Note: This is a reference cited in *AP 42*, *Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources.* AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

AP42 Section:	11.20
Reference:	16
Title:	Stack Test Report No. 85-7, Lehigh Lightweight Aggregate Plant, Dryer- Kiln No. 1, Woodsboro, Maryland, Division Of Stationary Source Enforcement, Maryland Department Of Health And Mental Hygiene, Baltimore, MD, May 1985.

AP-42 Section Reference Report Sect. Reference 7)17+ (OZ : C (HYRIE) R6F 4-17

Stack Test Report No. 85-7

Lehigh Portland Cement Co. Lightweight Aggregate Plant/Dryer-Kiln No. 1 Woodsboro, Frederick Co. April, 1985

Division of Stationary Source Enforcement Air Management Administration Office of Environmental Programs Department of Health and Mental Hygiene State of Maryland

Submitted by Douglas E. Frantz

Approved by Ronald E. Lipinski

ABSTRACT

Introduction:

Dryer-Kiln no. 1 at the Woodsboro plant is identical to the no. 2 line, which was tested in January of this year.

The Woodsboro plant of the Lehigh Portland Cement Company produces lightweight aggregate from the shale quarried on site. The shale is crushed and sized, then fed to a rotary dryer to preheat the material and drive off moisture. After being screened to remove fines, the shale is fed to the kiln where it is heated to 2100°F, using No. 2 oil at an average rate of 14 gallons per hour and coal at an average rate of 3,060 lbs. per hour. Expansion of the shale takes place in the kiln.

Emissions from this process are controlled by an electrostatic precipitator.

Particulate emission standards for this process are given in COMAR 10.18.06.03B. The maximum emission rate (lb/hr.) allowed is determined by the table contained in that regulation or, if process weight exceeds 60,000 lb/hr, the equation E=55-.0P0.11-40. When process weight exceeds 60,000 lb/hr., the emission rate may exceed that given by the above formula, if the particulate concentration is below .05 gr/scfd.

Process weight includes the dryer feed plus the weight of coal used.

Procedure:

Method 1005, as contained in AMA Technical Memorandum 83-05, was followed during the testing. Oxygen and carbon dioxide levels for molecular weight determinations were measured using Fyrite equipment.

Results:

Process weight during the test was determined to be 29.53 tons per hour, based on a dryer feed rate of 28 tons per hour and the average coal feed rate of 3,060 lbs/hr. Interpolating from Table 1 in COMAR 10.18.06, the allowed emission rate is 39.46 lbs/hr. The average emission rate during the three tests was 15.5 lbs/hr., indicating compliance with Maryland regulations.

A summary of the test results is given in table 1-1. Raw data are contained in the appendix.

Table 1-1. Summary of Particulate Sampling Results For: 85-7 Lehigh Portland Cement, Woodsboro - Dryer/Kiln No. 1

<i></i>					
Opacity	(⁸)	ľ	7.0	10.6	
Enission	Rate* (lbs/hr)	18 • 3	16.4	11.8	15 . 5
Concentration *	(grains/scfd)	0.125	0.112	0.078	0.105
	т Н20	7.3	7.7	7.5	
Data	д С02	8.2	7.4	7.8	
ck Gas	7. 02	12.1	12.8	12.3	H, 21
rage Stac	temp (^o F)	424	424	416	
Ave	flow rate (scfm dry)	17650	17180	17580	17,470
Allowed	Emission Rate (lbs/hr)	39.46	39.46	39.46	
Process	weight (tons/hr)	29-53 2	29.53	29.53	
Run ID		4/29/85	4/30/85	5/2/85	Average

*based on front half catch

APPENDIX:

.

(

Nomenclature Calculated Results Data Summaries Laboratory Analyses Primary Data Calibration Data Preliminary Stack Test Survey

MARYLAND STATE

l

Air Management Administration

.

:

.

STACK SAMPLING NOMENCLATURE

A _s	:	cross sectional area of stack at sample site, (ft ²)
^B w	•	mole fraction moisture in stack gas, (dimensionless)
c _a	:	concentration of front half catch, (grains/scfd)
C _{d12}	:	concentration at 12% CO2, front half catch, (grains/scfd)
C _{d50}	:	concentration at 50% EA, front half catch, (grains/sefd)
c _m	:	dry gas meter correction factor, (dimensionless)
с _р	:	pitot tube coefficient, (dimensionless)
c _t	:	concentration of total catch, (grains/scfd)
c _{t12}	:	concentration at 12%, CO2, total catch, (grains/scfd)
C _{t50}	:	concentration at 50% EA, total catch, (grains/scfd)
D _n	:	diameter of sampling nozzle inlet, (in)
EA	:	percent excess air in stack gas, (%)
Eđ	:	emission rate, front half, (lbs/hr)
Et	:	emission rate, total, (lbs/hr)
<u>/</u>] H@	:	orifice meter pressure differential that provides a flow rate of .75 ft ³ /min at 70 ^o F and 29.92 in.Hg, (in. H_2^{0})
🚈 ^H avg	:	average orifice pressure differential, (in. H_2^{0})
I	:	percent isokinetic, (%)
Ma	:	molecular weight of stack gas, dry basis, (lb/lb mole)
M _w	:	molecular weight of stack gas, wet basis, (lb/lb mole)
N _{ti}	:	normality of titrant for SO_X sample, (g-eq/l)
p bar	:	barometric pressure, (in. Hg)
Psavg	:	average absolute stack pressure, (in. Hg)

Page 2 of 2

.

NOMENCLATURE

•

•

(

ł

.

