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FOREWORD

Durlng the past several years, attention has mostly focused
on emissions of criteria pollutants.. These pollutants include
particulate matter, sulfur dioxide, carbon dioxide, nitrogen
oxides, volatile organic compounds, and lead. More recently,
attention has focused on air toxic pollutants. These pollutants
include many different compounds. This report summarizes the
information available for both types of pollutants for iron
foundry sources. It serves as a guide for estimating the
emissions when emission measurements are not available.
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ABSTRACT

This report provides a comprehensive list of criteria and
toxic pollutant emission factors for. sources commonly found in
iron foundries. Emission factors are identified for process
sources and process fugitive emissions. The emission factors
represent uncontrolled emissions. These factors may be used to

estimate emissions when site-specific information is not
available.
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SECTION 1

INTRODUCTION

Iron foundries have been identified in certain areas of the
country to be potentially significant sources of air pollution.
The Control Technology Center of the U.S. Environmental
Protection Agency, in response to a request for air toxic
emission factors by the Hamilton County Air Pollution Control
Bureau of Chattanooga, Tennessee, commissioned this report. The
report is an attempt to compile all current emission factor
information that may be used by state and local agencies in
estimating emissions from iron foundries. This report is a

follow-on to a previous report on emission factors for iron and
steel manufacturing facilities.

The objective of this study is to provide a comprehensive
set of emission factors for sources of both criteria and toxic
air pollutants in ‘gray’ and ductile iron foundries. Emission
factors are identified for process sources, process fugitive and
open source fugitive emissions. The emission factors are not
specific to any one facility.

puring the past several years, attention has mostly focused
on emissions of criteria pollutants. These pollutants include
particulate matter, sulfur dioxide, carbon dioxide, nitrogen
oxide, volatile organic compounds, and lead. More recently,
attention has focused on air toxic pollutants. These pollutants
include many different compounds. This report summarizes the
information available for both types of pollutants. It serves as
a guide for estimating the emissions when emission measurements
are not available.

This study was accomplished by conducting a literature
search of the library of the U.S. EPA and the American
Foundrymen's Society. Articles were reviewed for any information
that could be used to develop emission factors for any of the
processes associated with iron foundries. The emission factors
are presented in terms of an average value or range of values
together with a rating of quality or reliability.



SECTION 2

POLLUTANT EMITTING PROCESSES

1ron foundries produce iron castings from scrap iron, pig
iron, and foundry returns by melting, alloying, and molding. The
major operations include 1) raw material handling and
preparation, 2) metal melting, 3) mold and core production, and
4) casting and finishingf

RAW MATERIAL HANDLING AND PREPARATION

Handling operations include receiving, unloading, storing,
and conveying of all raw materials for both furnace charging and
mold and core preparation. The major groups of raw materials
required for furnace charging are metallics, fluxes, and fuels.
Metallic raw materials include pig iron, iron and steel scrap,
foundry returns, and metal turnings. Fluxes include carbonates
(limestone, dolomite), fluoride (fluorspar), and carbide
compounds (calcium carbide). Fuels include coal, oil, natural
gas, and coke. Coal, oil, and natural gas are used to fire
reverberatory furnaces. Coke, a derivative of coal, is used as a
fuel in cupola furnaces. Although not a true fuel, carbon
electrodes are required for heat production in electric arc
furnaces.

As shown in Figures 1 and 2, the raw materials, metallics,
and fluxes are added to the melting furnaces directly. For
electric induction furnaces, however, the scrap metal added to
the furnace charge must first be pretreated to remove any grease
and/or oil, which can cause explosions. Scrap metals may be
degreased with solvents, by centrifugation, or by preheating to
combust the organics.

In addition to the raw materials used to produce the molten
metal, a variety of materials are needed to prepare the sand
cores and molds used to form the iron castings. Virgin sand,
recycled sand and chemical additives are combined in a sand
handling system typically composed of receiving areas, conveyors,
storage silos and bins, mixers (sand mullers), core and mold
making machines, shakeout grates, sand cleaners, and sand
screening.

Raw materials are transported in ships, railroad cars,
trucks, and containers, and then are transferred by truck
loaders, and conveyors to both open piles and enclosed storage
areas. When needed, the raw materials are transferred from
storage to process areas by similar means.
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METAL MELTING

The furnace charge includes metallics, fluxes, and fuels.
The composition of the charge depends upon the specific metal
characteristics required. Table 1 lists the different chemical
compositions of typical irons produced. The three most common
furnaces used in the gray iron foundry industry are cupolas,
electric arc, and electric induction furnaces.

TABLE 1. CHEMICAL COMPOSITION OF FERROUS CASTINGS
BY PERCENTAGES

Gray Malleable iron Ductile
Element iron (as white iron) iron Steel
Carbon 2.5 - 4.0 1.8 - 3.6 3.0 - 4.0 <2.0°
Silicon 1.0 - 3.0 0.5 - 1.9 1.4 - 2.0 0.2 - 0.8
Magnesium 0.01 - 1.0
Manganese 0.40 - 1.0 0.25 - 0.80 0.5 - 0.8 0.5 - 1.0
Sulfur 0.05 - 0.25 0.06 - 0.20 <0.12 <0.06
Phosphorus 0.05 - 1.0 0.06 - 0.18 <0.15 <0.05

®Steels are classified by carbon content: low carbon; <0.20
percent, medium carbon; 0.20 - 0.5 percent, high carbon; >0.50
percent.

Cupolas

The cupola, which is the major type of furnace used in the
foundry industry today, is typically a vertical cylindrical steel
shell with either a refractory lined or water cooled inner wall.
Refractory linings usually consist of silica brick, or dolomite
or magnesium brick. Water cooled linings, which involve
circulating water around the outer steel shell, are used to
protect the furnace wall from interior temperatures. The cupola

is charged at the top with alternate layers of coke, metallics,
and fluxes.



The cupola is the only furnace - ype to use coke as a fuel;
combustion air used to burn the coke is introduced through
tuyeres located at the base of the cipola. Cupolas use either
cold blast air, air introduced at amtient temperature, or hot
blast air which may be heated with a regenerative system which
utilizes heat from the cupola exhaust gases to preheat the
combustion air.

Iron is melted by the burning cole and flows down the
cupola. As the melt proceeds, new cherges are added at the top.
The flux removes non-metallic impurities in the iron to form
slag. Both the molten iron and the slag are removed through tap
holes at the bottom of the cupola. Pe-iodically, the heat period
is completed, and the bottom of the curola is opened to remove
the remaining unburned material.

Cupola capacities range from 1 to 27 megagrams per hour (1
to 30 tons per hour), with a few larger units approaching 90
megagrams per hour (100 tons per hour). Larger furnaces operate
continuously and are inspected and cleaied at the end of each
week or melting cycle.

