Note: This is a reference cited in *AP 42, Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources.* AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

Background Report Reference

AP-42 Section Number:	12.20
Background Chapter:	4
Reference Number:	69
Title:	Report to Snap-On Tools Corporation, Kenosha, Wisconsin for Stack Emission Tests

1990

>n2p-On 1001 AP-42 Section 12.20 Reference Report Sect. Kenosha, WI Reference Electropalishing 91) July 2 Oreport/ SNAP-ON

OLS CORPORATION ha. Wisconsin

for

STACK EMISSION TESTS MEDICAL PRODUCTS SCRUBBER

July 20, 1990

Process sute not provided CIANNOT USE

Received 10/31 |9|

ENVIRONMENTAL TECHNOLOGY & ENGINEERING CORPORATION 13020 West Bluemound Road Elm Grove, Wisconsin 53122 414-784-2434

CORRESPONDENCE/MEMORANDUM -

Date: October 31, 1991

File Ref: 4530

To: Files

Received: 10/31/91

State of Wisconsin

From: Denese Helgeland - SED

Subject: Review of Stack Test Performed at Snap-On Tools Medical Division

I. Source

Snap-On Tools, Medical Division 1100 91st Street Kenosha, Wisconsin 53140 FID# 999828940 Stack #S01 Process #P01 Permit #89-GDB-255 Issued: April 17, 1990 Test Date: July 20, 1990 Test Firm: Environmental Technology & Engineering 13020 West Bluemound Road Elm Grove, Wisconsin 53122 Crew Chief: Mr. William Dick (414) 784-2434

II. Source Description

The source tested was Snap-On Tools, Medical Division in Kenosha. This facility was permitted to construct and operate a passivation line. Stainless steel medical devices are electropolished and cleaned by processing the material through tanks of phosphoric, sulfuric and nitric acid.

Emissions from the passivation line are controlled by a Dual packed wet scrubber, rated at 2000 cfm. The scrubber sprays a caustic (sodium hydroxide) solution over the plastic saddles to help control the acid emissions. The pH of the solution is approximately 8.0. The first stack test was conducted without the use of make-up water to the scrubber. During the second test, the scrubber spray shut off due to the lack of make-up water. The test was completed as a worse case situation. The make-up water pump was wired to run continually during the remaining two tests. There were no other problems during the stack testing.

II. Discussion of Results

The test results are shown below. The average phosphoric acid emissions, after the scrubber, was 0.0033 pounds per hour. The average sulfuric acid emissions, after the scrubber, was 0.0017 pounds per hour. And, the average nitric acid emissions, after the scrubber,

61

ŵ.

was 0.0015 pounds per hour. This is <u>well below</u> the permit limits of 0.159 pounds per hour of phosphoric acid, 0.144 pounds per hour of sulfuric acid, and 0.079 pounds per hour of nitric acid.

	<u>RUN #1</u>	<u>RUN #2</u>	<u>RUN #3</u>	<u>RUN #4</u>	<u>AVG</u>
Phosphoric Acid	0.0028	0.0036	0.0037	0.0031	0.0033
Sulfuric Acid	0.0017	0.0017	0.0018	0.0015	0.0017
Nitric Acid	0.0012	0.0016	0.0016	0.0014	0.0015

Environmental Technology & Engineering (ET&E) used midget impingers with deionized water to collect samples and ion chromatography to analyze the samples. A review of the stack test report and results was made. Minor numerical corrections were made in the results.

ET&E reported the emissions rate of sulfuric acid in the first and fourth test at a slightly lower concentration. ET&E had the sufuric acid emissions rate, from the scrubber, of 0.001 lb/hr for both tests. My calculations have the concentrations as 0.0017 and 0.0015 lb/hr, respectively.

c: Bureau of Air Management - AM\10 U.S. EPA, Region V

Si.

ē.