<u>/</u> P	:	velocity pressure differential, (in. H ₂ 0)
Qalq	:	volume of SO_x sample aliquot titrated, (ml)
o _m	:	net dry sample gas volume, (acfd)
Qustd	:	standard dry gas sample volume, (scfd)
Q _s	:	actual stack gas volumetric flow rate, dry basis, (asfm dry)
Q _{soln}	:	total volume of SO _x sample solution, (ml)
Q _{sstd}	:	standard stack gas volumetric flow rate, dry basis, (scfm dry)
Q _{ti}	:	volume of titrant required to neutralize SO_x sample aliquot, (ml)
Q _{tib}	:	volume of titrant required to neutralize blank solution, (ml)
Q _{tstd}	:	total standard sample volume, (scf)
Q _w	:	total volume of water collected, (ml)
wsta	:	standard vapor volume of water collected, (scf)
Tmavg	:	average dry gas meter temperature, $({}^{O}F)$
Tsavg	:	average stack temperature, (^O F)
vs	:	average velocity of stack gas at sample site, (ft/sec)
Wd	:	front half particulate catch, (mg)
W _t	:	total particulate catch, (mg)
0	:	sampling time, (min.)

.

MARYLAND STATE AIR MANAGEMENT ADMINISTRATION

PARTICULATE STACK SAMPLING CALCULATED RESULTS

Plant Lehigh Cement/Woodsboro

Source No. 1 Precipitator

ſ

_						_
	RUN ID	4/29/85	4/30/85	5/2/85		
1.	Qmstd	59.873	58.101	60.757		<u>.</u>
2.	Qwstd	4.731	4.832	4.943		
3.	Q _{tstd}	64.605	62.933	65.70		•
4.	Bw mole	0.073	0.077	0.075		
5.	Md	29.796	29.696	. 29.74		
6.	Mw	28.932	28.798	28.857		
7.	EA	*	*	*		
·8,	v _s	34.25	33.45	33.97		
9.	Q8 sound	29179	28385	28876		
10.	Qsstd std.	17646	17175	17575 .		
11.	Cd.	0-1208	0 1116	0_0783		
12,	C _t	0.1252	0.116	0.088		
13.	C ₈₁₂	*	. *	*		
14.	C _{t12}	*	*	*		
15.	Ca 50	*	*	*		
16.	C _{t50}	*	*	*		
17.	Ed	18.27	16.42	11.80		
18.	^E t	18.93	17.07	13.26		
19.	I	102.0	101.7	103.9		
ميرندين المتيد	actual	31,477 selm	30, 753 defm	31,217 ecfm	219 = 31,149	

*Not Applicable

MARYLAND STATE AIR MANAGEMENT ADMINISTRATION

PARTICULATE STACK SAMPLING DATA SUMMARY

Plant	Iehigh	Cement/	Woodsboro

Source No. 1 Precipitator

÷

(

(

ł

	RUN ID	4/29/85	4/30/85	5/2/85	
1.	Cp	0.84	0.84	0.84	
2.	Qm	61.159	60-29	60.348	
3.	T _{mavg}	88.8	97.8	72.0	
4 .	P _{bar}	29.83	29.85	29.74	
5.	∆ _{Havg}	1.424	1.364	1.393	
6.	Qw	98.6	100.7	103.0	
7.	Wa	468.7	420.0	308.3	
8.	Wt	485.6	436.6	346.5	
9.	%co ₂	8.2	7.4	7.8	
10.	%0 ₂	12.1	12.8	12.3	
11.	^T savg	424.1	. 424.2	415.8	
12.	(△P) ³ avg	0.471	0.459	0.468	
13.	Psavg	29.79	29-81	29.70	
14.	A.,	15.32	15.32	15.32	
15.	D _n	0.312	0.312	0.312	
16.	0	96.0	96-0	96.0	

MARYLAND STATE BUREAU OF AIR QUALITY & NOISE CONTROL AND BUREAU OF LABORATORIES

C

PARTICULATE STACK SAMPLING LABORATORY RESULTS

Plant <u>Le</u>	high Cement/Woodsborg	Com	pleted 5/8/85
Facility Tested	No. 1 Precipitator	By	Mary M. Birnning
Test Date	4/29/85	•	1
Run ID		. # _	

--0-

•	WEIGHT OF PARTICUL	ATE COLLECTED	
Container	Final Weight (grams)	Initial Weight (grams)	Weight Gain (mg)
Probe 41	1419.7459	149.6484	97.5
Filter B	135.7734 134.9679	,5183	287.2
Cyclone 40	146.8041	146.7201	84.0
· ·		Subtotal, (mg)	468.7
Water Soluble 42	151.8325	151.8758	6.7
Ormanics 43	140.6664	140.6598	6.6
Acetone Wash 44	1.38.9717	138.9681	3.6
	•	Subtotal. (mg)	16.9
Total i	leight of Particulate	Collected, (mg)	485.6
	Sulfate	Acidity	
Probe	= g.		mog. NgOH
Filter	¤g.	·	meq. N ₂ OH

VOLUME OF MOISTURE COLLECTED

	ł	Final Volume (ml)	Initial Volume (ml)	Volumetric Gain
Tuningers		284.0	200.0	84.0
Silic Cel	45	361.0	346.4	14.6
			Total Cain, (ml)	98.6

MARYLAND STATE BUREAU OF AIR QUALITY & NOISE CONTROL AND BUREAU OF LABORATORIES

PA	RTICULATE STACK SAMPLING LABORATOR	Y RESULTS	
Plant <u>Lehigh</u> Facility Tested	Cement / Woodsborg No. 1 Precipitator	Completed By	5/8/85 Juny M. Browing
Test Date	4/30/85	i	
Run ID			

......