‘Electric Arc Furnaces

Electric arc furnaces (EAF) are large, welded steel
cylindrical vessels equipped with a remcvable roof through which
three retractable carbon electrodes are inserted. The electrodes
are lowered through the roof of the furnaice and are energized by
three phase alternating current, creatint arcs that melt the
metallic charge with their heat. additinal heat is produced by
the resistance of the metal between the (rc paths.

The most common method of charging &én electric arc furnace
is by removing the roof and introducing taie raw materials
directly. Alternative methods include ir :roducing the charge
through a chute cut in the roof or throug: a side charging door
in the furnace shell. Once the melting c°cle is complete, the
carbon electrodes are raised, and the roo: is removed.. The
vessel is tilted, and the molten iron is }oured into a ladle.
Electric arc furnace capacities range fror 0.23 to 59 megagrams
(0.25 to 65 tons). Nine to 11 pounds of e¢lectrode are consumed
per ton of metal melted.

ucti aces

Electric induction furnaces are eithe- cylindrical or cup
shaped refractory lined vessels that are s rrounded by electrical
coils which, when energized with high freq: ency alternating
current, produce a fluctuating electromagne tic field to heat the
metal charge. For safety reasons, the screp metal added to the
furnace charge is cleaned and heated before being introduced into
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a furnace. Any oil or moisture on the scrap could cause an
explosion in the furnace. Induction furnaces are kept closed
except when charging, skimming, and tapping. The molten metal is
tapped by tilting and pouring through a hole in the side of the
vessels. Induction furnaces also may be used for metal refining
in conjunction with melting in other furnaces and for holding and
superheating the molten metal before pouring (casting).

The basic melting process operations are 1) furnace
charging, in which metal, scrap, alloys, carbon, and flux are
zdded to the furnace; 2) melting during which the furnace remains
closed; 3) backcharging, which involves the addition of more
metal and alloys, as needed; 4) refining and treating, during
which the chemical composition is adjusted to meet product
specifications; 5) slag removing; and 6) tapping molten metal
irto a ladle or directly into molds.

————

P

7 Inpculation

Inoculation is the process whereby magnesium and other
elements are added to molten gray iron, to produce ductile iron.

Ductile iron is formed as a steel matrix containing
spheroidal particles (or nodules) of graphite. Ordinary cast
iron, that is, gray cast iron, contains flakes of graphite. Each
flake acts as a crack, with the result that cast iron is well
known for its brittleness. Ductile irons are very silvery in
appearance and are noted for their tensile strength.

Inoculation of the molten iron has been accomplished in many
diverse ways, however the two most common methods are plunging
and pour over. In plunging, magnesium or a magnesium alloy is
loaded into a graphite "bell" which is plunged into the ladle of
molten iron. A turbulent reaction takes place as the magnesium
boils under the heat of the molten iron. As much as 65 percent
of the magnesium may be lost in the inoculation process, as the
magnesium vapor issuing from the iron ignites in air, creating
large amounts of smoke.

in the pour over method, the magnesium alloy is placed in
the bettom of a vessel and molten iron is poured over it.
Although this method produces more emissions and is less
effici»nt than plunging, it requires no capital equipment other
than a:r pollution control.

-~

e

MOLD AND CORE PRODUCTION

Mo-ds are forms used to shape the exterior of castings.
Cores are molded sand shapes used to make the internal voids in
castings. Cores are made by mixing sand with organic binders or
organic »olymers, molding the sand into a core, and baking the

7



core in an oven. Molds are prepared of a mixture of wet sand,
clay and organic additives to make the mold shapes, which are
usually dried with hot air. Cold setting binders are being used
more frequently in both core and mold production. The green sand
mold, the most common type, uses moist sand mixed with 4 to 6
percent clay (bentonite) for pbonding. The mixture has a water
content of 4 to 5 percent. Added to the mixture, to prevent
casting defects from sand expansion when the hot metal is poured,
is about 5 percent organic material, such as sea coal (a
pulverized high volatility bituminous coal), wood flour, oat
hulls, pitch or similar organic matter.

Common types of gray iron cores include the following:

- O0il core, with typical sand pinder of 1.0 percent core oil,
1.0 percent cereal, and 0 to 1 percent pi%ch or resin. Cured
by oven baking at 205 to 314°C (400 to 600°F), for 1 to 2
hours.

_ Shell core, with sand binder typically 3 to 5 percent phenolic
and/or urea formaldehyde, with hexamine activator. Cured as a
thin layer on a heated metal pattern at 205 to 315°C (400 to
600°F), for 1 to 3 minutes.

- Hot box core, with sand binder typically 3 to 5 percent furan
resin, with phosphoric acid activator. Cured as a solid core
in a heated metal pattern at 205 to 315°C (400 to 600°F), for
0.5 to 1.5 minutes.

- cold set core, with typical sand pinder percents of 3 to 5
furan resin, with phosphoric acid activator; or 1 to 2 core
0il, with phosphoric acid activator. Hardens in the core box.
Cured for 0.5 to 3 hours.

- Cold box core, with sand binder typically 1 to 3 percent of
each of two resins, activated by a nitrogen diluted gas.
Hardens when the green core is gassed in the box with
polyisocyanate in air. Cured for 10 to 30 seconds.

Used sand from castings shakeout is recycled to the sand
preparation area and cleaned to remove any clay or carbonaceous
buildup. The sand is then screened and reused to make new molds.
Because of process losses and discard of a certain amount of sand
pecause of contamination, makeup sand is added.

CASTING AND FINISHING

After the melting process, molten metal is tapped from the
furnace. Molten iron produced in cupolas is tapped from the
bottom of the furnace into a trough, then into a ladle. 1Iron
produced in electric arc and induction furnaces is poured

8




directly into a ladle by tilting the furnace. At this point, the
molten iron may be treated with magnesium to produce ductile
iron. The magnesium reacts with the molten iron to nodularize
the carbon in the molten metal, producing a less brittle iron.

At times, the molten metal may pe inoculated with graphite to
adjust carbon content. The treated molten iron is then ladled
into molds and transported to a cooling area, where it solidifies
in the mold and is allowed to cool further before separation

(shakeout) from +he mold and core sand.

In larger, more mechanized foundries, the molds are conveyed
automatically through a cooling tunnel. In simpler foundries,
molds are placed on an open floor space, and the molten iron is
poured into the molds and allowed to cool partially. Then the
molds are placed on a vibrating grid to shake the mold and core
sand loose from the casting. In the simpler foundries, molds,
core sand and castings are separated manually, and the sand from
the mold and core is then returned to the sand handling area.

