for sensors.  Historical data might
even be substituted for missing data until a faulty
sensor is replaced or the PEM system may model the
sensor data itself from other input variables.  How-
ever, the regulatory acceptability of these substitu-
tion procedures has not been addressed in most state
or federal monitoring programs, except for a few in-
stances (for example, see 40 CFR 75 Appendix C).

EPA historically has required daily calibration checks
for monitoring instrumentation so as to provide for
legally defensible data for each operating day.  The
necessity of providing a means for assuring data
quality on a routine basis is as important in PEM sys-
tems as it is in CEM systems (Eghneim, 1996).

4.5.5 Model Limitations
The availability of least squares regression and neural
net software enables one to correlate any two data
sets by a variety of methods.  However, the ease of
doing this can create problems if basic assumptions
of the method are ignored.  Using extensive sets of
past performance data may not be valid if the data
were obtained under different or unknown operating
conditions.  If site conditions change (such as a
change in emission controls or a change in fuel type)
new test data must be obtained.

Including or excluding parameters without exam-
ination or justification can result in complicated mod-
els that are not robust - they may be valid for only
one set of conditions, give the same emissions re-
sults for different sets of parameters, or give nonsen-
sical results outside and within the expected range of
applicability.  The key for a good PEM model is to
design a thorough experimental test program that
examines the effect of selected parameters on emis-
sions and to understand the statistical correlation
methods and assumptions used to mathematically
develop the model (see Evans, 1994, 1995).

4.6 Issues in Parameter Monitoring
The use of parameter monitoring techniques to deter-
mine source emissions offers an alternative to the
installation of CEM systems.  Parameter-based mod-
els can be relatively inexpensive to develop and they
can provide process information and feedback that
can be used to increase plant efficiency and reduce
emissions.

Decisions regarding the use of parameter methods,
particularly the PEM systems, often reduce to the
issue of PEM system versus CEM systems.  Pre-d-
ictive methods have been promoted actively by com-
mercial firms that market the technique.  Introducing
an innovative technique is difficult, and marketing
programs in this area have exhibited biases with re-
spect to both technical and commer-cial issues in
order to gain industry and agency acceptance (e.g.,
Samdani, 1994, Steven, 1994).  One particular mar-
keting point that is emphasized frequently is the rela-
tive cost of CEM systems versus PEM systems, with
the implication that PEM systems constitute a lower
cost option.  As we shall see in Chapter 6, technical
applicability is the most important criteria for select-
ing a monitoring system and initial capital cost should
not be the sole criterion. 

Parameter models do offer some significant advan-
tages as a monitoring technique, but one must re-
member that a model is still a model.  It can give
present information based upon past data or  it can
predict future information based upon hypothetical
data.  But a model is always tied to the past opera-
tion of the process and the present sensor data.  This
is in contrast to manual reference test methods or
CEM systems, which provide measurements that are
relatively independent of the process and its past
history.

As we have seen above, predictive systems are de-
veloped by correlating parameter data with emissions
data over a range of conditions.  The correlation will
continue to be valid if those condi-tions are main-
tained and the sensors provide input data at the same
level of quality as provided during the correlation
testing.  However, of interest to both plant operators
and regulatory agencies is what happens under upset
conditions, what are the emissions when the process
is not operating properly (see for example, Macak,
1996).  Since most correlations are not developed
under such conditions, the model predictions will
either be incorrect during the period of malfunction or
the model may flag the data as "missing."   In the
first case, the data will be misleading (Figure 4-5b);
in the second case, no data will exist (Figure 4-5c).
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The scenarios of Figures 4-5a and 4-5b may be con- to the PEM model equation (without recertification)?
venient for the source required to report periods of If a RATA on the PEM shows inaccuracies, can the
excess emissions, but not desirable for the regulatory PEM model be adjusted and then accepted until the
agency.  A more complete model would be able to next required quality assurance (QA) audit?  How
determine that the upset occurred through appropri- many times can a PEM fail a QA audit before a regu-
ate sensing devices, and would then switch to an latory agency requires that the PEM be replaced?"
alternate model or algorithm to account for the upset. Other questions arise with regard to techniques used
The problem here is multifold.  First, one would have in "sensor validation."  If a sensor is replaced, is the
to be aware  of  all  possible  upset conditions.   One model still valid?  Is recertification required?  If a sen-
would then have to either initiate or simulate the pos- sor fails and sensor data are reconstructed to substi-
sible upset conditions and obtain reference emission tute and maintain  data availability, should the model
data to develop the alternate models.  This could be be certified under those conditions and other possible
prohibitively expensive, or impossible if one could sensor data substitution scenarios? (See DeFriez,
not or  did not wish to  produce the upset conditions 1996 for a discussion of sensor issues.)  If a model
during the development effort.  Another approach contains different algorithms for different operating
might be to establish "control  limits,"  or  limiting conditions, should the model be certified at each op-
conditions for  the model.  When the process oper- erating condition?   
ates outside these limits, the model will be out-of-
control and data cannot be used.  Such limits would The cost issue has become distorted considerably in
be analogous to the 40 CFR 60 Appendix F out-of- PEM system vs CEM system arguments.  PEM sys-
control limits for a CEM system. tem costs are often compared inappropriately to the

