
13.2.4 Aggregate Handling And Storage Piles

13.2.4.1 General

Inherent in operations that use minerals in aggregate form is the maintenance of outdoor
storage piles. Storage piles are usually left uncovered, partially because of the need for frequent
material transfer into or out of storage.

Dust emissions occur at several points in the storage cycle, such as material loading onto the
pile, disturbances by strong wind currents, and loadout from the pile. The movement of trucks and
loading equipment in the storage pile area is also a substantial source of dust.

13.2.4.2 Emissions And Correction Parameters

The quantity of dust emissions from aggregate storage operations varies with the volume of
aggregate passing through the storage cycle. Emissions also depend on 3 parameters of the condition
of a particular storage pile: age of the pile, moisture content, and proportion of aggregate fines.

When freshly processed aggregate is loaded onto a storage pile, the potential for dust
emissions is at a maximum. Fines are easily disaggregated and released to the atmosphere upon
exposure to air currents, either from aggregate transfer itself or from high winds. As the aggregate
pile weathers, however, potential for dust emissions is greatly reduced. Moisture causes aggregation
and cementation of fines to the surfaces of larger particles. Any significant rainfall soaks the interior
of the pile, and then the drying process is very slow.

Silt (particles equal to or less than 75 micrometers [µm] in diameter) content is determined by
measuring the portion of dry aggregate material that passes through a 200-mesh screen, using
ASTM-C-136 method.1 Table 13.2.4-1 summarizes measured silt and moisture values for industrial
aggregate materials.

13.2.4.3 Predictive Emission Factor Equations

Total dust emissions from aggregate storage piles result from several distinct source activities
within the storage cycle:

1. Loading of aggregate onto storage piles (batch or continuous drop operations).
2. Equipment traffic in storage area.
3. Wind erosion of pile surfaces and ground areas around piles.
4. Loadout of aggregate for shipment or for return to the process stream (batch or continuous

drop operations).

Either adding aggregate material to a storage pile or removing it usually involves dropping the
material onto a receiving surface. Truck dumping on the pile or loading out from the pile to a truck
with a front-end loader are examples of batch drop operations. Adding material to the pile by a
conveyor stacker is an example of a continuous drop operation.
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Table 13.2.4-1. TYPICAL SILT AND MOISTURE CONTENTS OF MATERIALS AT VARIOUS INDUSTRIESa

Industry
No. Of

Facilities Material

Silt Content (%) Moisture Content (%)

No. Of
Samples Range Mean

No. Of
Samples Range Mean

Iron and steel production 9 Pellet ore 13 1.3 - 13 4.3 11 0.64 - 4.0 2.2

Lump ore 9 2.8 - 19 9.5 6 1.6 - 8.0 5.4

Coal 12 2.0 - 7.7 4.6 11 2.8 - 11 4.8

Slag 3 3.0 - 7.3 5.3 3 0.25 - 2.0 0.92

Flue dust 3 2.7 - 23 13 1 — 7

Coke breeze 2 4.4 - 5.4 4.9 2 6.4 - 9.2 7.8

Blended ore 1 — 15 1 — 6.6

Sinter 1 — 0.7 0 — —

Limestone 3 0.4 - 2.3 1.0 2 ND 0.2

Stone quarrying and processing 2 Crushed limestone 2 1.3 - 1.9 1.6 2 0.3 - 1.1 0.7