SUMMARY

On July 20, 1990, Environmental Technology & Engineering Corporation personnel performed stack emission tests on the Duall scrubber installed to control the potential acid vapor emissions from the electopolishing and passivation process at the Snap-On Tools Medical Products Division plant in Kenosha, Wisconsin. The following table summarizes the tests results for phosphoric acid (H3PO4), sulfuric acid (H2SO4)& and nitric acid (HNO3):7

TEST	POLLUTANT	INLET LOAD LB/HR	EMISSIONS LB/HR
1	H3PO4	< 0. 004	< 0.003
	H2SO4	<0.002	0.001
	HNO3	<0.002	.<0.001
2	H3P04	<0.004	<0.004
	H2S04	<0.002	<0.002
	HNO3	<0.002	<0.002
3	H3PO4	<0.004	<0.004
	H2S04	<0.002	<0.002
	HNO3	<0.002	<0.002
4	H3P04	<0.004	<0.003
	H2SO4	<0.002	<0.001
	HNO 3	<0.002	<0.001

The results indicate that all emissions from the scrubber, as well as the loading to the scrubber, are well below the permit limits set by the State of Wisconsin DNR in an Air Pollution Control Permit.

IRPERMIT REVIEW CALCULATION SHEET DRM 4500-89 1-82

0

DEPARTMENT OF NATURAL RESOURCES

	PAG	e OF
		DATE:
E: Snap-On Tools - Medical Div		
Stack Test Review	APPROVED:	DATE:
AR#		DATE:
$R_{UN} \neq 1$ $LB/HR = 60 \times DSCFM \neq$	(16/DSCF)	
	* (6.243 * 10° (mg/	DSCM))
$\frac{H_2 PO_4 16/_{HR} (our)}{= 60 \times (1993)} = 60 \times (1993)$	1.85) * (6.243 * 15 ^E) * (1 ^b /HR H ₃ POy	0.37)
14,504 "UHRiou-) = 60 + 199	3.85 + 6.243×10	* 0.23
= 0.0017 '	b/HR H2 504	
HNOZ 15/HR (OUT) = 60 + 199. = 3.0012 16	3.85 ¥ 6.243 ¥10 HR HNO3	8 ¥ 0.16
$\frac{R_{UN} + 2}{R_{2} + P_{3} + P_{0y} + R(out)} = 60 + 190$ $= 0.0036$	15.72 + 6.243+10 15/HR H3 PO4	⁸ ¥ 0.50
H2 SOY 10/HR (out) = 60 + 194 = 3.2017	15.72 + 6.243 +10 16/m2 H2504	8 * 0.24
1+NOz 15/42 (ou-)= 60 + 194 = 0.0016	5.72 ¥ 6.243 ¥ 10 ⁻⁶ ¹⁶ /m2 HNOz	X C. 22
	· · · · · · · · · · · · · · · · · · ·	
OTNOTES/REFERENCES:		

IR PERMIT REVIEW CALCULATION SHEET DEPARTMENT OF NATURAL RESOURCES ORM 4500-89 PAGE _____ OF _____ MADE BY: _ _____ DATE: __ DISCUSSED WITH & CHECKED BY: ____ E: Snap - On Tools - Medical Div DATE: ____ Stack Test review APPROVED: ____ DATE: __ ٩R#. DATE: . H2PC, 16/HR (OUT) = 60 + 2000.83 + 6.243 + 10-8 × 0.50 Run #3 = 0.0037 16/HR Hz PO4 H, SOU 10/HR (out) = 60 + 2000.53 + 6.243 + 10 + 0.24 = 0.0018 15/HZ H- SOY .HNO2 15/142 (out) = 60 + 2000. 83 + 6.243 + 10-8 + 0.22 = 0.0016 15/HZ HNO2 RUN #4. H-FOY 10/HR OUT - 60+ 1992, 93 + 6243+10-8 + 0.42 = 0.0031 15/HK HPOy 14.50, 15/42 (sur) = 60 + 1992,93 + 6,243 + 10-8 + 0,20 = 0,0015 10/ Hz H_ 50 1+NO2 "0/m2 (aut) = 60+ 1992.93 + 6.243 +10" + 0.19 = 0.0C14 AUG OWNET VALUES FOR THE 4 RUNS ARE H, PO4 = 0.0033 10/HR ANG PERMIT LMITS H. SOL = 0,0017 10/42 AVG H_POL - C.159 19/42 112 504 = C.144 19/112 4NO = 0. 0015 10/42 AVG 1+NO= = 0,079 10/ AR DOTNOTES/REFERENCES:

