Note: This is a reference cited in *AP 42, Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources.* AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

AP42 Section: 11.1

Reference Number: 318

Title: Source Sampling For Particulate Emissions, Valley Asphalt Corp., Plant #11, Xenia, OH,

Ramcon Environmental Corp., Memphis, TN,

September 23, 1993.

Report Sect. Reference

APPENDIX K

OEPA STACK TEST REVIEW SUMMARY FORM

APPLICATION NUMBER 0829710020
PACILITY NAME Valley Asphalt Corp. #11
SOURCE DESCRIPTION (OR SCC CODE) Waste O.I fired Asphaltic Concrete Batch Plant
CONTROL EQUIPMENT Baghouse
DATE(S) OF TEST 9-23-93
FINAL TEST REPORT RECEIVED ON 11-5-93
POLLUTANT(S) TESTED $Pb \leq PM$
TEST METHOD Method 5/12
TEST FIRM Ramcon
EMISSION RATES +: Pb <,0014 16/hr Pb .72 16/hr
ACTUAL (16(s)/hr) AM 3,01 16/hr ALLOWABLE ++ PM 63,9 16/hr
OPERATING RATES *:
DURING TEST += 282 TPH MAXIMON ++ 302 TPH
EMISSION FACTOR***
COMMENTS:

I HEREBY VERIFY THAT THE INFORMATION CONTAINED WITHIN THE STACK TEST REPORT HAS BEEN REVIEWED AND IT HAS BEEN DETERMINED THAT THE TEST PROCEDURES, ANALYSES AND CALCULATIONS ARE:

- [\times] AN ACCEPTABLE DEMONSTRATION OF CONFORMANCE WITH THE APPROVED TESTING METHODOLOGY.
- [] AN UNACCEPTABLE DEMONSTRATION OF CONFORMANCE WITH THE APPROVED TESTING METHODOLOGY.

11-12-93

DATE OF REVIEW * BASED ON 3 RUN AVERAGE ** SPECIFY APPLICABLE UNITS ***SPECIFY IN UNITS OF MASS/INPUT

REVIEWED BY

4 347 2,8

AP-42 Section 1

STACK TEST OBSERVATION REPORT

- FACILITY: Valley Asphalt Corp. Plant #11 782 N. Valley Road Xenia, Ohio
 - SOURCE: 0829710020/P001 Asphalt Plant
- CONTACTS: Bill Hurst, Plant Operator Kenny Eakins, Plant Superintendent Fred Brammer, Maintenance Superintendent
 - RAPCA: Jon Hilty Raymond Baker (FB
 - DATE: September 23, 1993

On the above date, a performance emissions test was conducted on source P001 for the evaluation of lead and particulate matter emissions. PTI 08-2457 allowables are: 63.9 lbs PM/hr; 20% opacity, and 0.72 lbs Pb/hr. The allowables are based on a maximum asphalt production rate of 325 TPH. Ninety percent of the max operation would be 292.5 TPH.

During the test, #4 used oil was burned to fuel the dryer and virgin aggregate was used to process asphalt.

Mr. Eakins collected oil sample at the beginning of each run and every 15 minutes thereafter until the run ended. The chemical analysis of a load of oil delivered on the day of the test is enclosed. It should be noted that the baghouse pressure drop expressed on the PTO application submitted 6/93 was 3-4" W.C. RM9 observations were conducted during the first run only (see attached form). RM9 observations were not conducted during both runs 2 and 3 due to misting precipitation and cloudy, overcast skies. A steam plume was present during all 3 runs.

Listed below are the process parameters recorded during the test:

Beginning

End

Run #1 8:32 a.m. - 9:37 a.m.

∆ P baghouse	1.8" w.c.	1.9" W.C
agg. temp	346 °F	357 °F
stack exit temp	· 260 °F	260 °F
asphalt production (TPH) 277 (8:33-9:32 v	weigh tickets)

Beginning

End

Run #2 20:49 a.m. - 11:54 a.m.

AP baghouse	2" w.c.	2" w.c.
agg temp	337 °F	340 °F
stack exit temp	280 °F	280 °F

asphalt production (TPH) 302 (10:54 - 11:54 weigh tickets)

Beginning

End

Run #3 12:44 p.m. - 1:48 p.m.

∆ P baghouse	2.2" w.c.	2.0"
agg temp	354 °F	344 °F
exit temp	255 °F	280 °F
asphalt production (TPH)) 268 (12:46 - 1:49 weigh	n tickets)

During the test runs, trucks were loaded approximately every 3 minutes with about 16 tons of asphalt.

/bw

		Visāle Erru	ssion Ch	servet.		777							
SOURCE NAME		0	BSERVATION DATE				START TIME			STOP TIME			
VALLEY AS	SPHALT	<u></u>		9-23-93		9-23-93		9:00 am					
ADDRESS				SEC	0	15	30	45	MON	0	15	30	45
08242100	202			1	ϕ	ϕ	ϕ	Φ	31.		ļ		
08217700.		710		2	d l	க	க	ф	32				
	SIAIE 01-			3	d.	$\overline{\phi}$	Ъ	б	22				
PHONE	SOURCE I	NUMBER NUT		4	Ŧ	Ф	Ø	Ø	34			Ţ	
PROCESS EQUIPMENT	0	PERATING MO	DE	5	¢	ϕ	ϕ	ϕ	35		ļ	<u> </u>	
ASPHALI PUNI		PERATING MO	DE T	6	1 m	Т	Ф	ГÆ	36				
FABALL FILTER		ON		7	Æ	Th	Th	A	37			Ţ	
DESCRIBE EMISSION POINT					Y.	$ \Psi $	$\frac{W}{L}$	1 H			+	+	1
START ROWD METAL STACK	STOP V	·			\square	\mathcal{O}	\mathcal{D}	ψ	30	<u> </u>	+	<u> </u>	+
HEIGHT ABOVE GROUND LEVEL	HEIGHT RE	LATIVE TOOBS	ERVER	3	ΙØ.	1 d	0	ϕ	39]		<u> </u>	ļ
START~30' STOP V	START~	<u>ט' אסי ט'</u> ט'		10	ET.	1 th	Ho	ГĦ	40				
DISTANCE FROM OBSERVER	DIRECTIO	N FROM OBSE			14	11/	17-	1 JL		†			
START~50' STOP	START N	NW STOP			<u> 4</u> -	147	<u>147</u>	$\downarrow \mathcal{H}$	+	┼──		+	┼╾╍╸
DESCRIBE EMISSIONS				12	$ \mathcal{O} $	Ø	0	D	42	ļ	<u> </u>		<u> </u>
START MANNING PLYME	STOP V			13	Ţ	1	1 '	ļ '	43				1
EMISSION COLOR	PLUME. T	PE: CONTINUC		14	1	1			44				1 .
START STEAM STOP	FUGITIVE				+	+			45	+			
WATER DROPLETS PRESENT:	IF WATER	DAUPLET PLU		15	<u> </u>			╉╍╍╍		+			~}
NO C YEST	ATALA	WAS DETERMI	NED	16					45	1		-	
POINT IN THE PLUME AT WHIC				17		Ţ			47				
START STACK EXIT	STOP L			18	+	+	1	1	48	T			
DESCRIBE BACKGROUND		<i></i>	ŀ		+	+		+	+	+			
STARTPACTWORK + TREED	STUP -	VILIONS		19	<u>_</u>		<u> </u>			+			
BACKGADUND LOLDA	START	THE STOP		20				1	50				
MANO SPEED	WIND DIA	ECTION		21	1	T		T	51				<u> </u>
START !0-IS MILL STOP	START	S STOP		77	1	+	+		12				
AMRIENT TEMP	WET BUL	TEMP. RH.	percent	44									
START ~650F STOP				23					33				<u> </u>
				24					54				
· · Source Lawre States	Draw	North Arrow.		25				1	55	T			
	_												
		()		26								- {	
,	V Emirrina I	lain		27					57				
				28					58				
		^		29					59				
l (i .	(UNIV)								-+-		-+-	
Sun & Wind				R							05.05	40/40	SARO
Plume and =	Observers	Position		AVE	RAGE	OPACI SERIOS	TY FOI	7	NU	и сел 2	n s v	VERE	ϕ
Stact	400	L		RAN	GE OF	OPAC	TTY RE	ACIN	25		,		·
Sun Loe	ation Line					N	IINIMU	M	d_{-}		LAXIM	IM ¢	<u> </u>
		1		085	ERVEI	T'S NA	ME (PF	INT)	F	Re	ke-		
COMMENTS	<u></u>			085	ERYE	rs si	INATU	REC-	RA	1	MTE	- 17	.93 .
Runt	-1			<u> </u>	70	am	out	<u> </u>	Oak	24	/		
				ORC	ANIZ	NON	PA	R'A			•	•	
I HAVE RECEIVED A COPY OF	THESE OP	CITY OBSERV	ATIONS	CEA	TI (E	BY	FTA			T	DATE o	7/9	3
SIGNATURE				1.000	V VIERA		<u> </u>		i .		ATE		
BATT C		CLATE		1 767	1	SI.				()			