When castings have cooled, any unwanted appendages, such as
spurs, gates, and risers, are removed. These appendages are
removed with oxygen torches, abrasive band saws, OT friction
cutting tools. Hand hammers may be used, in less mechanized
foundries to knock the appendages off. The castings are then
subjected to abrasive blast cleaning and/or tumbling to remove
any remaining mold sand or scale.

Another step in the metal melting process involves remcoving
the slag in the furnace through a tapping hole or door. Since
the slag is lighter than molten iron, it remains atop the molten
iron and can be raked or poured out of cupola furnaces through
the slag hole located above the level of the molten iron.
Electric arc and induction furnaces are tilted backwards, and
their slag is removed through a slag door.

eens S eout

The most elementary method of removing castings from a mold
is to dump the mold, and hook, or pull out, the casting from the
sand. When significant production is required, the molds are
automatically inverted and dumped onto a vibrating grating which
shakes out the sand and separates the casting. _The sand falls
through the grating and onto a conveyor belt which carries it to
the conditioning and reprocessing system. In some cases the
shakeout can be a long vibrating grate (30 meters), such as for
gasoline engine blocks and heads, where much internal core sand
must be removed. There are many variations of shakeout systems,

. including heavy screen drums that rotate batches of castings and
. long cylindrical perforated cylinders that tumble the parts and

\process parts continuously.

Ty
-4 "_/ /, .



The shakeout has the potential to generate the most fumes of
the many foundry operations (except melting). By the time the
mold assembly reaches the shakeout, the bulk of the thermal
decomposition of the mold/core materials has occurred. The
products of thermal decomposition will tend to be lower molecular
weight materials and will vaporize and diffuse away from the hot
metal-sand interface into the cooler sand. Some of the organic
emissions will condense and adsorb on the cooler sand of the
mold. Most compounds with boiling points below 100°C will be
either emitted during the cooling process or undergo chemical
reactions and released as other pollutants. puring shakeout, the
cooler sand comes into contact with the hot sand surrounding the
metal, and the metal itself. This causes a flash boiling,
thereby producing an emission of the pyrolysis products. In
addition, there will be a lesser amount of decomposition (than
occurs during pouring) of the organic constituents.

10



SECTION 3

CRITERIA POLLUTANT EMISSION FACTORS

U.S. EPA publication AP-42, Compilation of Air Pollutant
Emission Factors® provides the best guidance on emission factors
for criteria pollutants. The AP-42 section on iron foundries is
provided in Appendix A.

To help users understand the reliability and accuracy of AP-
42 emission factors, each table in an AP-42 section (and
sometimes individual factors within a table) is given a rating (A
through E, with A being the best) which reflects the quality and
the amount of data on which the emission factors are based.

In general, factors based on many observations or on more
widely accepted test procedures are assigned higher ratings. For
instance, an emission factor based on ten or more source tests on
different plants would likely get an A rating, if all tests were
conducted using a single valid reference measurement method or
equivalent technique. Conversely, a factor based on a single
observation of questionable quality, or one extrapolated from
another factor for a similar process, would probably be labeled D
or E. Several subjective schemes have been used in the past to
assign these ratings, depending upon data availability, source
characteristics, etc.

Because these ratings are subjective and take no account of
the inherent scatter among the data used to calculate factors,
they should be used only as approximations, to infer error bounds
or confidence intervals about each emission factor. At most, a
rating should be considered an indicator of the accuracy and
precision of a given factor used to estimate emissions from a
large number of sources. This indicator will largely reflect the
professional judgement of the authors and reviewers of AP-42
Sections concerning the reliability of any estimates derived with
these factors.

The rating scheme used in this report is summarized below.

A Developed from A-rated test data taken from many
randomly chosen facilities in the industry population.

B Developed only A-rated test data from a reasonable
number of facilities.

o Developed only from A- and B-rated test from a
reasonable number of facilities.

D Developed from only A- and B-rated test data from a
small number of facilities.

11



E Developed from C- and D-rated test data and there may
pe reason to suspect that the facilities tested do not
represent a random sample of the "industry.

Most of the information available from AP-42 rega;ding
criteria pollutant emissions from iron foundries pertains to
particulate matter.

Appendices B, C, and D are the sources of the emission
factors presented in Table 2 and portions of Table 3, as
indicated. Appendix B, Toxic Air Pollutant Emission Factors for
Iron Foundries, gives emission factors for various foundry
furnaces under controlled and uncontrolled conditions. This
report uses the uncontrolled emissions factors, which have been
expressed as units mg/Mg metal melted (tapped from furnace).

Appendix C, Criteria Air Pollutant Emission Factor for Gray
Iron Foundries, presents uncontrolled emissions of criteria
pollutants from various processes in irom foundries. The
criteria pollutants are total particulates, particulate matter
less than ten microns (PMg), oxides of sulfur (SQ,), oxides of
nitrogen (NQ), volatile organic compounds (VOC), carbon monoxide
(C0), and lead. Where applicable, emission factors are expressed
as mg/Mg metal melted, and presented in Table 2.

Appendix D, Threshold Limit Values and Biological Exposure
Indices for 1988-1989, presents substances common to foundry
processes and their effects on humans in the work environment.
This information serves to qualify the pollutant emission factors
in this report into human exposure terms, and explains their
effects on the human body.

Additional emission factors for criteria pollutants
(especially non-particulate pollutants) have been developed as
part of the National Acid Precipitation Assessment Program
(NAPAP). The major objective of NAPAP was to develop volatile
organic compound (VOC) emission factors for Source Classification
Codes (SCC) that had no emission factors in either AP-42 (4th
Edition) or AP-42, Supplement A. Also included in that work was
the development of nitrogen oxides (NQ,) and sulfur dioxide (SQ;)
emission factor estimates for SCC's which were included in
reports submitted by States that previously lacked these factors.

The new emission factors that resulted from the NAPAP effort
are typically not of the same quality as those found in AP-42.
The NAPAP factors represent best estimates and were generated
from estimates taken from the literature, from averaging data
submitted by 13 State air quality offices, and through technology
transfer of emission factors for SCC's from similar industries.
The emission factors generated in the NAPAP work have been rated
E due to lack of rigorous quality assurance.

12



The emission factors developed for the NAPAP emission
inventory normally represent uncontrolled emissions. For PN,
emission factors, AP-42 should be consulted since the particulate
emission factors developed as part of the NAPAP effort were for
total suspended particulates (TSP), not PMy.

Criteria air pollutant emission factors for foundry
processes are presented in Table 2. Those emission factors
derived from AP-42° represent a range of emissions, samples and
foundries under which testing was conducted. Those emission
factors derived from NAPAP were developed from States files,
published reports from both industrial and government sources,
AP-42, engineering estimates, and personal communication with
various industry representatives. In the instances where NAPAP
used AP-42 data, the AP-42 data range was averaged to present a
single value.