SUMMARY

On July 20, 1990, Environmental Technology & Engineering Corporation personnel performed stack emission tests on the Duall scrubber installed to control the potential acid vapor emissions from the electopolishing and passivation process at the Snap-On Tools Medical Products Division plant in Kenosha, Wisconsin. The following table summarizes the tests results for phosphoric acid (H3PO4), sulfuric acid (H2SO4), and nitric acid (HNO3):

TEST	POLLUTANT	INLET LOAD LB/HR	EMISSIONS LB/HR
1	H3PO4	<0.004	<0.003
	H2SO4	<0.002	0.001
	HNO3	<0.092	<0.001
2	H3PO4	<0.004	<0.004
	H2SO4	<0.002	<0.002
	HNO3	<0.002	<0.002
3	H3PO4	<0.004	<0.004
	H2SO4	<0.002	<0.002
	HNO 3	<0.002	<0.002
4	H3PO4	<0.004	<0.003
	H2SO4	<0.002	<0.001
	HNO 3	<0.002	<0.001

The results indicate that all emissions from the scrubber, as well as the loading to the scrubber, are well below the permit limits set by the State of Wisconsin DNR in an Air Pollution Control Permit.

1.8 <u>GENERAL</u>

On Friday, July 20, 1990, Environmental Technology and Engineering Corporation personnel performed a stack emission test on a Duall scrubber installed to control the potential acid vapor emissions on the electropolishing and passivation process at the Snap-On Tools Medical Products Division plant located in Kenosha, Wisconsin. The purpose of the test was to determine the inlet loading and emission rate of phosphoric acid (H3PO4), sulfuric acid (H2SO4), and nitric acid (HNO3) and the efficiency of the scrubber in removing the acid vapors.

The scrubber was installed to control the potential emissions from the process in this facility. The scrubber uses caustic to control the potential emissions. During the second test of the scheduled three-test sequence, it was discovered that the caustic spray was off due to an error in the design of the system. The situation was quickly remedied and a fourth The process operation and test test was performed. procedures were witnessed by Joe Perez of the State of Wisconsin Department of Natural Resources. The process and scrubber operation were monitored by Guy Bradshaw of Snap-On Tools. Mr. Hiram Buffington of Snap-On Tools was also in attendance. The field tests and corresponding laboratory analysis and report preparation were performed by Bill Dick and Mike Huenink.

The following sections of this report document the activities and results of the test program. The report presents all of the relevant data collected and discussions on the interpretation of the data are provided where appropriate. The report, therefore, includes much necessary detail. The results, however, have been summarized in the SUMMARY section at the beginning of this report for those readers not wishing to be burdened by the details.

2.0 RESULTS

Four (4) tests each of one hour in duration were performed on this scrubber during a period of normal process operation. The scrubber vented the electropolish and passivation tanks associated with the process. The scrubber is a DuAll Model FW303 rated at 2000 cfm. Caustic (sodium hydroxide) was added to the scrubber at a pH of approximately 8.0. The stack flow parameters recorded during testing and the weights of phosphoric acid (H3PO4), sulfuric acid (H2SO4), and nitric acid (HNO3) collected were used to compute the emissions for each test of the four-test sequence. The following table summarizes the numerical test results:

TEST	POLLUTANT	INLET LOAD LB/HR	EMISSIONS LB/HB
1	H3PO4	< 0.004	<0.003
	H2SO4	<0.002	0.001
	HNO3	<0.002	<0.001
2	H3PO4	<0.004	<0.004
	H2SO4	< 9.092	<0.002
	HNO3	<0.002	<0.002
3	H3PO4	<0.004	<0.004
	H2SO4	<0.002	<0.002
	HNO 3	<0.002	<0.002
4	H3PO4	<0.004	<0.003
	H2SO4	<0.002	<0.001
	HNO3	<0.002	< 0.001 *** 500 00'
			By his

The results indicate that all emissions from the scrubber, as well as the loading to the scrubber, are well below the permit limits set by the State of Wisconsin DNR in an Air Pollution Control Permit.

3.0 COMMENTS

The DNR established emission limits as follows for the test pollutants:

Phosphoric Acid	0.159	lb/hr
Sulfuric Acid	0.144	lb/hr
Nitric Acid	0.07.9	lb/hr.