		CL	аян Раор	essing, Inc			BER 4043
EPA # 0HD 004274/	31	MAILING ADD 00 S. West End Dayton, OH 4	ndily Owned Syledia RESS: Avenue 15427	REMITTANC C/o Quadrex P.O. Bo Orlando, Fl	CE ADDRESS: Corporation x 620000 - 32891-8299	TELEPHONE: FAX NO.: TOLL FR OHIO OTHER	(513) 268-650 (513) 268-905 EE NUMBERS 1-800-762-360 1-800-543-367
BILL,TO:	<u></u>	<u></u>		GENERATOR			
#552 VALLEY 1901 D DAYTON	ASPHALT CC RYDEN RD OHIO 454	RP.	20 1	EPA # VALLE 586 N XENIA	OHD981193 Y ASPHALT I. VALLEY F , OHIO 4	3667 - PLANT 11 RD. 5385	· · · · · · · · · · · · · · · · · · ·
	CAL HERE			Menewickenick			3757 E
X X X X X X X X X X X X X X X X X X X		DAN	<u> </u>	37/106		<u>*.</u>	9-23-9
ORN 2E TO	THE NO LAND	A MIGKET DAT	BULL M	ANIFEST/BILLE	OF PADINE .	RAINOMESTIC:	小短期的
		<u>.</u>				1. 1.11/2 #17/2 T1 1.11/4/2 1/4/2 1/4/2 1/4/2	
AND IN THE REAL		PRODU			CODS-		PRICE
6,729	COMBUSTIE (OFF-SPEC) (VIS 9	LE LIQUID, IFICATION O)	N.O.S. USED OIL	. FUEL) NA	1993		
	THIS USED 40 CFR, F OHIO EPA 3745-58-5	OIL IS SU ART 266. REGULATION 4 OF THE O	BJECT TO THIS USE UNDER R HIO ADMI	EPA REGU D OIL IS ULES 3745 NISTRATIV	LATION UN SUBJECT TO 58-50 TO E CODE.	DER	
	CHEMICAL BTU'S FLASH POI ARSENIC CADMIUM CHROMIUM LEAD MERCURY	ANALYSIS: NT > SNT (Sales and (Sales a	140,000 140°F 1 PPM 1 PPM 10 PPM 120 PPM				
. ;	PCB'S , TOTAL HAL	.OGENS	4000 PPM	1 *			_
	* CLARK F OHIO EPA' MANAGEMEN THAT USED TOTAL HAL CONTAIN A (BURNERS	ROCESSING S DIVISION IT AS A "MA OIL CONTA OGENS BUT NY LISTED ARE SUPPLI	TNC., F OF SOLI RKETER" INING MC LESS THA HAZARDOU ED WITH	IAS DEMONS D AND HAZ IN 40 CFF ORE THAN 1 N 4000 PF JS WASTE C A ONE-TIM	TRATED TO ARDOUS WA 266.43(e 000 PPM OI M DOES NO ONSTITUEN E LETTER	STE) = T TS. = FROM	
Yk.	CLARK ISS	UED BY THE	(OEPA.)				
	IN AN INC	DENT REGA	RDING TH	IIS. SHIPME (513) 268	NT, CONTA -6501.	ст	
TANK# R-3 TE	RMS NET 10	DAYS 1%%	FINANCE CHARGE w	i) be added to your state	ment monthly on all involt	ies that FOTAL	
		are 30	days or more past du	e. This is an ANNUAL PE	ERCENTAGE RATE OF 189	AMOUNT	SUBJECT T
	Sam	7		FIRM		a 1	CORRECTION

PARTICULATE EMISSION TEST REVIEW SHEET

	Kaller Hereit
1.	Facility Name: <u>Idility provide</u>
2.	Run Number:
3.	Test Date: 123.93
4.	Time of Test: <u>(min)</u>
5.	Volume Metered: 45.037 46.323 43.831 (ft ³)
6.	Dry Gas Meter Calb. Factor: 1979
7.	Test Barometric Pressure: 29.75 (in. Hg)
8.	Avg. Delta H: 2,02 2,03 137 (fn. H ₂ 0)
9.	Avg. Meter Temp: <u>73.63</u> 78.48 79.15 (Deg. F)
10.	Volume H ₂ 0 (Impingers): 201.6 285.3 263.9 (ML)
11.	Weight Gain of Silica Gel: (GM)
12.	* CO2: 2,87 3,4 3,7
13.	% CO:
14.	× 02: 14.2 1518 1511
15.	× N2: 32.7 31 81.2
16.	Static Pressure of Stack: $\pm, 0$ (in. H ₂ 0)
17.	Stack Temp: <u>245,125</u> 250,79 245 (Deg. F)
18.	Pitot Coefficient: 184
19.	Avg. Root Delta P: 174 .74 .6976
20.	Stack Diameter: <u>60</u> (in.)
21.	Mass Particulate: 2012 27.6 40.9 (mg)
22.	Nozzle Diameter: 1275 (in.)
	<u>Coal Data</u>
1.	% Hydrogen: 4. % Nitrogen:
2.	% Carbon: 5. % Oxygen:
3.	%. Sulfur. 6. F Factor:
	7. Gross Calorific Value:

ţ

PARTICULATE EMISSION TEST DATA

FACILITY :valley asphalt #11 PROCESS/RUN NUMBER : SOURCE/RUN :1 TEST DATE :9-23-93

VOLUME METERED AT STD. CONDITIONS = 43.57729984452027 DSCF VOLUME WATER COLLECTED AT STP. = 9.771732 SCF = 18.31660606040351 % PERCENT MOISTURE BY VOLUME MOLECULAR WEIGHT OF STACK GAS = 27.00052981141626 LB/LB-MOLPERCENT EXCESS AIR = 184.7611116893931 % = 49.78796599704408 FT/SEC AVERAGE STACK GAS VELOCITY = 29.75073529411765 IN. HG ABSOLUTE STACK PRESSURE = 58646.24090723816 ACFM STACK FLOW RATE AT ACTUAL COND. = 35653.66062905329 DSCFM STACK FLOW RATE AT STD. COND. = 7.138579056295465E-003 GR/DSCF STACK EMISSIONS = 1.020102947144622E-006 LB/DSCF = 2.182224257051486 LB/HR STACK EMISSION RATE = 96.96074311600643 % 🖌 ISOKINETIC VARIATION TIME OF TEST = 60 MINVOLUME METERED = 45.037 CU.FT

DRY GAS METER CALB. FACT. = .979 TEST BAR. PRESSURE = 29.75 IN HG AVERAGE DELTA H = 2.02 AVG. METER TEMP. = 73.63 DEG. F VOL. H2O (IMPINGERS) = 207.6 MLWEIGHT GAIN OF SILICA GEL = 0 GM**%CO2** = 2.87 % \$C0 = 0 % 802 = 14.2 % = 82.9000000000001 % **%N2** STATIC P OF STACK = 1E-002 IN. H2O STACK TEMP. = 245.125 DEG. F PITOT COEFFICIENT = .84 AVG. ROOT DELTA P = .74 = 60 IN.STACK DIAMETER = 20.2 MGMASS PARTICULATE = .275 IN NOZZLE DIAMETER PARTICULATE EMISSION TEST DATA

19 E -

•

FACILITY :valley asphalt #11 PROCESS/RUN NUMBER : SOURCE/RUN :2 TEST DATE :9-23-93

VOLUME METERED AT STD. CONDITIONS	= 44.90398018122886 DSCF
VOLUME WATER COLLECTED AT STP.	= 13.476141 SCF
PERCENT MOISTURE BY VOLUME	= 23.08344129359743 %
MOLECULAR WEIGHT OF STACK GAS	= 26.59004127633104 LB/LB-MOL
PERCENT EXCESS AIR	= 269.7095435684647 %
AVERAGE STACK GAS VELOCITY	= 50.371933318201 FT/SEC
ABSOLUTE STACK PRESSURE	= 29.75073529411765 IN. HG
STACK FLOW RATE AT ACTUAL COND.	= 59334.10769417532 ACFM
STACK FLOW RATE AT STD. COND.	= 33696.06881556009 DSCFM
STACK EMISSIONS	= 9.465530634134718E-003 GR/DSCF = 1.352624327617851E-006 LB/DSCF
STACK EMISSION RATE	= 2.734687345500709 LB/HR ►
ISOKINETIC VARIATION	= 105.7183202417792 %

= 60 MINTIME OF TEST = 46.823 CU.FT VOLUME METERED DRY GAS METER CALB. FACT. = ...979 = 29.75 IN HG TEST BAR. PRESSURE = 2.08 AVERAGE DELTA H = 78.48 DEG. F AVG. METER TEMP. ≈ 286.3 ML VOL. H2O (IMPINGERS) $\approx 0 \text{ GM}$ WEIGHT GAIN OF SILICA GEL = 3.4 % **%CO2** ≈ 0 % \$C0 = 15.6 % **%02** = 81 % **%N2** = 1E - 002 IN. H2O STATIC P OF STACK = 250.79 DEG. F STACK TEMP. = .84 PITOT COEFFICIENT = .74 AVG. ROOT DELTA P = 60 IN.STACK DIAMETER = 27.6 MGMASS PARTICULATE = .275 IN NOZZLE DIAMETER ************

٠.

PARTICULATE EMISSION TEST DATA

FACILITY :valley asphalt #11 PROCESS/RUN NUMBER : SOURCE/RUN :3 TEST DATE :9-23-93

%N2

STATIC P OF STACK

PITOT COEFFICIENT

AVG. ROOT DELTA P

MASS PARTICULATE

NOZZLE DIAMETER

STACK DIAMETER

STACK TEMP.

**********************	*****
VOLUME METERED AT STD. CONDITIONS	= 41.96069098823983 DSCF
VOLUME WATER COLLECTED AT STP. PERCENT MOISTURE BY VOLUME	= 12.657123 SCF = 23.17398313071501 %
MOLECULAR WEIGHT OF STACK GAS PERCENT EXCESS AIR	= 26.60144084868515 LB/LB-MOL = 238.2906198712283 %
AVERAGE STACK GAS VELOCITY ABSOLUTE STACK PRESSURE	= 47.28182174789856 FT/SEC = 29.75073529411765 IN. HG
STACK FLOW RATE AT ACTUAL COND. STACK FLOW RATE AT STD. COND.	= 55694.20347328467 ACFM = 31851.1767496641 DSCFM
STACK EMISSIONS	= 1.501071562850404E-002 GR/DSCF = 2.145031263313227E-006 LB/DSCF
STACK EMISSION RATE	= 4.099306194080691 LB/HR 🛩
ISOKINETIC VARIATION	= 104.510974043737 %
*****	******
TIME OF TEST	= 60 MIN
VOLUME METERED DRY GAS METER CALB. FACT.	= 43.831 CU.FT = .979
TEST BAR. PRESSURE	= 29.75 IN HG
AVERAGE DELTA H	= 1.87
AVG. METER TEMP.	= 79.1500000000001 DEG. F
VOL. HZU (IMPINGERS) WEICHE CAIN OF SILICA CEL	= 268.9 ML
\$CUS CATH OL SITICA GET	= 3.7 %
\$CO	= 0 %
802	= 15.1 %

= 81.2 %

= .84

= .6976

= 60 IN.

= 40.9 MG = .275 IN

= 1E-002 IN. H20

= 245 DEG. F

RECEIVED

NOV 0 5 1993 REGIONAL AIR POLICITION CONTROL AGENCY

Source Sampling for Particulate and Lead Emissions

Plant No. 11 — McCarter Batch-Mix Baghouse Permit No. 0829710020P001

> VALLEY ASPHALT CORPORATION XENIA, OHIO September 23, 1993

Fred Brammer

Valley Asphalt Corporation

William pseph Sewell, II Vice President RAMCON Environmental Corporation

October 27, 1993

Mr. Fred Brammer Valley Asphalt Corporation 11641 Mosteller Road Cincinnati, Ohio 45421

RE: Particulate Emissions Test - Plant No. 11: September 23, 1993

Dear Mr. Brammer:

Enclosed you will find three (3) copies of our report on the particulate and lead emissions test we conducted pursuant to permit no. 0829710020P001 at your asphalt plant located in Xenia, Ohio. Based on our test results, the average grain loading of the three test runs do pass the standards set by the State of Ohio. Therefore, the plant is operating in compliance with State standards.