13
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SECTION 4

TOXIC POLLUTANT EMISSION FACTORS

Iron foundries produce toxic pollutants from five major
processes. These processes include metal melting, mold and core
production, inoculation, pouring, and greensand shakeout.
Baldwin™ measured concentrations of toxic air emissions for
different foundry processes; from these concentration
measurements, sampling data, and site parameters, emission
factors have been calculated which give a breakdown of the
emissions from iron foundries.

The toxicity of a material and the extent to which that
material is present merits a corresponding “"level of concern”;
the primary level of concern is noted for different foundry
process. Emissions may pe discharged both directly and
indirectly into the surrounding air. Toxic organic emissions are
presented in Table 3 for each of these processes. Toxic
inorganic emissions are presented in Table 4. Since magnesium
(abbreviated Mg) is a major toxic pollutant, and emission factors
are reported as mg/Mg (milligrams per megagram iron produced),
the element magnesium will be spelled out to avoid confusion.

METAL MELTING

CQQOlQS

Toxic emissions from cupolas include both organic and
inorganic materials, which may be emitted directly or indirectly.
Cupolas are the primary process of melting in foundries and also

produce the most toxic emissions. It is estimated that 68.8
percent of all the health risk from foundries is from foundries
with cupolas.® The cupola organic emissions factors which are of
primary concern are: Foo il '
. -G Pk

o halogenated hydrocarbons 1.92 mg/Mg [, 2 X/ 0

o aromatic hydrocarbons 1.70 mg/Mg pL7oN '

o halogenated aromatics 1.70 mg/Mg 70477

A !

o silicones 0.43 mg/Mg 270

o heterocycli¢ N compounds 0.16 mg/Mg (ndo Ao~ f

o amines 0.14 mg/Mg p.iT
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TABLE 3. ORGANIC EMISSIONS, mg/Hg IRON PRODUCED °

Electric Arc Green Sand
Furnaces @ Cupolae lnocu(ationa Pouringa Shakeout
Aliphatic Hydrocarbons 4.94 1.92 0.08 0.78 0.39
Halogenated Hydrocarbons 4.94 1.92 0.08 0.78
Aromatic Hydrocarbons 3.4 1.70 0.19 0.56 1.34
fused Aromatics . 1.34
(>216 M)

Halogenated Aromatics 3.41 1.70 0.05 0.56 0.13
Heterocyclic N Compounds 0.12 0.16 0.01 0.14 0.56
Heterocyclic S Compounds 0.12 0.16 0.01 0.14 0.05
Alcohols : 0.40 0.14 0.01 0.26 0.31
Phenols 0.12 0.14 0.06 0.05 0.31
Ketones 0.84 1.51 0.01 0.42 0.05
Amines 0.40 0.14 0.01 0.31 0.3
silicones 0.37 0.43 0.18 0.07
Heterocyclic O Compounds 1.63 1.01 0.00 0.47 0.05
Nitroaromatics . 0.00 0.1 0.05 0.03 0.01
Ethers 0.02 1.10 0.01 0.2 0.05
Aldehydes 0.00 0.1 0.01 0.03 0.05
Phosphates 0.82 0.16 0.00 0.06
Nitriles 0.00 0.1 0.01 0.03 0.01
Alkyl § Compounds 0.12 0.14 0.01 0.08 0.03
sulfonic Acids 0.12 0.14 0.01 0.06 0.03
sul foxides 0.12 0.14 0.01 0.05
Amides 0.12 0.14 0.01 0.09 0.23
Carboxylic Acids 0.4 0.14 0.01 0.26 0.25
Esters 0.12 0.89 0.02 0.22 0.15
Haloaliphatics 0.12
’Batdwins
b gatduin

NOTE: Emission factors for orgsnic emissions from electric induction furna
o tatle. ces are not presently
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Element

TABLE 4.

Cupola

Ag
Al
As
B

Ba
Be
Bi
Ca
Ccd
Ce
Co
Cr
Cs
Cu
Eu
F

Fe
Ga
Ge
Hg
K

La
Li

850

Magnesium

Mn
Mo
Na
Nb
Nd
Ni
P

Pb

Pr
Rb

Sb
Sc
Se
Si
Sm
Sn
Sr

125,000

5 x 104 -

5.5 x 10°€

2.6 x 10

INORGANIC EMISSIONS, mg/Mg IRON PRODUCED*

b

Electric Arc
Furnace

81

1,6542

97

6,6142

36

323

" Inoculation

Pouring
8.7 1.
55 >66
7.3 - 26.8 0.
56 57
55 65
0.02 0
3.6 0.
56 >66
1.5 0.
>66 3.
0.1 0.
4.0 >66
0.7
11.7 14.
, 0
>66
55.8 >66
1.2 0
0.06
22 11
56 >66
9.4 2.
3.
56 >66
35 >66
5.1 G.
56 >66
0.
0.
0.31 25
15 >66
56 11
0.
9.4 0.
56 >66
159 0
0.04 0
5.8 0.
56 >66
0.
18 1.
72.5 4.

17
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TABLE 4. (Continued)

Electric Arc

F oS

Element Cupola Furnace " Inoculation Pouring
Te 1.5 0.2
Th 1.1
Ti 56 >66
8) 0.
\Y 56 >66
W 0.1
Y 0.7 0.8
in 56 >66
Zr 29 4.0

*All emission factors are calculated from Baldwin 1982,5

as noted:

except

ayN.p. Johnson7

bToxic Air Pollution Emission Factors
Cap-422 (source of data in AP-42 is Reference 8).
d

Criteria Air Pollution Emission Factors for the 1985 NAPAP
Emission Inventory.

A blank value indicates only that no data is available in the
literature and does not mean that this element is not present.

A > indicates upper limit of measurement apparatus.
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Inorganic emission factors for cupolas could not be obtained
for most elements, however, the following emission factors are
available:

o Arsenic 26.1 mg/Mg

o Lead 5 x 10° - 5.5 x 10° mg/Mg

o Manganese 1.25 x 10° mg /Mg

o Copper 8.5 x 10° mg/Mg S

It is well known that toxic inorganics such as cagﬁium and
mercury are emitted during melting processes, notablyathe cupola,
if present in the raw materials charged into the furnace.
However, emissions data are incomplete, with the result that
these emission factors do not appear in this report.

Individual cupola emissions vary widely, depending on the
blast rate, blast temperature, melt rate, the coke to melt ratio
and raw material composition. Although emission factors are not
applicable to all cupolas because of this wide variation,

emissions data per specific cupola may be used to project future
emissions in the presence of process changes.

The impurities in raw materials may contribute to higher
emission factors for halogenated hydrocarbons in cupolas and
EAFs. High emission readings for chromium, lead and mercury are
probably related to scrap quality and cleanliness. Dirty, oily
and low quality metallic raw materials fed to the furnace charge
preparation process will result in more emissions from the
melting unit.