Since the emissions from the process to the scrubber were well below these limits, it is possible that a permit might not be required at all of this process.

4.9 METHODS

The equipment used to sample was a modification of the equipment used to sample in-plant to determine occupational exposures to these parameters. The sampling trains consisted of a teflon probe inserted into the duct and connected directly to three midget impingers in series through tygon tubing. The first two impingers were filled with 15 cc of distilled and deionized water. The samples then passed through a sampling pump and then a dry gas meter to precisely measure the sample volumes. A diagram of the sampling train is enclosed. The pumps were set at a nominal sampling rate to insure 99+ % absorption of the pollutants in the impingers. The sampling trains were tested for leaks prior to and immediately following each test period.

At the completion of each test, the probe and connecting tygon tubing were rinsed with water and combined with the impinger contents. The samples were then transported to the laboratory where they were analyzed for phosphoric acid, sulfuric acid, and nitric acid using standard ion chromatography techniques. These weights were combined with the sample volumes to determine the concentrations (milligrams per cubic meter -mg/m3).

The velocity, temperature, and flow rate in the stack were measured using the standard procedure promulgated by the EPA as Method 2 - Determination of Stack Gas Velocity and Volumetric Flow Rate. Velocity and temperature was measured at 18 prescribed points in the stack and the data, along with the moisture content of the exhaust (assumed saturated), was used to calculate the flow rate (cubic meters per hour). The combination of concentrations and flow rates was used to determine the emission rates (pounds per hour - lb/hr). Copies of all field and laboratory records are included in the Appendix to this report.

IMPINGER SAMPLING TRAIN

SAMPLE CALCULATIONS for Single Point (non-isokinetic) Sampling

- 1. DRY GAS SAMPLE VOLUME (Vm m3, std), std cubic meters Vm m3, std = GAMA*(Vm)*(Pb)/29.92*528/Tmavg*0.02832 where: GAMA = dry gas meter calibration factor Vm = volume of dry gas metered, cubic feet Tmavg = average meter temperature, deg R (460+F) 528 = std temperature, deg R 0.02832 = cubic meters per cubic foot factor
- 2. EMISSION CONCENTRATION (EC), milligrams per std cubic meter EC = (mg-mgb)/(Vm m3, std)

3. EMISSION RATE (ER), pounds per hour

ER = EC*(Qs)*0.02832*60*(1/453600)

where: Qs = stack gas flow rate, std cubic feet per minute 60 = minutes per hour factor 1/453600 = pound per milligrams factor

APPENDIX

47

(*برا)*

ي. ا

Field & Laboratory Data

IST 5000

*' *(#)

000 DATA .40,.44,.41,.38,.42,.48,.49,.49,.20,.25,.25,.24,.46,.48,.48,.47 UN

SNAP ON TOOLS SCRUBBER INLET TEST 1 JULY 20, 1990

CALCULATE FLOW

ENTER NO OF POINTS:16 ENTER GAS CONSTITUENTS, % CO2,O2,C0,N2 - %:0.20.7.0.79.3 ENTER % WATER - %:0.5 ENTER STACK TEMP - F:76 ENTER BAROMETRIC PRESSURE - in Hg:29.30 ENTER STATIC PRESSURE - in H20:-3.5 ENTER PITOT COEFFICIENT:.99 ENTER STACK DIAMETER - in:12 ENTER STACK LENGTH & WIDTH - in, in:0.0

AVG RT OF DEL P = 0.62437VELOCITY, afps = 42.120ACTUAL FLOW WET, acfm = 1,984.85STANDARD FLOW DRY, scfm = 1,888.40STANDARD FLOW DRY, cu. meters per hour = 3,208.77

k

IST 5000 000 DATA .39,.43,.44,.34,.40,.45,.47,.48,.24,.26,.25,.27,.42,.46,.47,.46 UN SNAP ON TOOLS SCRUBBER INLET TEST 2 JULY 20, 1990

CALCULATE FLOW

ENTER NO OF POINTS:16 ENTER GAS CONSTITUENTS, % CO2.02.C0.N2 - %:0.20.7.0.79.3 ENTER % WATER - %:0.5 ENTER STACK TEMP - F:78 ENTER BAROMETRIC PRESSURE - in Hg:29.30 ENTER STATIC PRESSURE - in H20:-3.5 ENTER PITOT COEFFICIENT:.99 ENTER STACK DIAMETER - in:12 ENTER STACK LENGTH & WIDTH - in, in:0.0