You will want to sign the report covers and send one copy to:

Mr. John Hilty Regional Air Pollution Control Agency OHIO ENVIRONMENTAL PROTECTION AGENCY P. O. Box 972, 451 W. Third St. Dayton, Ohio 45422

You will need to keep one copy of the report at the plant.

We certainly have enjoyed working with you. Please let us know if we can be of further assistance.

Sincerely,

William-Joseph Sewell, II Vice President

WJSii:wpc Enclosures

TABLE OF CONTENTS

SECTION A: 1. INTRODUCTION 2. TEST RESULTS 3. TEST PROCEDURES

SECTION B: THE SOURCE

.

SECTION C: EQUIPMENT USED

SECTION D: LABORATORY PROCEDURES AND RESULTS

L

SECTION E: CALCULATIONS

SECTION F:

SECTION G: CALIBRATIONS

SECTION H: RAMCON PERSONNEL

SECTION A.

1. INTRODUCTION

On September 23, 1993 personnel from RAMCON Environmental Corporation conducted a source emissions test pursuant to permit no. 0829710020P001 for particulate and lead emissions compliance at Valley Asphalt Corporation's McCarter batch-mix asphalt plant no. 11 located in Xenia, Ohio. RAMCON personnel conducting the test were Allen Turner, Team Leader, and Clint Daniels. Tommy South was responsible for the laboratory analysis including taring the beakers and filters and recording final data in the laboratory record books. Custody of the samples was limited to Mr. Turner and Mr. South.

The purpose of the test was to determine if the rate of particulate emissions from this plant's baghouse is below or equal to the allowable emissions limit set by US EPA and the State of Ohio.

2. <u>TEST RESULTS</u>

The particulate and lead emissions test results are summarized in the Table at the end of this section. The grain loading limitation for EPA is .04 gr/dscf as specified in 39 FR 9314, March 8, 1974, 60.92 Standards for Particulate Matter (1), as amended. The allowable emissions for the State of Ohio are the same as those set by EPA. This summary table provides the test results in concentration values of grains per dry standard cubic feet (gr/dscf) and in emission values of pounds per hour (lb/hr).

Mr. John Hilty of Ohio's Regional air Pollution Control Agency observed the testing conducted by RAMCON Environmental Corporation.

SUMMARY OF TEST RESULTS

TABLE I

May 11, 1993

Test <u>Run</u>	<u>Time</u>	Conc. Emissions	Lead Conc., gr/dscf	Isokinetic Variation	Particulate Emissions <u>lbs/hr</u>	Lead Emissions lb/hr
1	08:31 - 09:36	0.0071	0.000007	97.0%	2.18	0.0021
2	10:16 - 11:53	0.0095	< 0.000003	105.7%	2.74	< 0.0009
3	12:42 - 13:47	0.0150	< 0.000004	104.2%	4.12	< 0.0011
	Average:	0.0105	< 0.000005		3.01	< 0.0014

On the basis of these test results, the average grain loading of the three test runs is below the .04 gr/DSCF allowable emissions limitation set by EPA and the State of Ohio. Therefore, the plant is operating in compliance with State standards.

3. TEST PROCEDURES

(a) Method Used: Method 5/12 source sampling was conducted in accordance with requirements of the U.S. Environmental Protection Agency as set forth in 39 FR 9314, March 8, 1974, 60.93, as amended.

(b) Problems Encountered: No problems were encountered that affected testing.

(c) Sampling Site: The emissions test was conducted after a baghouse on a round stack with a diameter of 60". The sampling ports were placed 90° apart, 30" down (.5 diameters upstream) from the top of the stack and 137" up (2.3 diameters downstream) from the last flow disturbance. Twenty-four (24) points were sampled, five (5) through each port for two and one-half (2½) minutes each for a total testing time of sixty (60) minutes.

Points on a <u>Diameter</u>	Probe <u>Mark</u> *
1	7.3"
2	10.0"
3	13.0"
4	16.6"
5	21.0"

* Measurements include a 6" standoff.

THE SOURCE

Valley Asphalt Corporation employs a McCarter batch-mix asphalt plant which is used to manufacture hot mix asphalt for road pavement. The process consists of blending prescribed portions of cold feed materials (sand, gravel, screenings, chips, etc.) uniformly and adding sufficient hot asphalt oil to bind the mixture together. After the hot asphalt mix is manufactured at the plant, it is transported to the location where it is to be applied. The hot asphalt mix is spread evenly over the surface with a paver then compacted with a heavy roller to produce the final product.

The following is a general description of the plant's manufacturing process: The cold feed materials (aggregate) are dumped into separate bins which in turn feed a common continuous conveyor. The aggregate is dispensed from the bins in accordance with the desired formulation onto the cold feed system conveyor, to an inclined weigh conveyor, then to a rotating drum for continuous mixing and drying at approximately 300°F. When recycled asphalt mix is used, it is added directly into the pugmill. The dried aggregate is pulled by a bucket elevator to the top of a gradation control unit which separates and stores the aggregate by size. The required amount of each aggregate is dispensed into a weighhopper and from there into a pugmill where the hot liquid asphalt pavement is mixed thoroughly with the aggregate. The hot asphalt mix is then discharged from the storage silo through a slide gate into waiting dump trucks which transports the material to a final destination for spreading. The rated capacity of the plant will vary with each aggregate mix and moisture content with a 5% surface moisture removal.

The mixer uses a burner fired with no. 4 fuel oil to heat air to dry the aggregate. The air is drawn into the system via an exhaust fan. After passing through the gas burner, the air passes through a baghouse. The baghouse is manufactured by McCarter. The exhaust gas is drawn through the baghouse and discharged to the atmosphere through the stack. The design pressure drop across the tube sheet is 2 - 6 inches of water. The particulate matter, which is removed by the baghouse, is reinjected into the pugmill.

DATA ON FACILITY BEING STACK TESTED

<u>k</u> å C & C t z 2 : = Ŧ 4 Exhaust Damper Position F. S Full t 1 1 ÷ : 5 . 1 × PHONE (3) 426-7682 Relative Humidity × Ξ AC TYPE DESIGNED CAPACITY Ambient Temp. å 2 Water Pressure Venturi Sorubber Baghouse Ē a Egking Pressure Drop N الم ٢ In w.g. 2 2 μ Ν Ч Ч Ν Ч 2 ORIGINAL START-UP DATE 290 280 297 TYPE 282 Echaust Gas Tomp. 260 270 270 260 290 280 062. 250 COMPANY REP. KENDY 4 ø 300 300 8 300 300 0 % 8 300 800 8 2002 300 Temp. ď ~ 1.2 エン 5 1 7.4 רי די ار ۲ Asphalt Coment エン 4.2 エン 4.2 4.2 2.4 ×. ø \$_ TPH **Production Rate** MODEL NO. ŝ Mix Aggragata 300 ч К 295 367 294 787 297 262 262 360 312 3/3 TPH Ash-LT the second t 2 ed 141 294 the state Blower Pressure ł A LOCATION OF FACILITY Xenua 20% 25% 20% 25% 20% 2.5% 20%0 30% 20% 10% 10 % Burner Setting <u>१</u> १ COMPANY NAME Valley e Propane Coel Fuel Use ł 1 Т 4 7 7 4 J H 1 7 7 other ~ # # # ť # # ¥ # # \$ 4 # column when moisture sample is taken NOTE: check small box in Time (24 HR) NEO