	WEIGHT OF PARTICUL	TE COLLECTED	
Container	Final Weight (grams)	Initial Weight (grams)	Weight Gain (ng)_'
50	146.5328	146.4475	85.3
	134.9501	. 8 183 . 5198	298.5
ritter 5/	151.8003	151.7641	36.2
Syclone		Subtotal, (mg)	420.0
52	147.3407	147.3331	7.6
Later Soluble 57	135.3304	135.32-48	5.6
Organics 53	145.0862	145.0828	3.4
Acetone Wash 571		Subtotal. (mg)	16.6
Total W	eight of Particulate	Collected, (mg)	436.6
	Sulfate	Acidity	r
Probe	¤g.		meq. NgOH
Filter	¤g.		meq. NgOH
F & L VOL			

VOLUME OF MOISTURE COLLECTED

	1	Final Volume	Initial Volume (ml)	Volumetric Gain (nl)
		285.0	200.0	85.0
Impingers	55	367,4	351.7	15.7
Silica Gel			Total Gain, (ml)	100.7

moq. NgOH

MARYLAND STATE BUREAU OF AIR QUALITY & NOISE CONTROL AND BUREAU OF LABORATORIES

PARTICULATE STACK SAMPLING LABORATORY RESULTS

Plant	high_	Coment	/ Woods br	10	Comp	loted	5/8/85	·
Facility Test	be	No. 1	Precipitator		By	Dam	M. Brown	7-
Test Date	5	-/2/85	• 			ı -		v
Run ID		<u> </u>		<u></u>	# _			

Container		Final Weight (grams)	Initial Weight (grams)	Weight Gain (mg)
Probe	60	146.5594	146.4991	60.3
Pilter	A	155.5489	.7514 .5237	227.7
Cyclone	61	152.1176	152.0973	20.3
			Subtotal, (mg)	308.3
Water Soluble	62	147.7531	147.7427	10.4
Organics	63	145.6211	145.5955	25.6
Acetone Wash	GH	135.0942	135.0920	2.2
	┈┈╴	•	Subtotal. (mg)	38.2
- <u></u> ,	Total Ye	ight of Particulate	Collected, (ag)	346.5
• 				
		Sulfate	Acidity	r
Probe		BC.	- 	meq. NgOH

Filter

.6

(

VOLUME OF MOISTURE COLLECTED

BC.

	ļ	Final Volume	Initial Volume	Volumetric Gain (nl)
Tabingers		288.0	200.0	88.0
	65	380.6	365.6	15.0
			Total Gain, (ml)	103.0

č	.*	OFFICE OF ENVIRONMENTAL FROGRAMS	AJR MANAGEMENT ADMINISTRATION STACK SAMPLING DATA		Plant LEHIGH CEMENT	Source No. 1 KILN	Bun ID 39 APR 8.5 Obcrators DR .F S	Chart 1/ 12 Binich 1/ CB		Sampling for: FRATICULATE	Pitobe ID 5-1 Cp 1.84	Meter Box GA Can H@ :84-	DCM ID 593.23 C Factor 1.0		Filter ID . 5 / 8 / 8 / 8 / 102 / 11	Baro.(in. Hg.)	Amblent ^o F 69			(in. Hg)	Avg. % CO2 7. 02	Leak Rate Pre.19 @15"Hg.	(acfm) Post. op المري He.			Area 13.36 ft.	Diamcters Upstream	Diameters Downstream		Assumed H2U (%)	5° 'S		075 07 05		
		RES OF	e oven	Ð	258	270	- 273	375	295	4 52	269	273	2 / X	225	257	a 72	a 32	9 9 5 9 8	<u>a 3a</u>	255	a <i>56</i>	368	9 65	3 75	2 8 2	a 5 6 7 6						1 10 0111.7		· · · · · · · · · · · · · · · · · · ·	
		TEMPERATU	tack prob	V/n ©	414	414	414	414	418	422	4 28	429	429	428	427	427	420	420	420	4-20	4 a 5	427	429	4 30	4 21	431	4 2 1			<u>////c</u>	424.1		 <td>2.0 2.2</td><td></td>	2.0 2.2	
و	vito	PUMP	VAC.	а Т	2 12	2 1/2	2 1/2	2 1/2	2 12	a	4	2	5	2	5	5	2 12	3 %	4	5	Sa	4 1/2	4	4.	4	4	4 1/2	+ 22	N		Ì	1		2 0 1	
Č		TCE	120)	<u>desired</u>	29.	•56	.56	.62	29.	18.	01-1	2 - 12	2 20	2.30	2.25	2.10	.62	1.20	1.40	2.05	205	OL .	1.05	01.1	08.	- 22	• \ - ' - '	27.1	1	1-+5	1.424	C	7	7 00	
	Post	ORTH	DIFFERI	<u>actual</u>																					•								•	312	
		Y HEAD	(ΔP) ¹ ₂	1n.H20)5	0	60.	60.	01	01 .	. 4	.28	.36	38	. 38	7٤.	.35	<u>0</u>	.20	د د . ا	· 34	. 34	. a b		8	.22	às	3	76.			0.471		h. Nemp. 9 0	10 DN	:
	PRE:	VELOC 11	ΔP	in. H ₂ 0)	316	300	006	316	316	374	.529	.600	.616	616	.608	. 592	. 316	.447	480	.583	583	529	412	424	.469	510	223	22%	4				0 0	Ts = 4	
			(.4c)	0 nu D	02	11	72	5	75	76	7	トト	トレ		77	7.8		6.7	79	08	84	98	88 88	90	16	92	5	96		1927	00		305	0	
μέαΚζ	14 62	AC METE	Temp	θ ⁿⁱ	12	75	78	92	85	60 60	-6	95	98	101	103	105	9.4	95	L 6	8	104	108	110	110			112	<u>رم</u>		2336	80	3	84.4	P Z	
Le R C	10 00		Volume	(acfd)	620.000	622.63	624.30	625.95	627.67	629.41	631.49	634.25	636.90	640.10	643.26	646.51	649.71	651.44	653.63	626.19	659.05	662.18	665.18	667.82	670.29	672.88	675.50	678.38	681.214	61.214		ONTETIO	1999	ED MR.	101.10
• ;	• -1 ·	AMT4	. (min)		0	4	0	5	. 16	20	24	28	32	36	40	44	48	52	5	60	4 9	9	72	26	80	84	88	20	-96-		\backslash	Se Mr. C	Actoro	PARECT	101 1633 1