AVG RT OF DEL P = 0.61987VELOCITY, afps = 41.894ACTUAL FLOW WET, acfm = 1.974.21STANDARD FLOW DRY, scfm = 1.871.30STANDARD FLOW DRY, cu. meters per hour = 3.179.70

١k

5000 DATA .95,.98,1.00,.99,1.00,1.01,.89,.87,.76,.71,.71..87,.69..67,.56,.54,.6 3,.80 RUN

SNAP ON TOOLS SCRUBBER OUTLET TEST 1 JULY 20, 1990

CALCULATE FLOW

ENTER NO OF POINTS:18 ENTER GAS CONSTITUENTS, % CO2,02,C0,N2 - %:0,20,7,0,79.3 ENTER % WATER - %:2.7 ENTER STACK TEMP - F:73 ENTER BAROMETRIC PRESSURE - in Hg:29.30 ENTER STATIC PRESSURE - in H20:.05 ENTER PITOT COEFFICIENT:.99 ENTER STACK DIAMETER - in:0 ENTER STACK LENGTH & WIDTH - in, in:7,12

AVG RT OF DEL P = 0.89728VELOCITY, afps = 60.346ACTUAL FLOW WET, acfm = 2,112.09STANDARD FLOW DRY, scfm = 1,993.85STANDARD FLOW DRY, cu. meters per bour = 3,387.96

ЭĿ

k

jØCØ DATA .95..96,.97,.92,.88,.98..92,.80,.72,.66..68,.82,.80,.67,.50,.50,.61,. 'Ø RUN

SNAP ON TOOLS SCRUBBER OUTLET TEST 2 JULY 20, 1990

CALCULATE FLOW

ENTER NO OF POINTS:18 ENTER GAS CONSTITUENTS, % CO2,02,00,N2 - %:0,20.7,0,79.3 ENTER % WATER - %:2.9 ENTER STACK TEMP - F:75 ENTER BAROMETRIC PRESSURE - in Hg:29.30 ENTER STATIC PRESSURE - in H20:.10 ENTER PITOT COEFFICIENT:.99 ENTER STACK DIAMETER - in:0 ENTER STACK LENGTH & WIDTH - in, in:7,12

AVG RT OF DEL P = 0.87967VELOCITY, afps = 59.224ACTUAL FLOW WET, acfm = 2,072.84STANDARD FLOW DRY, scfm = 1,945.72STANDARD FLOW DRY, cu. meters per hour = 3,306.17 ST 5000

10 DATA .40,.44,.41,.38,.42,.48,.49,.49,.20,.26,.25,.24,.46,.48,.48,.47

SNAP ON TOOLS SCRUBBER INLET TEST 1 JULY 20, 1990

- and the second se

CALCULATE FLOW

ENTER NO OF POINTS:16 ENTER GAS CONSTITUENTS, % CO2,02,C0,N2 - %:0,20.7,0,79.3 ENTER % WATER - %:0.5 ENTER STACK TEMP - F:76 ENTER BAROMETRIC PRESSURE - in Hg:29.30 ENTER STATIC PRESSURE ~ in H20:-3.5 ENTER PITOT COEFFICIENT:.99 ENTER STACK DIAMETER - in:12 MOV 6 1991 ENTER STACK LENGTH & WIDTH - in, in:0,0 AVG RT OF DEL P = 0.62437AIR MANAGEMENT . VELOCITY, afps = 42.120ACTUAL FLOW WET, acfm = 1,984.85STANDARD FLOW DRY, scfm = 1,888.40