, orn , C#f

DATA SUMMARY ON STACK BEING TESTED

AGGREGATE

1.	Name/type of mix 3 o /		<u></u>	
2.	Name/type of 2nd mix (if used)			
3.	Type/temperature of Liquid Asphalt/_	<u>}00</u> °F		
4	Sleve/Screening analysis: % Pass	sing;		
	1st mix / 2nd mix 1st mix / 2nd mix	15	t mix / 2nd π	nix
	1* 3/8*/	#	/	<u> </u>
	3/4"/ #200/	#	/	
	1/2"/ #/	#	/	·
			•	
	CONTROL SYSTEM			
	<u>CONTROL STOTEM</u>			
			٠	. * •
			<u> </u>	. 🚯
A.	Baghouse:			
1.	Type of bags Sq. f	t. of bags_		' n
2.	Air to cloth ratio 6.1.7 Designed ACFM	64,00	0	4
3.	Type of cleaning - pulse jetreverse airplenum p	oulse	_other	
4.	Cleaning cycle time 7 for Interval between cleaning c	ycle		
5.	Pulse pressure on cleaning cycle 100 Jr. psi			
В.	Scrubber:			
1.	Type - VenturiWet Washer			
	Spray BoothOther			
2.	Gallons per minute through system			
3.	Water source(i.e., pond, lagoon, et	c.)	•	
4.	Number of spray nozzles			
	· · · · · · · · · · · · · · · · · · ·			
Compa	Dany Name VALLEY ASPHALT		Date <u>9-</u>	23-93
Compa	bany Representative KENNE EAKin	vs		
				

EQUIPMENT USED

Equipment used to conduct the particulate emissions test was:

- A. A Lear Siegler PM-100 stack sampler with appropriate auxiliary equipment and glassware (with train set up according to the schematic on the next page).
- B. An Airguide Instruments Model 211-B (uncorrected) aneroid barometer for checking the barometric pressure.
- C. Weston dial thermometers to check meter temperatures or an Analogic Model 2572 Digital Thermocouple to check stack temperatures.
- D. A Hays 621 Analyzer to measure the oxygen, carbon dioxide and carbon monoxide
 content of the stack gases or, for non-combustion sources, a Bacharach Instrument
 Company Fyrite for gas analysis.
- E. Schleicher and Schuell Type 1-HV filters with a porosity of .03 microns.
- F. Reagent- or ACS-grade acetone with a residue of \leq .001.

REC #0001-M5

LABORATORY PROCEDURES FOR PARTICULATE SAMPLING

- I. Field Preparation
 - A. FILTERS: Fiberglass 4" sampling filters are prepared as follows:

Filters are removed from their box and numbered on the back side with a felt pen. The numbering system is continuous from job to job. The filters are placed in a desiccator to dry for at least 24 hours. Clean plastic petri dishes, also numbered, top and bottom, are placed in the desiccator with the filters. After desiccation, the filters are removed, one at a time, and weighed on the Sartorius analytical balance then placed in the correspondingly numbered petri dish. Weights are then recorded in the lab record books. Three filters are used for each complete particulate source emissions test and there should be several extra filters included as spares.

B. SILICA GEL: Silica Gel used for the test is prepared as follows:

Approximately 200 g of silica gel is placed in a wide mouth "Mason" type jar and dried in an oven at 175°C for two hours. The open jars are removed and placed in a desiccator until cool for two hours and then tightly sealed. The jars are then numbered and weighed on the triple beam balance to the closest tenth of a gram. This weight is recorded for each sealed jar. The number of silica gel jars used is the same as the number of filters. Silica gel should be indicating type, 6-16 mesh.

- II. Post Testing Lab Analysis
 - A. FILTERS: The filters are returned to the lab in their sealed petri dishes. In the lab, the dishes are opened and placed into a desiccator for at least 24 hours. Then the filters are weighed continuously every six hours until a constant weight is achieved. All data is recorded on the laboratory forms that will be bound in the test report.
 - B. SILICA GEL: The silica gel used in the stack test is returned to the appropriate mason jar and sealed for transport to the laboratory where it is reweighed to a constant weight on a triple beam balance to the nearest tenth of a gram.

- C. PROBE RINSINGS: In all tests where a probe washout analysis is necessary, this is accomplished in accordance with procedures specified in "EPA Reference Method 5". These samples are returned to the lab in sealed mason jars for analysis. The front half of the filter holder is washed in accordance with the same procedures and included with the probe wash. Reagent or ACS grade acetone is used as the solvent. The backhalf of the filter holder is washed with deionized water into the impinger catch for appropriate analysis.
- D. IMPINGER CATCH: In some testing cases, the liquid collected in the impingers must be analyzed for solid content. This involves a similar procedure to the probe wash solids determination, except that the liquid is deionized water.
- E. ACETONE: A blank analysis of acetone is conducted from the one gallon glass container used in the field preparation. This acetone was used in the field for rinsing the probe, nozzle, and top half of the filter holder. A blank analysis is performed prior to testing on all new containers of acetone received from the manufacturer to insure that the quality of the acetone used will be exceed the .001% residual purity standard.

SPECIAL NOTE

When sampling sources high in moisture content, (such as asphalt plants) the filter paper sometimes sticks to the filter holder. When removing the filter, it may tear. In order to maintain control of any small pieces of filter paper which may be easily lost, they are washed with acetone into the probe washing. This makes the filter weight light (sometimes negative) and the probe wash correspondingly heavier. this laboratory procedure is taught by EPA in the "Quality Assurance for Source Emissions Workshop" at Research Triangle Park and is approved by EPA.

WEIGHING PROCEDURE - SARTORIUS ANALYTICAL BALANCE

The Sartorius balance is accurate to 0.1 mg and has a maximum capacity of 200 grams. The balance precision (standard deviation) is 0.05 mg. Before weighing an item, the balance should first be zeroed. This step should be taken before every series of weighings. To do this, the balance should have all weight adjustments at the "zero" position. The beam arrest lever (on the lower left hand side toward the rear of the balance) is then slowly pressed downward to the full release position. The lighted vernier scale on the front of the cabinet should align with the "zero" with the mark on the cabinet. If it is not so aligned, the adjustment knob on the right hand side (near the rear of the cabinet) should be turned carefully until the marks align. Now return the beam arrest to the horizontal arrest position. The balance is now "zeroed".