7 7 PUMP TEMPERATUR VAC. stack J J <t< th=""><th>Post 0.11 LCE PUMP TEMPERATUR ORLIFICE PUMP TEMPERATUR DIFFERENTAL VAC. VAC. IFFFERENTAL VAC. stack DIFFERENTAL VAC. VAC. IFFFERENTAL VAC. stack IFFFERENTAL VAC. vac. IFFFERENTAL VAC. stack IFFFERENTAL VAC. vac. IFFFERENTAL IFFFERENTAL vac. IFFERENTAL IFFERENTAL vac.</th><th>Sec Fost Tone 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 v MA v MA 0, 1 0, 1 v MA 0, 1 0, 1 0, 1 1, 120 1, 17 0, 1 0, 1 1, 120 1, 17 1, 17 1, 10 557 33 2, 20 6 433 557 33 1, 15 1, 105 5 557 33 1, 15 1, 105 5 557 33 1, 15 1, 15 433 557 33 1, 15 1, 15 433 557 33 1, 15 433 557 33 1, 15 433 557 33 1, 15 433 557 33 1, 15 433 557 33 1, 15 433 557 33 1, 14 434 557 33 1, 15 433 557 33 5 6</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th><th>Provide Provide <t< th=""><th>Ċ</th><th>US OF OFFICE OF ENVIRONMENTAL PROGRAMS</th><th>over Stack sampling bata</th><th>247 Plant LEHIGH CEMENT</th><th>248 Source NO.1 KILN</th><th>24 Run ID 30 APA 85 Operators D8, FS</th><th>247 Chart 1119 Finish 130 5</th><th></th><th>252 Sampling for: Polycouole</th><th>260</th><th>a ba Meter Box G V um 110. 04</th><th>361 DGA 10 372035 U PACTOL 1.0</th><th>265 Filter 1D. 5176 Noz ID 1312</th><th> 4 6 6 Baro.(in. 11g.)</th><th>Ambient OF 78</th><th>Psavg: (in. 11,0) - 43</th><th>(in. Hg) -0.04</th><th>all Avg. 7 CO₂ 7 O₂</th><th>a73 Leak Rate Pre.016 @15"Hg.</th><th>a 22 (acfm) post 018 a 6"Hs.</th><th>356 The firm of the second sec</th><th></th><th></th><th>a54 Diameters Upstream 3</th><th>Diameters Downstream 0</th><th>Assumed H₂0 (%)</th><th>77.0 AVG</th><th>r 13,25 12,5 12,5 12,5 13.25 13.0 12.8</th><th>5 5.5 7.5 8.0 775 8.074</th></t<></th></t<>	Post 0.11 LCE PUMP TEMPERATUR ORLIFICE PUMP TEMPERATUR DIFFERENTAL VAC. VAC. IFFFERENTAL VAC. stack DIFFERENTAL VAC. VAC. IFFFERENTAL VAC. stack IFFFERENTAL VAC. vac. IFFFERENTAL VAC. stack IFFFERENTAL VAC. vac. IFFFERENTAL IFFFERENTAL vac. IFFERENTAL IFFERENTAL vac.	Sec Fost Tone 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 v MA v MA 0, 1 0, 1 v MA 0, 1 0, 1 0, 1 1, 120 1, 17 0, 1 0, 1 1, 120 1, 17 1, 17 1, 10 557 33 2, 20 6 433 557 33 1, 15 1, 105 5 557 33 1, 15 1, 105 5 557 33 1, 15 1, 15 433 557 33 1, 15 1, 15 433 557 33 1, 15 433 557 33 1, 15 433 557 33 1, 15 433 557 33 1, 15 433 557 33 1, 15 433 557 33 1, 14 434 557 33 1, 15 433 557 33 5 6	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Provide Provide <t< th=""><th>Ċ</th><th>US OF OFFICE OF ENVIRONMENTAL PROGRAMS</th><th>over Stack sampling bata</th><th>247 Plant LEHIGH CEMENT</th><th>248 Source NO.1 KILN</th><th>24 Run ID 30 APA 85 Operators D8, FS</th><th>247 Chart 1119 Finish 130 5</th><th></th><th>252 Sampling for: Polycouole</th><th>260</th><th>a ba Meter Box G V um 110. 04</th><th>361 DGA 10 372035 U PACTOL 1.0</th><th>265 Filter 1D. 5176 Noz ID 1312</th><th> 4 6 6 Baro.(in. 11g.)</th><th>Ambient OF 78</th><th>Psavg: (in. 11,0) - 43</th><th>(in. Hg) -0.04</th><th>all Avg. 7 CO₂ 7 O₂</th><th>a73 Leak Rate Pre.016 @15"Hg.</th><th>a 22 (acfm) post 018 a 6"Hs.</th><th>356 The firm of the second sec</th><th></th><th></th><th>a54 Diameters Upstream 3</th><th>Diameters Downstream 0</th><th>Assumed H₂0 (%)</th><th>77.0 AVG</th><th>r 13,25 12,5 12,5 12,5 13.25 13.0 12.8</th><th>5 5.5 7.5 8.0 775 8.074</th></t<>	Ċ	US OF OFFICE OF ENVIRONMENTAL PROGRAMS	over Stack sampling bata	247 Plant LEHIGH CEMENT	248 Source NO.1 KILN	24 Run ID 30 APA 85 Operators D8, FS	247 Chart 1119 Finish 130 5		252 Sampling for: Polycouole	260	a ba Meter Box G V um 110. 04	361 DGA 10 372035 U PACTOL 1.0	265 Filter 1D. 5176 Noz ID 1312	 4 6 6 Baro.(in. 11g.)	Ambient OF 78	Psavg: (in. 11,0) - 43	(in. Hg) -0.04	all Avg. 7 CO ₂ 7 O ₂	a73 Leak Rate Pre.016 @15"Hg.	a 22 (acfm) post 018 a 6"Hs.	356 The firm of the second sec			a54 Diameters Upstream 3	Diameters Downstream 0	Assumed H ₂ 0 (%)	77.0 AVG	r 13,25 12,5 12,5 12,5 13.25 13.0 12.8	5 5.5 7.5 8.0 775 8.074
	Post Post Differential ONLETCE Differential ONLETCE	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P.A. $\int_{0}^{A} \int_{0}^{A}$ Post $\int_{0}^{A} \int_{0}^{A} $	R. S_{0}	r ylo	PUMP TEMPERATUR	"IIG. stack probe	3 42 416	5 416	5 42 416	6 435	6 427	2 439	3 429	4 429	4 /2 4 3 9	5 429	6 4 2 8	a 416	a 416	911 V	2 420	a ka 4 a a	4 Y2 43B	5 /2 4 30	5 12 4 30	6 447 2 4 2 0	1901		580	424.2	C1 12	CO1 22