STANDARD FLOW DRY, cu. meters per hour = 3,208.77

ST 5000 100 DATA .39,.43,.44,.34,.40,.45,.47,.48,.24,.26,.25,.27,.42,.46,.47,.46 IN

SNAP ON TOOLS SCRUBBER INLET TEST 2 JULY 20, 1990

CALCULATE FLOW

ENTER NO OF POINTS:16 ENTER GAS CONSTITUENTS, % CO2,02,C0,N2 - %:0,20.7,0,79.3 ENTER % WATER - %:0.5 ENTER STACK TEMP - F:78 ENTER BAROMETRIC PRESSURE - in Hg:29.30 ENTER STATIC PRESSURE - in H20:-3.5 ENTER PITOT COEFFICIENT:.99 ENTER STACK DIAMETER - in:12 ENTER STACK LENGTH & WIDTH - in, in:0,0

AVG RT OF DEL P = 0.61987VELOCITY, afps = 41.894ACTUAL FLOW WET, acfm = 1.974.21STANDARD FLOW DRY, scfm = 1.871.30STANDARD FLOW DRY, cu. meters per hour = 3.179.70 000 DATA .86,.98,.94,.94,.92,.98,.96,.90,.84,.76,.75,.85,.84,.70,.55,.55,.64,. 8 UN

SNAP ON TOOLS SCRUBBER OUTLET TEST 3 JULY 20, 1990

CALCULATE FLOW

ENTER NO OF POINTS:18 ENTER GAS CONSTITUENTS, % CO2.02.C0,N2 - %:0.20.7.0.79.3 ENTER % WATER - %:2.8 ENTER STACK TEMP - F:74 ENTER BAROMETRIC PRESSURE - in Hg:29.30 ENTER STATIC PRESSURE - in H20:.10 ENTER PITOT COEFFICIENT:.99 ENTER STACK DIAMETER - in:0 ENTER STACK LENGTH & WIDTH - in, in:7.12

AVG RT OF DEL P = 0.90196 VELOCITY, afps = 60.725 ACTUAL FLOW WET, acfm = 2,125.38 STANDARD FLOW DRY, scfm = 2,000.83 STANDARD FLOW DRY, cu. meters per hour = 3,399.81

¥k ∣

j000 DATA .84,.95,.94,.94,.92,.96..95,.90,.84,.75,.75,.85,.84..70,.54..55,.66.. 75 RUN SNAP ON TOOLS SCRUBBER OUTLET TEST 4 JULY 20. 1990 CALCULATE FLOW ENTER NO OF POINTS:18 ENTER GAS CONSTITUENTS, % CO2.02.C0,N2 - %:0.20.7.0.79.3 ENTER % WATER - %:2.8 ENTER STACK TEMP - F:74 ENTER BAROMETRIC PRESSURE - in Hg:29.30 ENTER STATIC PRESSURE - in H20:.10 ENTER PITOT COEFFICIENT: . 99 ENTER STACK DIAMETER - in:0 ENTER STACK LENGTH & WIDTH - in, in:7,12 AVG RT OF DEL P = 0.89840VELOCITY, afps = 60.485 ACTUAL FLOW WET, acfm = 2,116,99 STANDARD FLOW DRY, scfm = 1,992.93 STANDARD FLOW DRY, cu. meters per hour = 3,386.39 0k

FIELD SAMPLING DATA

م) مرتبع المرتبع الم 1

GENERAL Facility SNAT	ON To	or 2	Contact	Gent	Brass	· 1.1 A (1)		
Address			Test Da	te		0		
<u><i>KENO</i></u>	<u>k//ł</u>		Witness	es_ <u>Ter</u>	Pere	L		
Process Descript	ion					·····		
` ====================================								
Stack Number _Q	VTIET			4 .7.				
SAMPLING DATA A. Sample ID	Our	Analyte	1-1 4 			Pump # <u>M3</u>	A-6	
		Meter Rda/	Flow			r.1.0	9	
	ime	Rotameter	Rate	Min	utes	Volume		
Start 0	807	698.00/17	4			3.32		
ي (ح	112	70135/71						
	210					-2-22		
		8 1				_ <u></u>		
D. Okmpre ID		Analyte			 ,	Pump #		
Ī	ime	Meter Rdg/ <u>Rotameter</u>	Flow Rate	Min	utes	Volume		
Star 🖉 L	192	704.30/73						
<u> </u>	332	70691/71				2.69		
(4)	37	107.101-74						
L							•	
FLOW DATA	_	<u>Run_1</u>		Run	_2	Run	_3 \	Rund
Diam =	Point 1,	<u>Del P</u> <u>Del</u>	P			<u>Del P</u>		9. D 5.
$L \times W = \frac{7 + 12}{99}$	2 2	98	61 56		-r/J-	<u> </u>	1-10-	93 .7
Ps = +0.05 T = 1.0	4		<u>s</u> j	<u>. 95</u>	50		-25	
	6		žo.				18	
	8 ^	·81						. 30
	9 10	76 1L				<u> </u>		.75
	11 12	7L		62				135
COMMENTS	Tr.	+. 05 2.74.1	2		2.93110	+ .[4 1. et, 11	ר פו
				·			. 1	
ENVIF	RONMENTAL	TECHNOLOGY	8 ENGI	NEERIN	G CORP	•	,	
	1302 Elm	0 West Blue Grove, Wisc	emound F consin 5	Road 3122				
		414-784-	2434					