To weigh an item, it is first placed on the pan. And the sliding doors are closed to avoid air current disturbance. The weight adjustment knob on the right hand side must be at "zero". The beam arrest is then slowly turned upward. The lighted scale at the front of the cabinet will now indicate the weight of the item in grams. If the scale goes past the divided area, the item then exceeds 100 g weight (about 3-1/2 ounces) and it is necessary to arrest the balance (beam arrest lever) and move the lever for 100 g weight away from you. It is located on the left hand side of the cabinet near the front, and is the knob closest to the side of the cabinet. The balance will not weigh items greater than 200 grams in mass, and trying to do this might harm the balance. Remember, this is a delicate precision instrument.

After the beam is arrested in either weight range, the procedure is the same. When the weight of the item in grams is found, "dial in" that amount with the two knobs on the left hand side (near the 100 g lever) color coded yellow and green. As you dial the weight, the digits will appear on the front of the cabinet. When the proper amount is dialed, carefully move the arrest lever down with a slow, steady turn of the wrist. The lighted dial will appear, and the right hand side knob (front of cabinet) is turned to align the mark with the lower of the two lighted scale divisions which the mark appears between. when these marks are aligned, the two lighted digits along with the two indicated on the right hand window on the cabinet front are fractional weight in grams (the decimal would appear before the lighted digits) and the whole number of grams weight is the amount "dialed in" on the left.

In general, be sure that the beam is in "arrest" position before placing weight on or taking weight off of the pan. Don't "dial in" weight unless the beam is arrested. The balance is sensitive to even a hand on the table near the balance, so be careful and painstaking in every movement while weighing. Form REC#8

SAMPLE	AN	ALTICAL DATA	FORM	
Company Name 1/2/1/21/ #11		Rm 5	E12	·
Sample Incation Xania OHIO		Rela	tive Humidity in La	ab 50
		Dens	sity of Acetone (p.).7857 mg
Date/Time wt. blank 9/20 8:30	٥A	Gra	iss wt.	104.1091
Date/Time wt. blank 9/27 2:00	4	Gro	oss wt.	104.1090
		- Ave. Gro	ess wt	104.1091
		Tar	e wt	104.1090
		Wei	ght of blank (m _{ab})	.0001
Acetone blank residue concentration (C)):	$(C_{a}) = (m_{ab}) /$	$(V_a) (\rho_a) = (. \odot$	0000/ mg
Acetone Blank Wt. : $W_a = C_a V_{aw} p_a = ($. C	00001 (300	0 11,7857) = (,0002-
		Run # 1	: Run # Z.	Run # 3
Acetone rinse volume (V _{aw})	ml	300	300	300
Date/Time of wt. 9/27 8:00 A Gross wt.	9	172.9324	168.9304	167.3410
Date/Time of wt. 위과 고. ear Gross wt.	g	172.9321	168.9300	167.3408
Average Gross wt.	g	172,9323	168.9302	167. 3409
Tare wt.	g	172.9144	168.9088	167.2017
Less Acetone blank wt. (Wa)	g	.0002	.0002	,0002
Weight of particulate in acetone rinse (m,)	g	.0172	.0212	.0390
,			<u></u>	
Filter Numbers	#.	T500482	T500483	T500484
Date/Time of wt.9/27 8:004 Gross wt.	g	01.7104	01.6931	01.6844
Date/Time of wt. 9272:00 Gross wt.	g	01.7105	01.6930	01.6842
Average Gross wt.	g	01.7105	01. 6931	01.6843
Tare wt.	g	01.7080	01.6867	01.6823
		•	<u></u>	· · · · · · · · · · · · · · · · · · ·
	g	.0025	.0064	.0019
Weight of particulate on filter (m _f)				0290
Weight of particulate on filter (m _i) Weight of particulate in acetone rinse (m _a)	g	.0177	0212	1.0310

Remarks: Kim 1 PW was washed	brat with IN HA	Oz before	acetone
per observera instructions.)Q		
Signature of Analyst Thomas South	Signature of Reviewer		· · · · · · · · · · · · · · · · · · ·

D:\DONNA\FORMS\LAB\SAMPLE.TBL

8600 Kanis Road Little Rock, AR 72204-2322 (501) 224-5060

Ramcon Environmental Corporation (C-488) 6707 Fletcher Creek Cove Memphis, TN 38134

ATTN: Mr. Joe Sewell

October 18, 1993

Control No. 4293

Sample Description: Three (3) fuel oil, three (3) impinger solution, and three (3) filter received on 9/28/93 Re: Valley #11 P.O. No. 080611

Result:

Sample <u>Identification</u>	Lead <u>mg/Kg</u>
Fuel Oil Test 1	65
Fuel Oil Test 2	74
Fuel Oil Test 3	. 69
Sample Identification	Lead <u>mq</u>
Run 1	0.021
Run 2	<0.01
Run 3	<0.01

Method: EPA 3040, 6010A, 12

Enclosure: Analysis Protocol

AMERICAN INTERPLEX CORPORATION

By Steven Lovell

Technical Director

SL/tj

Chemistry — Materials Science — Environmental Analyses

DATE: September 23, 1993

SUMMARY OF TEST DATA

			09-23-93	09-23-93	09-23-93
	•		Run #1	Run #2	R บก #3
		start	08:31	10:17	12:42
	C.	finish	09:36	11:53	13:47
	SAMPLING TRAIN DATA				
1.	Sampling time, minutes	Θ	60.00	60.00	60.00
2.	Sampling nozzle diameter, inches	D,	0.275	0.275	0.275
3.	Sampling nozzle cross-section area, ft ²	A,	0.000412	0.000412	0.000412
4.	Isokinetic variation	ľ	97.0	105.7	104.2
5.	Sample gas volume — meter condition, cf	V,	45.037	46.823	43.831
6.	Average meter temperature, °R	T_	534	538	539
7.	Average orifice pressure drop, inches H ₂ O	ΔH	2.02	2.08	1.87
8.	Total particulate collected, mg.	M _n	20.20	27.60	40.90
	VELOCITY TRAVERSE DATA				
9.	Stack area, ft²	A	19.64	19.64	19.64
10.	Absolute stack gas pressure, inches Hg.	Ρ,	29.75	29.75	29.75
11.	Barometric pressure, inches Hg.	P _{bar}	29.75	29.75	29.75
12.	Average absolute stack temperature, R°	T,	705	707	705
13.	Average 🗸 vel. head, (C, = .84)	√dP	0.74	0.74	0.70
14.	Average stack gas velocity, ft/second	V,	49.78	50.24	47.44
	STACK MOISTURE CONTENT				
15.	Total water collected by train, ml	Vĸ	207.60	286.30	268.90
16.	Moisture in stack gas, percent (%)	B _{ws}	18.37	23.09	23.09
	EMISSIONS DATA				
17.	Stack gas flow rate, dscf/hr	Q _{sd}	2,138,987.7	2,028,176.5	1,920,574.2
18.	Stack gas flow rate, cfm	acfm	58,646	59,188	55,889
19.	Particulate concentration, gr/dscf	C,	0.0071	0.0095	0.0150
20.	Particulate concentration, lb/hr	E	2.18	2.74	4.12
	ORSAT DATA				
21.	Percent CO ₂ by volume	CO2	2.9	3:4	3.7
22.	Percent O ₂ by volume	Ο,	14.2	15.6	15.1
23.	Percent CO by volume	co	0.0	0.0	0.0
24.	Percent N ₂ by volume	N ₂	82.9	81.0	81.2

Format: summryR3/19-000

DRY GAS VOLUME

$$V_{m(std)} = V_{m} \left[\frac{T_{(std)}}{T_{m}} \right] \left[\frac{P_{bar} + \frac{\Delta H}{13.6}}{P_{std}} \right] = 17.64 \frac{\circ R}{\epsilon. Hg} Y V_{m} \left[\frac{P_{bar} + \frac{\Delta H}{13.6}}{T_{m}} \right]$$

Where:

 $V_{m(std)}$ – Dry gas volume through meter at standard conditions, ft³.