Various limestone products 8 0.8 - 14 3.9 8 0.46 - 5.0 2.1

Taconite mining and processing 1 Pellets 9 2.2 - 5.4 3.4 7 0.05 - 2.0 0.9

Tailings 2 ND 11 1 — 0.4

Western surface coal mining 4 Coal 15 3.4 - 16 6.2 7 2.8 - 20 6.9

Overburden 15 3.8 - 15 7.5 0 — —

Exposed ground 3 5.1 - 21 15 3 0.8 - 6.4 3.4

Coal-fired power plant 1 Coal (as received) 60 0.6 - 4.8 2.2 59 2.7 - 7.4 4.5

Municipal solid waste landfills 4 Sand 1 — 2.6 1 — 7.4

Slag 2 3.0 - 4.7 3.8 2 2.3 - 4.9 3.6

Cover 5 5.0 - 16 9.0 5 8.9 - 16 12

Clay/dirt mix 1 — 9.2 1 — 14

Clay 2 4.5 - 7.4 6.0 2 8.9 - 11 10

Fly ash 4 78 - 81 80 4 26 - 29 27

Misc. fill materials 1 — 12 1 — 11
a References 1-10. ND = no data.
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The quantity of particulate emissions generated by either type of drop operation, per kilogram
(kg) (ton) of material transferred, may be estimated, with a rating of A, using the following empirical
expression:11

where:
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E = emission factor
k = particle size multiplier (dimensionless)
U = mean wind speed, meters per second (m/s) (miles per hour [mph])
M = material moisture content (%)

The particle size multiplier in the equation, k, varies with aerodynamic particle size range, as follows:

Aerodynamic Particle Size Multiplier (k) For Equation 1

< 30 µm < 15 µm < 10 µm < 5 µm < 2.5 µm

0.74 0.48 0.35 0.20 0.11

The equation retains the assigned quality rating if applied within the ranges of source
conditions that were tested in developing the equation, as follows. Note that silt content is included,
even though silt content does not appear as a correction parameter in the equation. While it is
reasonable to expect that silt content and emission factors are interrelated, no significant correlation
between the 2 was found during the derivation of the equation, probably because most tests with high
silt contents were conducted under lower winds, and vice versa. It is recommended that estimates
from the equation be reduced 1 quality rating level if the silt content used in a particular application
falls outside the range given:

Ranges Of Source Conditions For Equation 1

Silt Content
(%)

Moisture Content
(%)

Wind Speed

m/s mph

0.44 - 19 0.25 - 4.8 0.6 - 6.7 1.3 - 15
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To retain the quality rating of the equation when it is applied to a specific facility, reliable
correction parameters must be determined for specific sources of interest. The field and laboratory
procedures for aggregate sampling are given in Reference 3. In the event that site-specific values for
correction parameters cannot be obtained, the appropriate mean from Table 13.2.4-1 may be used, but
the quality rating of the equation is reduced by 1 letter.

For emissions from equipment traffic (trucks, front-end loaders, dozers, etc.) traveling between
or on piles, it is recommended that the equations for vehicle traffic on unpaved surfaces be used (see
Section 13.2.2). For vehicle travel between storage piles, the silt value(s) for the areas among the
piles (which may differ from the silt values for the stored materials) should be used.

Worst-case emissions from storage pile areas occur under dry, windy conditions. Worst-case
emissions from materials-handling operations may be calculated by substituting into the equation
appropriate values for aggregate material moisture content and for anticipated wind speeds during the
worst case averaging period, usually 24 hours. The treatment of dry conditions for Section 13.2.2,
vehicle traffic, "Unpaved Roads", follows the methodology described in that section centering on
parameter p. A separate set of nonclimatic correction parameters and source extent values
corresponding to higher than normal storage pile activity also may be justified for the worst-case
averaging period.

13.2.4.4 Controls12-13

Watering and the use of chemical wetting agents are the principal means for control of
aggregate storage pile emissions. Enclosure or covering of inactive piles to reduce wind erosion can
also reduce emissions. Watering is useful mainly to reduce emissions from vehicle traffic in the
storage pile area. Watering of the storage piles themselves typically has only a very temporary slight
effect on total emissions. A much more effective technique is to apply chemical agents (such as
surfactants) that permit more extensive wetting. Continuous chemical treating of material loaded onto
piles, coupled with watering or treatment of roadways, can reduce total particulate emissions from
aggregate storage operations by up to 90 percent.12
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