- -

FIELD SAMPLING DATA

GENERAL Contact Gruy 6 Test Date 7.7 boll Facility_ 51. Witnesses BUEFINGTON - SNM W 150005.7. POP + DNA Process Description Stack Number NUT H3 P00 SAMPLING DATA A. Sample ID 1 - 1 Analyte Pump # MSA 3 Y: 1.014 Meter Rdg/ Flow Retaneter <u>Time</u> <u>Rate</u> Volume Minutes 7 7210 Start 2.75 Β. Sample ID ____ Analyte Pump #_ Meter Rdg/ Flow Time <u>Rotameter</u> Rate Minutes Volume Star 1125 156.90 7.20 139.51 7.1 2.25 Ran FLOW DATA Run_1 Run 2 Point Del P 1.0 1 Diam = 1.212 LxW 7.33 394 Ср -<u>3.5</u> 76 Ps 5 Т 8. 76 ۹.' 10757 -3,6 10 ii Ps 12 CANTO ന WATER COLUMN 110 110 113- 3 D PUMP JUNCIO 50 ENVIRONMENTAL TECHNOLOGY & ENGINEERING CORP. 13020 West Bluemound Road Elm Grove, Wisconsin 53122 414-784-2434

ELECTIN POLISI 50% H.POL F513 H2001 Coff or Z

PARSINATE 300 HNU3 70 V VID

70% Hro

136.F 10

193 F +10

DE WATER RINSE

130F ± 10

Schugten Casime PH 6.0-9.0 Romber TYPICM 8.1

SNAP. ON TOOLS MED. PRUDUOS PW. 7.20.90

SPRATS ON TOTI No MARE UP HOO SPAPHS OFF TEST 2 MARIE UOHAN) SPRAN ON TEST 3 MARKE UP HOD ~ 30 6041 SAME AS TEST 3 TOTY SNAP ON TOOU MED Pr ONTO DULJION SCRIMOR CONDITIONS (1° - (18 - 1

·····

. . .

Pp: 29.30

FIELD SAMPLING DATA

GENERAL LING ON TANIL Contact Still (1995) AND Test Date 19 Facility Process Description Stack Number | NUT_ (1, 0)SAMPLING DATA A. Sample ID 1. [h] Analyte Pump # 134 3 Yine Meter Rdg/ Flow Time Retaneter Rate Minutes Volume 123. 3. 473 2.16 SU ... Start 2.5950F 73.24 lfu 73 Β. Sample ID _____ Analyte Pump #____ Meter Rdg/ Flow Time Rotameter Rate Minutes Volume Star 121 2.51 sut et. 1511.90 /73 1220 2.36 SU= 66.71 Lite (1) <u>17</u> <u>2</u> <u>7</u> 2.25 FLOW DATA Run_1 Run_2 Del P Point <u>Del</u>P Del P Del_P De De 1/1 Diam = 1.0 1 1.212 L x W =).33 3.94 Ср -3.5 Ps = 76 8 5 Т 9,76 10,717 17,38 9 10 1 11 P. 12 CALVE. < c jeir o NI ATT 1 COMMENTS D PUMP Jun ENVIRONMENTAL TECHNOLOGY & ENGINEERING CORP. 13020 West Bluemound Road Elm Grove, Wisconsin 53122 414-784-2434