•

• .	OFFICE OF ENVIRONMENTAL PROCRAMS AIR MANACEMENT ADMINISTRATION	STACK SAMPLING DATA		Plant Letigh Const	Source no I X ilu	Bun ID 2 mov 85 Onerators DR.FS			Sampling for: Parlicular	Pitobe ID 5-1 Cp 1,84	Meter Box GA Cm IIG . 84	DGM ID 593335 C Factor / 0			Baro.(in. Hg.)	Ambient ^o F 57	Deavo: (in 11-0) 54		(in. llg) <u>-0,04</u>	Avg. 7. CO ₂ 7. O ₂	Leak Rate Pre. ol 8 (al 5"Hg.	(acfm) Post ODS (a 4"Hg.	Duct Dimensions 53			Diameters Upstream	Diameters Downstream d			73.75 4116-	2 5/12 5/12 75/11 75 113 3	7,5 8.0 7.5 8.25 7.8	46,75
	tes of	oven	Ð	a 3 B	248	257	963	368	270	a 15	9/10	89 S	298		4.6	958-	<u>a 3a</u>	a 44	341	a 3 B	244	349	8 <u>5</u> 6	202	2 2 2 2		ก ช ช				10 01	7.75	-
	PERATUR	probe	4/2													2		5									0			00	5.01	7.75	
	TEN	stack	9	408	408	406	400	408	4	4 8	4	4 - 4	4	4	4	4	415	4	4	4	49	4 %	4 4 1	12 4 S			- 	120		415	C	2 ~ 2 ~	5
	PUMP		b	ત	ര	ര	ര	ຕ	ہے م	3 <u>/</u> 3	4	4	4	4	4	n	2	4	4	4	4	~	rd i		32	4	+						
	I CE NT I AL	20)	destred	.56	04.	56	. 56	ب و ۲	18	1.55	51.	- 6.		ع. 9	а в	1.15	1.55	ي B	д.g	ي 8	1.55	86.	<u>،</u> م	5	4.2	5111	1.70	22 44		1.393			
200	OR IF DIFFERE	II NI)	actual																														
1 :\\ =	Υ IIEAD	(ΔP) ¹ 2 (ΔD)	in.II ₂ 0)'	60.	.08	60.	60.	0 .	<u> </u>	.36	<u>66.</u>	. 3 2	. 32	233	5.2.2	61.	.36	55.	32	33	96.	.16		. 21	4 C .	6 %	16:			0.468			
	VEL.OCIT	ΔP	(in. 1120)	.300	.283	.300	. 300	316	.361	.510	.539	.566	.566	.574	574	.436	.510	、574	. 574	.574	510	400	4- 4- 2-	.458	490	539	$\frac{7}{7}$	11,223			1666	0.348	
	~	(J ⁰)	(Cano)	53	59	60	60	62	64	63	64	65	65	66	67	64	64	64	64	65	65	66	66	66	6	63	6.1		1528	0.5	ron O	• • •	6
	S METER	T'emp	ê ni	60	62	6.5	69	7 1	15	76	62	83	57	88	9.6	76	78	0	86	88	90	89	89	60 60	187	96	90		1428	72	FAC	· Vol	
	DRY GAS	Volume	(ncfd)	760.000	761.63	763.32	764.92	766.50	768.20	770.09	773.A4	775.30	778.49	781.50	784.5 2	787.65	790.13	41.661	795.12	798.88	801.98	804.89	807.44	809.74	813.18	814.60	517.42	820.402	60,402		ORAFCTION	ED MA	
	TIME	(nin)		0	4	0	21	10	20	24	28	32	36	40	44	48	52	56	- 09	64	63	72	176	80	84	88					Es Ma, c	DARECT	0.91 1

(

•

ć

03.91 HN

Lehigh-Woodsboro

.