Emission reduction efforts include the use of bag houses,
wet scrubbers, and afterburners to reduce particulates, carbon
monoxide (CO) and VOCs in cupola off-gases. Fabric filters are
most effective in controlling cupola emissions, reducing
manganese emissions from 250,000 to 300 mg/Mg. High energy
scrubbers, impingement scrubbers and wet caps are used with less
favorable results. & . , R , - aiCTaT,
Gaoo Lo : PR i T

Use of gas for heat and graphite for carbon may reduce
emissions due to coke, which contributes to organics and trace
inorganics.

Electric Arc Furnaces
EAFs are also sources of organics and inorganics which are
released both directly and indirectly. Uncontrolled, indirect

emissions have been observed at very high levels for both organic
and inorganic emissions.
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Organic emission factors which are of primary concern are:

o halogenated hydrocarbons 4.94 mg/Mg
o aromatic hydrocarbons 3,41 mg/Mg
o halogenated aromatics 3.41 mg/Mg
o amines 0.40 mg/Mg

Inorganic emission factors for EAFs are:

o tin 1,654 mg/Mg
o antimony ' 3 mg/Mg
o silver 36 mg/Mg
o lead 323 mg/Mg
o mercury 35 mg/Mg
o boron 81 mg/Mg
o fluorine 6,614 mg/Mg
o chromium 97 mg/Mg
0 manganese ' 65 mg/Mg

0f these emission factors, chromium and lead are of primary
concern.

Raw material gquality control in this phase may help
eliminate these emissions. Although uncontrolled manganese
emissions from EAFs have been measured to be 75,000 mg/Mg.- The
use of a fabric filter can reduce these emissions by 99 percent.

Electric Induction Furnaces

Electric induction furnaces using clean steel scrap produce
particulate emissions comprised largely of iromn oxides. High
emissions from clean charge materials are due to cold charges.
When contaminated charges are used, higher emission rates result.
According to Shaw , contamination on charge materials may

originate from:
o rust on pig iron and scrap;

o adhering dirt;
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o paint on scrap;

o various deposits on scrap, e.g. oil and fuel breakdown
products in internal combustion engine scrap, putty on scrap
window frames, grease and paint on machinery scrap and
engine parts;

o molding materials adhering to returns and foundry scrap

o carbon or graphite or other additions in powder form, or
other additions containing powder;

o cutting-oils on steel turnings and cast iron borings;

o zinc on galvanized scrap, or contained in zinc die castings
and,

o iron and steel scrap contalning nonferrous alloys or
plating, e.g. bearing materials, brass inserts, soldered
joints.

Dust emissions from electric induction furnaces are
dependant upon the charge material composition, the melting
method (cold charge or continuous), the melting rate, and the
purity of the materials used.

The results available of measurements taken on furnaces
usiqg clean scrapsshow a range of tota% dust emissions from 3.12
x 10 to 1.82 x 107 mg/Mg metal melted. Where contaminated
charges are used, much higher emission rates are found.

The highest emissions occur during a cold charge, (usually
the first charge of the day), in combination with a high
percentage of uncleaned steel scrap. The emissions presented in
Table 5 resulted from cold charge conditions using two-thirds
returns and one-third uncleaned steel, at a 3.6 kg/hour melting
rate, as measured by the CIATF Commission 4 Environmental
Control.

Oxidation of the exposed molten metal surface produces the
metallurgical smoke constituents in the table above. Molecular
weight conversion may be used to determine the elemental metal
content of the emissions.
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TABLE 5. INDUCTION FURNACE EMISSIONS10

Malleable Iron Ductile Iron

mg/Mg mg /Mg
siq, 6.5 x 10° 1.3 x 10°
Zno 5.2 x 10° 7.8 x 10°
ALQ, 2.6 x 10° 5.2 x 10°
Cr,0 1.3 x 10° 2.0 x 10°
ca0 6.5 x 10° 2.6 x 10°
Mno 1.3 x 10° 1.3 x 10°
MoO 2.6 x 10° 2.6 x 10
Ti0 1.3 x 10° ’ 5.2
NiO 1.3 x 10° - 1.3 x 10°
B,0, 2.6 x 10 2.6
PbO 1.3 x 10 1.3 x 10
Sno, 2.6 2.6
Bi, 0 2.6 2.6
V,0; 7.8 7.8
Cuo 1.3 2.6
Co0 2.6 2.6
BaO 2.6 2.6

MOLD AND CORE PRODUCTION

In addition to organic binders, molds and cores may be held
together in the desired shape by means of a cross-linked organic
polymer network. This network (of polymers) undergoes thermal
decomposition when exposed to the very high temperatures of

22



casting (typically 1400°C for iron castings). At these
temperatures it is likely that pyrolysis of the chemical binder
will produce a complex of free radicals which will recombine to
form a wide range of chemical compounds having widely differing
concentrations. In order to assess the environmental
implications of these thermal-decomposition products, it is
necessary to identify and quantify each of the compounds
liberated. Each of the chemical binder systems gives rise to a
number of different thermal-decomposition products, these "
products being characteristic of the different binder system.

There are many different types of resins currently in use
having diverse and toxic compositions. In spite of an intensive
literature search, there are no data currently available for
determining the toxic compounds in a particular resin which are
emitted to the atmosphere, and to what extent these emissions
occur. Toxic compounds are contained in resins and some are
presumably emitted to the atmosphere but at an undetermined rate.
Toxic compounds contained in resins may include:

o 4, 4' diphenylmethane diisocyanate
o kerosene
o polymethylene polyphenylene isocyanate

o catalytic reformer fractionator residue (petroleum
derivative) :

o methylene bis(phenylisocyanate) (MBI)

o diethylene glycol

o nickel soaps of fatty acids

o hydrotreated light distillates (petroleum derivative)

o formaldehyde

o phenol

o ethyl-3-epoxypropionate

The mix of pollutants liberated during core and mold making

are a result of complex chemical reactions which are directly
related to the quantity and composition chemicals present in the

uncured resin.''” Some foundry atmosphere contaminants commonly
encountered during mold and core making are given in Table 6.
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INOCULATION

particulates, arsenic, chromium, halogenated hydrocarbons,
and aromatic hydrocarbons- are released in the inoculation
process. .

Inorganic emission factors pertaining to inoculation have
been calculated for most elements. Those which are of primary
concern are:

o boron 56 mg/Mg
o vanadium 56 mg/Mg
o chromium 4 mg/Mg
o arsenic 7.3 - 26.8 mg/Mg
o lead 56 mg/Mg

Emission factors have been calculated for organics released
in the inoculation process. Emission factors for halogenated
hydrocarbons, 0.08 mg/Mg, and halogenated aromatics, 0.05 mg/Mg,
are of primary importance.