FIELD SAMPLING DATA

jan 19 ji Qinan N

GENERAL Facility Summer 7. Address	<u></u> C	Contact Cest Dat	e	··· / ·· ·	
Process Description					
Stack Number <u>OUTIET</u>		. 1	* 1.		
A. Sample ID 00	<u> </u>	1.15		Pump #_/2	13A6
$\frac{1}{10000000000000000000000000000000000$	Meter Rdg/ <u>Rotameter</u> (18.0)/77	Flow <u>Rate</u>	Minutes	Volume	3. 28 SUT.
<u> </u>		 		3.23	9 2.89 W
B. Sample ID	Analyte			122	00.01
$\frac{Time}{(1)}$	Meter Rdg/ Rotameter Tunt Vu/or	Flow <u>Rate</u>	Minutes	Volume	771 SU-
Starte 110 1225 (A) 1225			··- · · · ·	12.27	76.88 later 3.13.54-
-31.9			· -	 	88.60 4
FLOW DATA Point Diam = 1 L x W = $7 \cdot 7$ 2 Cp = .97 Ps = .0.05 T = 7.57 6 7 8 9 10 11 12 7 COMMENTS	Run_1 Del P Del 		Bun 3 Del P Del F		
ENVIRONMENT 13 E1	AL TECHNOLOG 020 West Blue m Grove, Wise 414 784	r & ENG emound l consin 5 -2434	INEERING COR Road 53122	₽.	

LABORATORY ANALYSIS REPORT

Natisco

0 0

National Loss Control Service Corporation Long Grove, Illinois 60049-0075 (708) 540-2488 • Fax (708) 540-4331

ENVIRONMENTAL SCIENCES LABORATORY, K-2

TO: WILLIAM J. DICK ENVIRONMENTAL TECH & ENG. CORP. 13020 U. BLUEMDUND RD. ELM GROVE, WI 53122 REPORT DATE JUL. 26, 1990 SAMPLES REC'D JUL. 23, 1990 REQUEST NUMBER 132420 PAGE NUMBER 1 OF REQUEST.

SAMPLE NUMBER	ANALYSIS RE	QUESTED		RESULTS	EL
		<u> </u>	Nicrograms	ng/n3	Lo/Ith
1-IN	PHOSPHORIC ACID SULFURIC ACID NITRIC ACID	ייא 7"י גיגאט כצ	C38 C18 C17	(0.62) (0.30 (0.27	4.004
2-IN	PHOSPHORIC ACID SULFURIC ACID NITRIC ACID	07.PF1E	C39 C19 C17	(0,52 (0,26 (0,23	200 200 200 200
3-IN	PHOSPHORIC ACID SULFURIC ACID NITRIC ACID	3208.01	C35 C17 C16	(0.50 (0.24 (0.22	2.004 2.003 2.003
4-IN	PHOSPHORIC ACID SULFURIC ACID NITRIC ACID	3202.96	C36 C18 C16	(0,54) (0,26 (0,24	2.004 2.002 2.003
1-0UT	PHOSPHORIC ACID SULFURIC ACID NITRIC ACID	33 87.96	(35 21 (15	(0.37 0.23 (0.16	200,2 100.
2-0UT	PHOSPHORIC ACID SULFURIC ACID NITRIC ACID	3306.17	C41 C20 C18	CO 50 CO 24 CO 22	<
3-0UT	PHOSPHORIC ACID SULFURIC ACID NITRIC ACID	3399.81	C38 C19 C17	(0.50 (0.24 (0.22	200.5
4-OUT	PHOSPHORIC ACID	3386.31	C37	CO 42	2.003
4-0UT	SULFURIC ACID		C18 C16	CO. 20 CO. 19	2.001 2.001
BLANK	BLANK BLANK BLANK	PHOSPHORIC AC SULFURIC ACID NITRIC ACID	TD	SUB TRACTED SUB TRACTED SUB TRACTED	·
	131 _ P IP(K , , , , ,	NTIKIC ACID		SUBINACTED	

	ANALYSIS REQUESTED	METHODOLOGY
	NITRIC ACID	OSHA HETHOD ID-127 EQUIVALENT
2	PHOSPHERIC ACID	OSHA HETHOD. ID-111 EQUIVALENT
	SULFURIC ACID	OSHA METHOD ID-113 EQUIVALENT
1	•	