é

Precipitator Readings - Kiln #1

.

date /time		Inlet field	1	Out	let field	
	AC volts	AC amps	DC mA	AC volts	AC amps	DC mA
4/29/85 1413-1558	160	28	132	207	32	159
4/30/85 1119-1305	155	27	127	. 215	31	153
5/2/85 1225-1414	177	24	110	225	32	160

Figures above are the averages of readings taken every 15 minutes during the tests.

ú ., .			MARYL	AND S	TATE DEPART OFFICE OF EI Air Man	MENT C NVIRON agement	OF HEA MENTA	ALTH A AL PRO nistrati	ND ME XGRAM on	INTAL HYGIENI	E			
		- 2	10		201	D'Conor	BUIIDII eton Si	ng treat						
1					201 Reitin	nora Mu	arvland	21201						
(RF			VATIO	NOF	VISIA		ANDIZZIONS				
				FVAI		TAILO		TUTU		MISSICIUS				
							D	ate _	<u> 4/3</u>	30/85				
							т	ime At	t Sta	rt Of Obser	vatio	n //	:001	a.m.
Premise Name	f	hia	I Pa	đ	ant leme	mt	•						<u></u>	
		J.J.	<u> </u>				-				~		1 1	<u> </u>
Address	Woo	dst	00		0.		c	ounty		mail to:	Fact	luc	BC	2
Type of Inst.	allati	ion _	Cem	int	Plant		c	olor	of Pl	une <u>Greg</u>				
Point of Disc	charge	<u> </u>	<u>sp</u>	Sta	ich #1							ne		
Point of Obs	ervat i	ion 📶	on 1	Jell	idealong ;	Loffman	Seal	tean I hout l	Plume Ad,		J At	tached tached	 	
Sky Condition	ns <u>//</u>	har /	Blue	L	0	<u> </u>	A	mbien	t Tem	perature	70°F	:		
Wind Direction	on	nt a	ls	lsu)		W	ind S	peed	Out of s/s	wat	<u>' </u>	-10m	d.
		1							•	//		·	Į,	,
Sec	0	15	30	45	Sec	0	15	30	45	Sec	0	15	30	45
	52	5	10	10	20	. 5	10	15	15	40			┟───┤	
	5	5	5	13	21	75	5	12	10	41				
2	10	10	5	10	22_	10	5	5	5	42		[
3	10	10	5	5	23	5	5	10	5	43				
4	5	5	10	5	24	5	ے ا	5	5	44				
5	5	5	5	5	25				L	45				
6	5	न्द्र	<u> </u>	15	26		 		 	46		{	╞───┤	
	<u></u>	1-2-1	5	3		┣────			┟────	4/		 	┢╼╼┙	
	3	3		10	20	 	┠		1	40		┢	┢╍╍┥	┝ ─── ─
10	10	170	10	75	30	<u> </u>		┠───	╂───	50		┣───	┟───┥	
11	- 5	1 (Ě	15	5	31	[<u>+</u>	t	51		<u>+</u>	╋╼╍╍┥	['
12	5	3	5	5	32			<u> </u>		52		t	ŧ	
13	5	3	3	15	33	1		<u> </u>	<u> </u>	53		<u>† – – – – – – – – – – – – – – – – – – –</u>	t	
14	5	5	_5	13	34					54				
15	10	5	10	10	35					55				
16	.5	5	5	5	36					56				
17	5	S	10	5	37		-			57				
18	5	5	10	10	38				_	58				
	10	5	15	5					L	59				
Remarks :	ml	aca	ted a	lice	thetan	ind	pt.	of al	Bern	ration. Ta	Ceile	". <u>ne_AA</u>	D	
telepha	<u>mu j</u>	<u>sdu</u>	يمير	<u>d ao</u>	in back	lala	und	1. (lun	e was ne	ad a	t ot i	when	vit
lint	O.H.	Fach	l, _ +		A I.A.	5	لد			m ten l	-/1	1		
(y a				CALANIAL	ung p	Lange			n rupa				
						~	1 4			_ <u></u>	<u>r re</u> ~	<u>san</u>		
											Ŧ			

DHMH 1841 AMA-19 Paylord 10-1-81

-

, 4 ⁶ 419				AND S	TATE DEPARTI OFFICE OF EN Air Mana C 201	MENT O NVIRON agement)'Conor W. Pres	DF HEA MENTA Admin Buildin Ston Si	ALTH A AL PRO nistrationg treet	ND ME OGRAM on	NTAL HYGIENI S	E			
			REF	PORT	Baltim OF OBSER	nore, Ma VATIO	N OF	21201	LE EI	AISSIONS				
						••••	D.	ate _	<u>5 a</u>	las				
							Ť	ime A1	t Sta	rt Of Obser	vatio	n /2	:314	2017
Premise Name	Jil	ligh	Por	tlan	A Cemin	<u>t</u>				_ <u></u>				
Address	Cu	cod	sbo	(م			C	ounty	En	Anick Co	•			
These of Inst			lin	int	Pe. 1		— 0	alor (
Type of Insta	allati		4		<u> </u>		Ŭ							
Point of Disc	charge		#15	Tac	<u>k</u>		— s	team	Plume		J No J At	ne tached	·	
Point of Obs	ervati	ᇭᄭᆋ	iller	<u>h (î</u>	not of floors)						De	t ac he d	l	
Sky Condition	ns 🖉	71.10	cart	•			A	mbien	t Tem	perature	TOP			
	··· _4													
Wind Direction	on	ut of		<u> </u>			w	ina S	beea '	Smph				
Sec Min	0	15,	30	45	Sec Min	0	15	30	45	Sec Min	0	15	30	45
0	70	10	10	70	20	10	10	10	10	40				
1	10	10	10	10	21	5	5	10	10	41 42		 		
3	15	15	10	10	23	10	10	10	10	43				
4	10	10	10	10	24	10	10	0	10	44				
5	10	10	0	10	25	5	5	14	15	45		┣	 	
	15	10	10	10	27	10	느	2	↓ ⊅	47		<u> </u>	┢	<u> </u>
8	10	10	75	15	28		<u>├</u> ──	<u> </u>		48		t		
9	15	15	15	10	29					49				
10	10	10	15	15	30	I	<u> </u>		ļ	50				
11	15	15	10-	HP_	31	 	┣	<u> </u>	<u> </u>	51		+	╂───	┣──
12	12		15	16	33	<u> </u>	<u> </u>		+	53		{		┣──
14	10	76	15	175	34		<u>†</u>		<u>├</u> ─-	54		1	<u>† </u>	<u> </u>
15	15	10	10	10	35					55				
16	/5	10	10	10	36					56				
17	10-1	10	10	1/2	37	 		-		<u> </u>		\	-	┨───
10			10	10	10	 	 	 	+	59			 	
			. / <u>v</u>	<u></u>	L	ļ	.		• •				<u> </u>	 _
Remarks:	uno a	ylac	une	4	cloud lo	Tres.	The	n hi	20)	Ma Hall	<u> </u>	a		
back	g.our	<u>~</u>						、 、			<u> </u>		<u></u>	
	tack	» llo	t in	prog	uss Nur	m la	MILLA	ma /	UCO	dings)				
						-					_			
			V	0	C		N	ame o	f Obs	erver 1/1	llan	ren		