POURING

The pouring (and cooling) process takes place after melting
and inoculation. Emissions are related to mold size, mold
composition, sand to metal ratio, pouring temperature and pouring
rate. Organic compounds in the emissions due to the presence of
sea coal and chemical binders in the sand are evolved into the

surrounding environment during the pouring process, During th%;
process, PM;, emission factors ranged from 2.5 X 10° to 4.2 x 10
mg/Mg (see Table 2). U S Poy vt

Emissions during pouring include decomposition products of
resins (CO, carbon dioxide (CGQ,), phenols, hydrogen cyanide,
ammonia, benzo(a)pyrene), other organic compounds, and
particulate matter.

Emission factors have been calculated for inorganics evolved
during the pouring process. The emission factor for nickel has
peen calculated at 25.3 mg/Mg, and for lead at 11.3 mg/Mg.
Emission factors for boron, 11 mg/Mg and chromium, 66 mg/Mg were
of primary concern.

Emission rates were measured for aliphatic hydrocarbons,
halogenated hydrocarbons, aromatic hydrocarbons, fused aromatics,
halogenated aromatics, heterocyclic N compounds, heterocyclic S
compounds, alcohols, phenols, ketones, amines, silicones,
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heterocyclic O compounds, nitroaromatics, ethers, aldehydes,
phosphates, nitriles, alkyl S compounds, sulfonic acids,
sulfoxides, amides, carboxylic acids, and esters. The emission
factors for these compounds are presented in Table 6.

Polynuclear aromatic organics (PNA) and fused aromatic
organics are significant because these emissions may be present
during cooling processes, where they can be formed and released,
rather than in the pouring process. At present there are no
emissions measurements for PNAs.

GREENSAND SHAKEOUT

The removal of castings from a sand mold releases moisture
that has been trapped in the mold, dust from the sand and binders
which have dried during pouring, and products of thermal
decomposition of the chemical binders as they are exposed to air.
Available emissions test data range from 8.5 X 10" mg/Mg to g X
10° mg/Mg of iron castings with an average of about 1.5 x 10
mg/Mg of iron casp}ngs. The data indicate a wide variation in

the emission rate.

As reported by Baldwin' the experiments of Bates and Scott'
showed higher peak hydrocarbon concentrations (1500 ppm) during
shakeout than during pouring and cooling, although the average
concentrations were lower during shakeout. The particulate
emissions during these laboratory tests were 55 percent higher
with a 10 fold particle cQunt increase over those of pouring.
Toeniskoetter and Schafer” sampled many foundries for selected
emissions from different binder systems. Their results show that
the isocyanate concentration is frequently greater at shakeout
than at the pouring station.

AIR TOXIC EMISSION FACTOR RATING

The emission factors presented in this report originated
from diverse sources, and therefore have variable reliability
(see Section 3 for rating scheme used in this report). The
emission factors are rated according to source.

o All emission factors from Criteria Air Pollutant Emission
Factors, prepared for the 1985 NAPAP Emissions Inventory,
October 1988, are rated E.

o All emission factors calculated from the work by Baldwin,
1980; and Baldwin, 1982; are rated D.

o The emission factors from AP-42 for
o VOC, NG, CO, and SQ, are rated B for all sources
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o PM,, from cupolas are rated C

o PM, from pouring are rated D

o PM,, from EAF and Greensand Shakeout are rated E.
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APPENDIX A

AP-42 Section on Gray Iron Foundr.es

7.10 Gray Iron Foundries.



(copied from Compilation of Air Pollutant Emission Factors,
Ap-42 Supplement B, Volume 1, Fourth Edition
U.S. Environmental Protection Agency, 1988)

7.10 GRAY IRON FOUNDRIES
7.10.1 Generall=>

Gray iron foundries produce gray iron castings from scrap ironm, pig iron
and foundry returns by melting, alloying and molding. The production of gray
iron castings involves a number of integrated steps, which are outlined in
Figures 7.10-1 and 2.10-2. The four major production steps are raw materials
handling and preparation, metal melting, mold and core production, and casting
and finishing. '

Raw Materials Handling And Preparation - Handling operations include re-
ceiving, unloading, storing and conveying of all raw materials for both furnace
charging and mold and core preparation. The major groups of raw materials re-
quired for furnace charging are metallics, fluxes and fuels. Metalllc raw
materials include pig irom, iron and steel scrap, foundry returns and metal
turnings. Fluxes include carbonates (limestone, dolomite), fluoride (fluor-
spar), and carbide compounds (calcium carbide).z Fuels include coal, oil,
natural gas and .coke. Coal, oil and natural gas are used to fire reverberatory
furnaces. Coke, a derivative of coal, is used as a fuel in cupola furnaces.
Carbon electrodes are required for electric arc furnaces.

As shown in Figures 7.10-1 and 7.10-2, the raw materials, metallics and
fluxes are added to the melting furnaces directly. For electric induction
furnaces, however, the scrap metal added to the furnace charge must first be
pretreated to remove any grease and/or oil, which can cause explosions. Scrap
metals may be degreased with solvents, by centrifugation, or by preheating to
combust the organics.

In addition to the raw materials used to produce the molten metal, a
variety of materials is needed to prepare the sand cores and molds that form
the iron castings. Virgin sand, recycled sand and chemical additives are
combined in a sand handling system typically comprising receiving areas, con-
veyors, storage silos and bins, mixers (sand mullers), core and mold making
machines, shakeout grates, sand cleaners, and sand screening.

Raw materials are received in ships, railroad cars, trucks and containers,
then transferred by truck, loaders and conveyors to both open piles and enclosed
storage areas. When needed, the raw materials are transferred from storage to
process areas by similar means.

Metal Melting - The furnace charge includes metallics, fluxes and fuels.
The composition of the charge depends upon the specific metal characteristics
required. Table 7.10-1 lists the different chemical compositions of typical
irons produced. The three most common furnaces used in the gray iron foundry
industry are cupolas, electric arc, and electric induction furnaces.