For example, in gas turbine models, NO  emission the requirements of the Part 75 acid rain program.  Inx

predictions are based upon the inherent assumption Part 75, the hardware precision and accuracy require-
that the turbine is maintained and operated under the ments and detailed data acquisition and handling sys-
conditions under which the model was developed. tems (DAHS) specifications necessary to legitimize
Should water injection nozzles become plugged, or data for allowance trading justified higher costs.  Sys
water distribution in the turbine become uneven, the tems installed to meet the NO  or VOC monitoring
model becomes invalid.  The wear and tear on a sys- requirements of a state Title V permit program are
tem, the normal degeneration of system components not required to meet such stringent  specifications,
due to continual operation will remove the system and their costs are consequently much less.  
from the baseline conditions from which the model Many CEM system suppliers now offer CEM systems
was developed.  These issues are similar to those at prices comparable to commercial PEM systems.
associated with CEM systems, since a CEM system When one considers the correlation testing neces-
must be maintained properly to operate under the sary to develop a PEM system model and the certifi-
conditions at which it was certified.  As with CEM cation testing necessary to validate the model, initial
systems, a program of quality control, of checking capital costs are often comparable.  Also, if the origi-
model performance and sensor performance, must be nal correlation becomes invalid due to process
instituted to ensure that the model continues to rep- changes or system degeneration, the correlation test-
resent current conditions. ing would have to be  redone.   The  ongoing quality

PEM model maintenance issues are therefore very methods. These cost issues are further discussed in
important.  Just as with CEM systems, when a com- Chapter 6 of this manual.
ponent is modified or replaced, the question of recer-
tification arises when the model is modified.  Agency Those required to monitor non-criteria pollutants may
guidance in this area is still developing, but questions have the flexibility to choose between a CEM and
posed by Clappsaddle are pertinent (Clapsaddle, PEM system to meet the requirements of future rule-
1995): "Can periodic adjustments be made making.  Depending on the application, the two

costs associated with CEM systems installed to meet

x

assurance costs can be comparable between the  two

techniques can be competitive both in terms of cost
and accuracy.  However, one of the most powerful
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Figure 4-5.  Emissions calculations (PEM system predictions) based upon upset conditions not
accounted for by the model.
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options is  the   combination  of   two   methods Air Emissions Estimates.  Paper” presented at the
(DeFriez, 1996, Macak, 1996).  With a combined Electric Power Research Institute CEM Users Group
CEM/PEM system, the PEM system can serve as a Meeting, Kansas City, MO.
backup  to  the  CEM  system,  as in the  prescribed
techniques can be competitive both in terms of cost Clapsaddle, C.A., 1995. “Comparison of NO  Emis-
and accuracy.  However, one of the most powerful sion Rates Estimated by 40 CFR Part 75 Appendix E
options is the combination of the two methods C- Procedures and Parametric Emission Models with Ref-
EM/PEM system, the  PEM system can serve as a erence Method CEM Measure-ments.” Paper
backup  to  the  CEM  system, as  in  the  prescribed presented at the Air & Waste Management Associa-
methods of the acid rain CEM program (40 CFR 75). tion Meeting, San Antonio, TX. Paper 95-MP16A.05.
Or, a CEM system can serve as a backup to a PEM
system.  When a sensor validation program causes Clapsaddle, C.A., and Cunningham. 1996.
the PEM system to invalidate data and report missing Performance Evaluation of Parametric Emission Moni-
data due to failed sensors or an unrecognized operat- toring Systems for Boilers.  Continuous Compliance
ing condition, the CEM system can fill in the missing Monitoring Under the Clean Air Act Amendments.
data gap.  The CEM system can provide the data Air & Waste Management Associa-tion.  Pittsburgh,
where it may be most needed, the period of plant PA. pp 162-176.
upset conditions not accounted for by the PEM
model. Clements, B., Hayden, A.C.S., Zheng, L., and Dock-

The final decision in choosing a monitoring method, Methods for the Parametric Prediction of NO  from
whether a CEM or a PEM system, depends upon how Natural Gas-Fired Engines.”  Paper presented at the
the data will be used and the constraints of the appli- Air & Waste Management Association Meeting, Nash-
cation.  Questions need to be asked about whether ville, TN. Paper 96-RA109.01.
a DCPL or predictive model will meet monitoring re-
quirements, will the method be sufficient for demon- Collins, N. and Terhune, K. 1994.  A Model Solution
strating compliance, or will the data be accurate for Tracking Pollution.  Chemical Engineering - Envi-
enough for a trading program?  A consideration of ronmental Engineering Supplement.
these questions should involve an evaluation of cost,
regulatory, and technical issues; none should be con- DeFriez, H., Seraji, H., and Schillinger, S. 1996.
sidered solely. “Neural Logic Solutions for Emission Monitoring.”
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