.

.

Þ

in the

6.*

2

REF.	16(40-42)
R=F.	4-16

Emission Test Report Review Checklist

			Revie Revie	ewer: ew Date:	<u> </u>	ARINSI. 8/92	havi	
A.	Bac	kground Information			-			
	1.	Facility name:	JEHIGH	POATRAN	S CETIEM	- 6.		<u> </u>
		Location:	luro	ossBono	MD			
	2.	Source category: _	45470	716117	Accreo	ATE		
	3.	Test date:	4/29	- s/z/19	85		<u>-</u>	
	4.	Test sponsor:	PLA	WT				<u></u>
	5.	Testing contractor:	<u> </u>	7770 OF	MARLYN	12		
	6.	Purpose of test: _		COMPLIA	nce			
	7.	Pollutants measured PM PM-10 CO Others (list):	so ₂	NO _X	vo	c	Pb	(CO ₂
		·		<u> </u>		· · · · · · · · · · · · · · · · · · ·		

8. Process overview: On an attached page provide a block diagram of the unit operations and associated air pollution control systems at the facility. Identify process tested with letters from the beginning of the alphabet (A, B, C, etc.) and APC systems with letters from end of alphabet (V, W, X, etc.). Also identify test locations with Arabic numerals (1,2,3, ...). Using the ID symbols from that sketch complete the table below that identifies processes or unit operations tested.

		T	Emissions tested		· · ·
Test ID	Process	Process ID	Uncontrolled	Controlled	APCD (controlled emissions only)
	KILN Bryten No. 1				EZP
			ļ		
		<u> </u>			
			 		
L	1	<u> </u>	<u> </u>	l	

B. Process Information

 Provide a brief narrative description of the process. With as much detail as possible, (e.g., if a furnace or conveyor system is used, identify the type of unit) describe the equipment used for those operations tested. (Note: If process description provided in test report is adequate, attach copy or reproduce here.)

The Woodsboro plant of the Lehigh Portland Cement Company produces lightweight aggregate from the shale quarried on site. The shale is crushed and sized, then fed to a rotary dryer to preheat the material and drive off moisture. After being screened to remove fines, the shale is fed to the kiln where it is heated to 2100°F, using No. 2 oil at an average rate of 14 gallons per hour and coal at an average rate of 3,060 lbs. per hour. Expansion of the shale takes place in the kiln.

 For each process tested list feedstock materials and products. Indicate if activity factors are for feed (F) rate or product (P) rate.

Process ID	Feedstock materials	Products	Basis for activity factor	F/P
	SHALE, NO 2 OIL, COAL	LWA.	STALE	F
	· · · · · · · · · · · · · · · · · · ·			
				<u> </u>
				+

Basis for data:

HASSNEHLT

(Indicate page/table Nos. in test report)

3. For each process or operation tested and each test run note process capacity and operating rate during test.

Process ID	Capacity	Units	Test run	Process rate	Units
)	1		1	28 (514-16)	1 yous/m
		· • • • • • • • • • • • • • • • • • • •	2	28 "11	<u> </u>
			3	28 "	4
			4		
		· ·	1	1.53 (COAL)) //
		•	2	11 11	11
			3	1. Y	11
			4		
			1	N4 (NO.2011	. GAL/HR
		*. `···	2	11	11
	-		3	11	4
			. 4		
			1		
	- I		2		
•			3		
			4		

Basis for data:

ABSTRACT

 $(+\lambda)$

11.4.4.1

- C. Air Pollution Control Systems Tested
 - 1. For each air pollution control system pollution control system identified in A.8, note the following

ID	Type of APCD	Manufacturer	Model No.
2	ESP		

Note: Be as specific as possible in identifying APCD. For example, indicate "pulse jet fabric filter" rather than simply "fabric filter."

2. For each system identified above, provide a narrative description. For fugitive systems describe capture techniques as well as the removal techniques (use a separate page if necessary)

144

٠ħ

ï

....