The cupola, which is the major type of furnace used in industry today, is
typically a vertical cylindrical steel shell with either a refractory lined or
water cooled inner wall. Refractory linings usually consist of silica brick,
or dolomite or magnesium brick. Water cooled linings, which involve circulating

10/86 Metallurgical Industry 7.10-1
A-2
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TABLE 7.10-1. CHEMICAL COMPOSITION OF FERROUS CASTINGS
BY PERCENTAGE :

Malleable iron

Element Gray iron (as white iron)  Ductile irond ° Steel
Carbon 2.5 - 4.0 1.8 - 3.6 3.0 - 4.0 <2.0P
Silicon 1.0 - 3.0 - 0.5 - 1.9 l.4 - 2.0 0.2 -0.8
Manganese 0.40 - 1.0 0.25 - 0.80 0.5 - 0.8 0.5 - 1.0
Sulfur 0.05 - 0.25  0.06 - 0.20 <0.12 <0.06
Phosphorus 0.05 - 1.0 0.06 - 0.18 <0.15 » <0.05

2Necessary chemistry also includes 0.0l - 1.0% Mg.
bsteels are further classified by carbon content: 1low carbon, <0.20%;
medium carbon, 0.20 - 0.50%; high carbon, >0.50%.

water around the outer steel shell, are used to protect the furnace wall from
interior temperatures. The cugola is charged at the top with alternate layers
of coke, metallics and fluxes. The cupola is the only furnace type to use
coke as a fuel; combustion air used to burn the coke is introduced through
tuyeres located at the base of the cupola.2 Cupolas use either cold blast air,
air introduced at ambient temperature, or hot blast air with a regenerative
system which utilizes heat from the cupola exhaust gases to preheat the com-
bustion air.2 Iron is melted by the burning coke and flows down the cupola.

As the melt proceeds, new charges are added at the top. The flux removes non-
metallic impurities in the iron to form slag. Both the molten iron and the slag
are removed through tap holes at the bottom of the cupola. Periodically, the
heat period is completed, and the bottom of the cupola is opened to remove the
remaining unburned material. Cupola capacities range from 1.0 to 27 megagrams
per hour (1 to 30 tons per hour), with a few larger units approaching 90 mega-
grams per hour (100 tons per hour). Larger furnaces operate continuously and
are inspected and cleaned at the end of each week or melting cycle.

Electric arc furnaces (EAF) are large, welded steel cylindrical vessels
equipped with a removable roof through which three retractable carbon electrodes
are inserted. The electrodes are lowered through the roof of the furnace and
are energized by three phase alternating current, creating arcs that melt the
metallic charge with their heat. Additional heat is produced by the resistance
of the metal between the arc paths. - The most common method of charging an
electric arc furnace is by removing the roof and introducing the raw materials
directly. Alternative methods include introducing the charge through a chute
cut in the roof or through a side charging door in the furnace shell . Once
the melting cycle is complete, the carbon electrodes are raised, and the roof
is removed. The vessel is tilted, and the molten iron is poured into a ladle.
Electric arc furnace capacities range from 0.23 to 59 megagrams (0.25 to 65
tons). Nine to 11 pourids of electrode are consumed per ton of metal melted.
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Electric induction furnaces are either cylindrical or cup shaped refractory
1ined vessels that are surrounded by electrical coils which, when energized with
high frequency alternating current, produce a fluctuating electromagnetic field
to heat the metal charge. For safety reasons, the scrap metal added to the
furnace charge is cleaned and heated before being introduced into the furnace.
Any oil or moisture on the scrap could cause an explosion in the furnace.
Induction furnaces are kept closed except when charging, skimming and tapping.
The molten metal is tapped by tilting and pouring through a hole in the side of
the vessel. Induction furnaces also may be used for metal refining in conjunc-
tion with melting in other furnaces and for holding and superheating the molten
metal before pouring (casting).

The basic melting process operations are 1) furnace charging, in which
metal, scrap, alloys, carbon, and flux are added to the furnace; 2) melting,
during which the furnace remains closed; 3) backcharging, which involves the
addition of more metal and alloys, as needed; 4) refining and treating, during
which the chemical composition is adjusted to meet product specifications; 5)
slag removing; and 6) tapping molten metal into a ladle or directly into molds.

Mold And Core Production - Molds are forms used to shape the exterior of
castings. Cores are molded sand shapes used to make the internal voids in cast-
ings. Cores are made by mixing sand with organic binders, molding the sand 1nto
a core, and baking the core in an oven. Molds are prepared of a mixture of wet
sand, clay and organic additives to make the mold shapes, which are usually
dried with hot air. Cold setting binders are being used more frequently in both
core and mold production. The green sand mold, the most common.type, uses
moist sand mixed with 4 to 6 percent clay (bentonite) for bonding. The mixture
is 4 to 5 percent water content. Added to the mixture, to prevent casting
defects from sand expansion when the hot metal is poured, is about 5 percent
organic material, such as sea coal (a pulverized high volatility bituminous
coal), wood flour, oat hulls, pitch or similar organic matter. ‘

Common types of gray iron cores are:

- 0il core, with typical sand binder percents of 1.0 core oil, 1.0 cereal,
and 0 to 1 pitch or resin. Cured by oven baking at 205 to 315°C (400 to
600°F), for 1 to 2 hours.

- Shell core, with sand binder typically 3 to 5 percent phenolic and/or
urea formaldehyde, with hexamine activator. Cured as a thin layer on a
heated metal pattern at 205 to 315°C (400 to 600°F), for 1 to 3 minutes.

- Hot box core, with sand binder typically 3 to 5 percent furan resin, with
phosphoric acid activator. Cured as a solid core in a heated metal pat-
tern at 205 to 315°C (400 to 600°F), for 0.5 to 1.5 minutes.

- Cold set core, with typical sand binder percents of 3 to 5 furan resin,
with phosphoric acid activator; or 1 to 2 core oil, with phosphoric acid
activator. Hardens in the core box. Cured for 0.5 to 3 hours.

- Cold box core, with sand binder typically 1 to 3 percent of each of two
resins, activated by a nitrogen diluted gas. Hardens when the green core
is gassed in the box with polyisocyanate in air. Cured for 10 to 30
seconds. '
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Used sand from castings shakeout is recycled to the sand preparation area
and cleaned to remove any clay or carbonaceous buildup. The sand is then
screened and reused to make new molds. Because of process losses and discard
of a certain amount of sand because of contamination, makeup sand is added.

Casting And Finishing - After the melting process, molten metal 1s tapped
from the furnace. Molten iron produced in cupolas is tapped from the bottom of
the furnace into a trough, thence into a ladle. 1Iron produced in electric arc
and induction furnaces is poured directly into a ladle by tilting the furnace.
At this point, the molten iron may be treated with magnesium to produce ductile
iron. The magnesium reacts with the molten iron to nodularize the carbon in
the molten metal, giving the iron less brittleness. At times, the molten metal
may be inoculated with graphite to adjust carbon content. The treated molten
iron is then ladled into molds and transported to a cooling area, where it
solidifies in the mold and is allowed to cool further before separation (shake-
out) from the mold and core sand.’ In larger, more mechanized foundries, the
molds are conveyed automatically through a cooling tunnel. In simpler found-
ries, molds are placed on an open floor space, and the molten iron is poured
into the molds and allowed to cool partially. Then the molds are placed on a
vibrating grid to shake the mold and core sand loose from the casting. 1In the
simpler foundries, molds, core sand and castings are separated manually, and
the sand from the mold and core is then returned to the sand handling area.