 V_m = Dry gas volume measured by meter, ft³.

 P_{bar} = Barometric pressure at orifice meter, in. Hg.

P_{std} = Standard absolute pressure, (29.92 in. Hg.).

 T_m = Absolute temperature at meter, °R.

T_{std} = Standard absolute temperature, (528°R).

 $\Delta H = Avg.$ pressure drop across orifice meter, in. H₂O.

Y - Dry gas meter calibration factor.

13.6 - Inches of water per Hg.

Run #1:

$$V_{m(std)} = (17.64) (0.979) (45.037) \left[\frac{(29.75) + \frac{2.02}{13.6}}{534} \right] = 43.547 \text{ dscf}$$

Run #2:

$$V_{m(std)} = (17.64) (0.980) (46.823) \begin{bmatrix} \frac{(29.75) + \frac{2.08}{13.6}}{538} \end{bmatrix} = 44.976 \text{ dscf}$$

Run #3:

$$V_{m(std)} = (17.64) (0.979) (43.831) \left[\frac{(29.75) + \frac{1.87}{13.6}}{539} \right] = 41.972 \text{ dscf}$$

Format: dgmR3/13-001

TOTAL CONTAMINANTS BY WEIGHT: GRAIN LOADING

Particulate Concentration: C_s gr/dscf

$$C_s = \left[0.0154 \ \frac{\text{gr}}{\text{mg}} \right] \left[\frac{M_n}{V_{m(std)}} \right]$$

Where:

- C, Concentration of particulate matter in stack gas, dry basis, corrected to standard conditions, gr/dscf.
- M_n Total amount of particulate matter collected, mg.
- V_{m(std)} Dry gas volume through meter at standard conditions, cu. ft.

Run #1:

$$C_s = \left[\begin{array}{c} 0.0154 & \frac{gr}{mg} \end{array} \right] \left[\begin{array}{c} 20.20 \\ -43.547 \end{array} \right] = 0.0071 \text{ gr/dscf}$$

Run #2:

$$C_{s} = \left[\begin{array}{c} 0.0154 & \frac{\text{gr}}{\text{mg}} \end{array} \right] \left[\begin{array}{c} 27.60 \\ \hline 44.976 \end{array} \right] = 0.0095 \text{ gr/dscf}$$

Run #3:

$$C_s = \left[\begin{array}{c} 0.0154 & \frac{gr}{mg} \end{array} \right] \left[\begin{array}{c} 40.90 \\ \hline 41.972 \end{array} \right] = 0.0150 \text{ gr/dscf}$$

Format: csR3/03-004

TOTAL CONTAMINANTS BY WEIGHT: GRAIN LOADING

Lead Concentration: C_s gr/dscf

$$C_s = \left[0.0154 \frac{gr}{mg} \right] \left[\frac{M_n}{V_{m(std)}} \right]$$

Where:

- C_s Concentration of lead in stack gas, dry basis, corrected to standard conditions, gr/dscf.
- M_n Total amount of lead matter collected, mg.
- $V_{m(std)}$ Dry gas volume through meter at standard conditions, cu. ft.

Run #1:

$$C_s = \left[0.0154 \frac{gr}{mg} \right] \left[\frac{0.021}{43.547} \right] = 0.000007 gr/dscf$$

Run #2:

$$C_s = \left[0.0154 \frac{gr}{mg} \right] \left[\frac{<0.01}{44.976} \right] = <0.000003 gr/dscf$$

Run #3:

$$C_s = \left[0.0154 \frac{gr}{mg} \right] \left[\frac{<0.01}{41.972} \right] = <0.000004 gr/dscf$$

Format: csR3/05-005

DATE: September 23, 1993

NAME: Valley Asphalt Corp., Plant #11 LOCATION: Xenia, Ohio

DRY MOLECULAR WEIGHT.

$$M_d = 0.44 (\% CO_2) + 0.32 (\% O_2) + 0.28 (\% CO + \% N_2)$$

Where:

Md	-	Dry molecular weight, lb/lb-mole.
%CO ₂	-	Percent carbon dioxide by volume, dry basis.
%O ₂	-	Percent oxygen by volume, dry basis.
%N2	-	Percent nitrogen by volume, dry basis.
%CO	i	Percent carbon monoxide by volume, dry basis.
0.264	-	Ratio of O_2 to N_2 in air, v/v.
0.28	-	Molecular weight of N_2 or CO, divided by 100.
0.32	-	Molecular weight of O ₂ divided by 100.

0.44 - Molecular weight of CO₂ divided by 100.

Run #1:

$$M_d = 0.44 (2.9\%) + 0.32 (14.2\%) + 0.28 (.00\% + 82.9\%) = 29.03 \frac{lb}{lb-mole}$$

Run #2:

$$M_d = 0.44 (3.4\%) + 0.32 (15.6\%) + 0.28 (.00\% + 81.0\%) = 29.17$$

ib
ib-mole

Run #3:

$$M_d = 0.44 (3.7\%) + 0.32 (15.1\%) + 0.28 (.00\% + 81.2\%) = 29.20$$

lb-mole

Format: mdR3/13-002

DATE: September 23, 1993

WATER VAPOR CONDENSED

$$\mathbf{V}_{\mathbf{w}_{c_{min}}} = \{\mathbf{V}_{f} - \mathbf{V}_{i}\} \left[\frac{\mathbf{P}_{w} \mathbf{R} \mathbf{T}_{(min)}}{\mathbf{M}_{w} \mathbf{P}_{(min)}} \right] = 0.04707 \left[\mathbf{V}_{f} - \mathbf{V}_{i} \right]$$

$$\mathbf{V}_{weighted} \approx [\mathbf{W}_{f} - \mathbf{W}_{i}] \left[\frac{\mathbf{R} \mathbf{T}_{(sec)}}{\mathbf{M}_{w} \mathbf{P}_{(sec)}} \right] \approx 0.04715 \left[\mathbf{W}_{f} - \mathbf{W}_{i} \right]$$

Where:

Conversion factor, ft³/ml. 0.04707 = Conversion factor, ft³/g. 0.04715 -Volume of water vapor condensed (std. cond.), ml. Vwc_{std} -Volume of water vapor collected in silica gel (standard conditions), ml. Vwsg_{std} -Final volume of impinger contents less initial volume, ml. $V_f - V_i =$ Final weight of silica gel less initial weight, g. $W_f - W_i =$ Density of water, 0.002201 lb/ml. $P_w =$ Ideal gas constant, 21.85 in.Hg. (cu.ft./lb-mole)(°R). R -Molecular weight of water vapor, 18.0 lb/lb-mole. M. -Absolute temperature at standard conditions, 528°R. T_{std} -Absolute pressure at standard conditions, 29.92 inches Hg. P_{std} =