3. Using the attached parameter list for guidance complete the table below. (Use additional pages as needed.)

			Readings			
APCD ID	Parameter	Units	Run 1	Run 2	Run 3	Run 4
Z	INLET FIELD					
Type of	VOLTAGE		160	145	177	
APCD:	WARGAT AC	A	28	27	27	
ESP	CURRENT DL	hA	172	127	<u></u>	
	DUTLET					
	VOLTHEE		207	215	223	
	CUREAT(AC)	A	32	3/	32	
	current (DC)	mA	150	153	160	
Type of APCD:						
					1.	•
						· ·
Type of						
APCD:						
1					· ·	

D. Sampling and Analysis Methods

1. Complete the following table

Test location	Pollutant	S & A method	Reference/ conditional method	Deviations noted
/	PM	MANYLAND 1005	YA	Y/N)
	Coz	FURITE	Y/N	YA
		<u></u>	Y/N	Y/N
			Y/N	Y/N
	· · · · · · · · · · · · · · · · · · ·		Y/N	Y/N
			Y/N	Y/N
		1	Y/N	Y/N
			Y/N [.]	Y/N
		· · ·	Y/N	Y/N
			Y/N	Y/N
		1	Y/N	Y/N
			Y/N	Y/N
			Y/N	Y/N
		1	Y/N	Y/N
			Y/N	Y/N
			Y/N	Y/N
			Y/N	Y/N

¢

†ť.

 If a method used was not a reference or conditional method, provide a narrative discussion including any data manipulation needed to make results correspond to reference or conditional method results.

PM: STARE AS NETHED 5 EXCOOT HINIHUM 50fg 3 TOTAL STANPLE NOLUME AND 3 MINUTES SAMPLING TIME POL TRAVENSE POINT REQUIRED

3. Describe any deviations identified above.

NONE

E. Emission Data Documentation

1. Tabulate the following stack gas data from the test report. (Use additional pages as needed.)

L.,

			Values reported			
Test ID	Parameter	Units	Run 1	Run 2	Run 3	Run 4
	Stack temperature	OF	424	JR9	411	<u>+</u>
	Moisture	2	7.3	7.7	7.5	<u> </u>
	Oxygen	0	13.1	17.8	77.3	<u> </u>
	Volumetric flow, actual					l
	Volumetric flow, standard	DecFM	17650	17/80	580	├ ────
	Percent isokinetic	90	102	101.7	103.9	
	Pollutant concentration:		,~ _		1 1 2 3 . 0	<u> </u>
	DN (FILT.)	ar/scf0	A 175	A.112	10.078	l
	DM (URAD INDAG)	4				<u> </u>
	ro	2	8.2	7.4	8.5	
			<u></u>		<u> </u>	<u>├</u>
				1	ł	- <u>-</u>
			† – – –	 	<u> </u>	┠────┤
			<u> </u>	†	h — — — — — — — — — — — — — — — — — — —	
	Stack temperature		1	<u>†</u>		
	Moisture		1	1		
	Oxygen		1	1		
	Volumetric flow, actual			1		[]
	Volumetric flow, standard			1		
	Percent isokinetic		1	1		
	Pollutant concentration:	·	·			·
			Τ	1	[Г
				1		
				1		
			· · · · · · · · · · · · · · · · · · ·	t		
			f			
		•				
	Stack temperature					
	Moisture					
	Oxygen	·				
í .	Volumetric flow, actual					
	Volumetric flow, standard					
	Percent isokinetic	·····				
	Pollutant concentration:				· · · · · · · · · · · · · · · · · · ·	·
			· · · · · · · · · · · · · · · · · · ·	1		· · · · · · · · · · · · · · · · · · ·
	· · ·	<u> </u>				
		<u></u>				
				··		
						———
						1 1

2. Tabulate pollutant mass flux rates

				Mass fl	ux rates	
Test ID	Pollutant	Units	Run 1	Run 2	Run 3	Run 4
1	PM (FILT)	1be Im	18.3	16,4	11.8	1
	PMC COND. Mon	11	0.66	0.65	1.46	ĺ
	00,	41	9978	8764	9453	
		. <u>.</u>				
						•
					<u>-`</u>	
		•				
			· · · · -			
		· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·				
	L		· ·			
						· ·
	<u>.</u>					
		······				
. <u></u>			·		· · · · · · · · · · · · · · · · · · ·	
		<u>-</u>				
	-					

1

i

3. Present example emission factor calculations below.

.

. {-

١

4

PM (FILTERS	tou)	
18.3/28	- -	0.65
16.4/28	Ξ.	0.59
11.8/28	2	0.42
AKE	AGF :	0.55
PM (con Dons	IBLE I	NORGANIC)
0.66/28	=	0.024
0.65/28	-	0.023
1.46 /28	:	0.052
XVENA	6E :	0.033
9978/28	=	356
8764/28	5	313
9453/28	2	338
AUTORA	GE :	336

۰.,

2

.

4. Tabulate emission factors

			Average em	ission factor
Process	Pollutant	Units	Uncontrolled	Controlled
1	PM (Fict)	155/Yon		0.55
	PM Condinar.	11		0.033
	Car	11	340	<u>_</u>
				· <u> </u>
	l <u> </u>			
			<u> </u>	
				-

b3006-4/971130

--

.

ATTACHMENT A APCD PARAMETERS

Type of APCD	Parameters
Fabric filter	Cleaning mechanism Bag type Cleaning frequency Air to cloth ratio (A/C) Pressure drop Inlet temperature
ESP	Type (wet or dry) Number of fields Rapping cycle (if dry) Specific Collection Area (SCA) Particulate resistivity (if known) Spark rate Current and power levels
Venturi (or other high energy) scrubber	Pressure drop Liquid/gas (L/G) ratio Mist eliminator type
Packed-bed scrubber	Packing depth L/G ratio Caustic use (Y/N) pH Mist eliminator type
Carbon absorber	Bed depth Superficial gas velocity Bed temperature Desorption mechanism (media) Flue-gas moisture Cycle length Time-on-line after breakthrough

v

يو الج