When castings have cooled, any unwanted appendages, such as spurs, gates,
and risers, are removed. These appendages are removed with oxygen torch,
abrasive band saw, or friction cutting tools. Hand hammers may be used, in
less mechanized foundries. to knock the appendages off. After this, the cast-
ings are subjected to abrasive blast cleaning and/or tumbling to remove any
remaining mold sand or scale.

Another step in the metal melting process involves removing the slag in the
furnace through a tapping hole or door. Since the slag is lighter than molten
iron, it remains atop the molten iron and can be raked or poured out of cupola
furnaces through the slag hole located above the level of the molten iron.
Electric arc and induction furnaces are tilted backwards, and their-slag is
removed through a slag door.

7.10.2 Emissions And Controls

Emissions from the raw materials handling operations are fugitive particu~-
late generated from the receiving, unloading, storage and conveying of raw mate-
rials, These emissions are controlled by enclosing the major emission points
(e. g., conveyor belt transfer points) and routing air from the enclosures
through fabric filters or wet collectors. Figure 7.10-2 shows emission points
and types of emissions from a typical foundry.

Scrap preparation with heat will emit smoke, organic compounds and carbon
monoxide, and scrap preparation with solvent degreasers will emit organics.
Catalytic incinerators and afterburners can control about 95 percent of organic
and carbon monoxide emissions. (See Section 4.6, Solvent Degreasing.)

Emissions released from the melting furnaces include particulate matter,
carbon monoxide, organic compounds, sulfur dioxide, nitrogen oxides and small
quantities of chloride and fluoride compounds., The particulates, chlorides and
7.10-6 EMISSION FACTORS 10/86
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fluorides are generated from incomplete combustion of coke, carbon additives,
flux additions, and dirt and scale on the scrap charge. Organic material on
the scrap, the consumption of coke in the furnace, and the furnace temperature
all affect the amount of carbon monoxide generated. Sulfur dioxide emissions,
characteristic of cupola furnaces, are attributable to sulfur in the coke.
Fine particulate fumes emitted from the melting furnaces come from the
condensation of volatilized metal and metal oxides.

During melting in an electric arc furnace, particulate emisslons are gen-
erated by the vaporization of iron and the transformation of mineral additives.
These emissions occur as metallic and mineral oxides. Carbon monoxide emissions
come from the combustion of the graphite lost from the electrodes and the carbon
added to the charge. Hydrocarbons may come from vaporization and partial
combustion of any oil remaining on the scrap iron added to the furnace charge.

The highest concentrations of furnace emissions occur during charging,

" backcharging, alloying, slag removal, and tapping operations, because furnace
1ids and doors are opened. Generally, these emissions escape into the furnace
building or are collected and vented through roof openings. Emission controls
for melting and refining operations usually involve venting the furnace gases
and fumes directly to a control device., Controls for fugitive furnace
emissions include canopy hoods or special hoods near the furnace doors and
tapping hoods to capture emissions and route them to emission control systems.

High energy scrubbers and baghouses (fabric filters) are used to control
particulate emissions from cupolas and electric arc furnaces in this country.
When properly designed and maintained, these control devices can achieve respec-
tive efficiencies of 95 and 98 percent. A cupola with such controls typically
has an afterburner with up to 95 percent efficiency, located in the furnace
stack, to oxidize carbon monoxide and to burn organic fumes, tars and oils.
Reducing these contaminants protects the particulate control device from poss-
ible plugging and explosion. Because induction furnaces emit negligible amounts
of hydrocarbon and carbon monoxide emissions, and relatively little particulate,
they are usually uncontrolled.?2

The major pollutant emitted in mold and core production operations is par-
ticulate from sand reclaiming, sand preparation, sand mixing with binders and
additives, and mold and core forming. Organics, carbon monoxide and particulate
are emitted from core baking, and organic emissions from mold drying. Baghouses
and high energy scrubbers generally are used to control particulate from mold
and core production. Afterburners and catalytic incinerators can be used to
control organics and carbon monoxide emissions,.

Particulate emissions are generated during the treatment and inoculation
of molten iron before pouring. For example, during the addition of magnesium
to molten metal to produce ductile iron, the reaction between the magnesium and
molten irom is very violent, accompanied by emissions of magnesium oxides and
metallic fumes. Emissions from pouring consist of hot metal fumes, and carbon
monoxide, organic compounds and particulate evolved from the mold and core
materials contacting the molten iron. Emissions from pouring normally are
captured by a collection system and vented, either controlled or uncontrolled,
to the atmosphere. Emissions continue as the molds cool. A significant quan-
tity of particulate is also generated during the casting shakeout operation.
These fugitive emissions must be captured, and they usually are controlled by
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either high energy scrubbers or bag filters.

Finishing operations emit large, coarse particles during the removal of
burrs, risers and gates, and during shot blast cleaning. These emissions are
easily controlled by cyclones and baghouses.

Emission factors for total particulate from gray iron furnaces are pre-
sented in Table 7.10-2, and emission factors for gaseous and lead pollutants
are given in Table 7.10-3. Tables 7.10-4 and 7.10-5, respectively, give factors
for ancillary process operations and fugitive sources and for specific particle
sizes. Particle size factors and distributions are presented also in Figures
7.10-3 through 7.10-8.

TABLE 7.10-2. EMISSION FACTORS FOR GRAY IRON FURNACES?

: Total Emission
Process Control particulate Factor
device Rating
kg /Mg 1b/ton
Cupola Uncontrolledb 6.9 13.8 C
Scrubber® 1.6 3.1 C
Venturi scrubberd 1.5 3.0 C
Electrostatic
precipitator® 0.7 1.4 E
Baghouse 0.3 0.7 C
Single wet cap® 4.0 8.0 B
Impingement scrubber® 2.5 5.0 B
High energy scrubber® 0.4 0.8 B
Electric arc furnace Uncontrolledh 6.3 12.7 C
Baghousel 0.2 0.4 C
Electric induction
furnace Uncontroll edk 0.5 0.9 D
Baghouse™ 0.1 0.2 E
Reverberatory Uncontrolled? 1.1 2.1 D
Baghouse® 0.1 0.2 E

3Expressed as weight of pollutant/weight of gray iron produced.

bRreferences 1,7,9-10.

CReferences 12,15. 1Includes averages for wet cap and other scrubber types not
already listed.

dreferences 12,17,19.

€References 8,11.

fReferences 12-14.

EReferences 8,11,29-30.

Npeferences 1,6,23.

JReferences 6,23~24.

kpeferences 1,12. For metal melting only.

Mreference 4.

OReference 1.
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Figure 7.10-3. Particle size distribution for uncontrolled cupola.21-22
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Figure 7.10-8. Particle size distribution for uncontrolled shakeout.26
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