Run #1:

 $V_{wc(std)} = (0.04707) (200.00) = 9.4$ cu. ft $V_{wsg(std)} = (0.04715) (7.60) = 0.4$ cu. ft

Run #2:

$$V_{wc(std)} = (0.04707) (280.00) = 13.2 \text{ cu. ft}$$

 $V_{wss(std)} = (0.04715) (6.30) = 0.3 \text{ cu. ft}$

Run #3:

V _{wc(std)}	=	(0.04707)	(262.00)	Π	12.3	cu. ft
V _{wxe(std)}	=	(0.04715)	(6.90)	=	0.3	cu. ft

Format: vaporR3/24-001

MOISTURE CONTENT OF STACK GASES

$$\mathbf{B}_{ws} = \left[\frac{\mathbf{V}_{wc_{sed}} + \mathbf{V}_{wsg_{sed}}}{\mathbf{V}_{wc_{sed}} + \mathbf{V}_{wsg_{sed}} + \mathbf{V}_{mstd}}\right] \times 100$$

Where:

 B_{ws} = Proportion of water vapor, by volume, in the gas stream.

 $V_m = -$ Dry gas volume measured by dry gas meter, dcf.

 $Vwc_{sd} = Volume of water vapor condensed, corrected to standard conditions, scf.$

Vwsg_{itd} - Volume of water vapor collected in silica gel corrected to std. cond., scf.

Run #1:

$$B_{ws} = \frac{9.4 + 0.4}{9.4 + 0.4 + 43.547} \times 100 = 18.37\%$$

$$B_{ws} = \frac{13.2 + 0.3}{13.2 + 0.3 + 44.976} \times 100 = 23.09\%$$

Run #3:

$$B_{ws} = \frac{12.3 + 0.3}{12.3 + 0.3 + 41.972} \times 100 = 23.09\%$$

Format: bwsR3/19-001

MOLECULAR WEIGHT OF STACK GASES

 $M_s = M_d (1 - B_{ws}) + 18 (B_{ws})$

Where:

M_s - Molecular weight of stack gas, wet basis (lb./lb.-mole).

M_d = Molecular weight of stack gas, dry basis (lb./lb.-mole).

Run #1:

 $M_s = 29.03 (1 - 0.1837) + 18 (0.1837) = 27.00 \frac{lb}{lb-mole}$

Run #2;

 $M_s = 29.17 (1 - 0.2309) + 18 (0.2309) = 26.59 \frac{lb}{lb-mole}$

Run #3:

 $M_{1} = 29.20 (1 - 0.2309) + 18 (0.2309) = 26.61 \frac{\text{lb}}{\text{lb-mole}}$

Format: msR3/13-002

STACK GAS VELOCITY

$$V_s = K_p C_p \left[\sqrt{\Delta P}\right] avg \sqrt{\frac{T_s(avg)}{P_s M_s}}$$

Where:

$$V_s$$
 = Average velocity of gas stream in stack, ft/sec.

$$K_p = 85.49 \text{ ft/sec } [(g/g-mole) - (mm Hg)/(°K)(mm H_2O]^n]$$

 C_n = Pitot tube coefficient, dimensionless.

 $\Delta P = Velocity head of stack gas, in. H₂O.$

P_{bar} – Barometric pressure at measurement site, in. Hg.

P. = Stack static pressure, in. Hg.

 P_{c} = Absolute stack gas pressure, in. Hg. = P_{bar} + P_{g}

P_{std} = Standard absolute pressure, 29.92 in. Hg.

t, – Stack temperature, °F.

 $T_s = Absolute stack temperature, °R. = 460 + t_s.$

M, - Molecular weight of stack gas, wet basis, lb/lb-mole.

Run #1:

V = (85.49) (0.84) (0.74)
$$\sqrt{\frac{705}{(29.75)(27.00)}}$$
 = 49.78 ft/sec

Run #2:

$$V = (85.49) (0.84) (0.74) \sqrt{\frac{707}{(29.75) (26.59)}} = 50.24 \text{ ft/sec}$$

Run #3:

۰.

$$V = (85.49) (0.84) (0.70) \sqrt{\frac{705}{(29.75) (26.61)}} = 47.44 \text{ ft/sec}$$

Format: vsR3/19-003

DATE: September 23, 1993

STACK GAS FLOW RATE

$$Q_{ed} = 3600 \left[1 - B_{ev}\right] V_s A \left[\frac{T_{edd}}{T_{edk}}\right] \left[\frac{P_s}{P_{edd}}\right]$$

Where:

- corrected to flow Dry volumetric stack gas rate Q_{sd} = standard conditions (dscf/hr).
 - Cross sectional area of stack (ft2). A -
- 3600 -Conversion factor (sec/hr).
- T_{stk} Absolute stack temperature (°R).
- Standard absolute temperature (528°R). T_{std} =
- Barometric pressure at measurement site (in. Hg.). Pbar =
 - Stack static pressure (in. Hg.).
 - Pg = P₅ = Absolute stack gas pressure (in. Hg.) = $P_{bar} + P_{g}$
- Standard absolute pressure (29.92 in. Hg.). P_{std} =

Run #1: Q_{sd} =

$$3600 (1 - 0.1837) (49.78) (19.64) \left[\frac{528}{705} \right] \left[\frac{29.75}{29.92} \right] = 2,138,987.7 \frac{\text{dscf}}{\text{hr}}$$

Run #2: Q_{sd} =

$$3600 (1 - 0.2309) (50.24) (19.64) \left[\frac{528}{707}\right] \left[\frac{29.75}{29.92}\right] = 2,028,176.5 \frac{\text{dscf}}{\text{hr}}$$

Run #3: Q_{sd} =

$$3600 (1 - 0.2309) (47.44) (19.64) \left[\frac{528}{705} \right] \left[\frac{29.75}{29.92} \right] = 1,920,574.2 \frac{\text{dscf}}{\text{hr}}$$

Format: qR3/19-004

EMISSIONS RATE FROM STACK

$$E = \left[\frac{(C_s) (Q_{sd})}{7,000 \text{ gr/lb}}\right] = \frac{1b}{hr}$$

Where:

- E = Emissions rate, lbs/hr.
- C, = Concentration of particulate matter in stack gas, dry basis, corrected to standard conditions, gr/dscf.
- Q_{sd} = Dry volumetric stack gas flow rate corrected to standard conditions, dscf/hr.

Run #1:

$$E = \frac{(0.0071) (2,138,987.7)}{7000} = 2.18 \text{ lb/hr}$$

Run #2:

$$E = \frac{(0.0095) (2,028,176.5)}{7000} = 2.74 \text{ lb/hr}$$

Run #3:

$$E = \frac{(0.0150) (1,920,574.2)}{7000} = 4.12 \text{ lb/hr}$$

Format: eR3/05-005

LEAD EMISSIONS RATE FROM STACK

$$E = \left[\frac{(C_s) (Q_{sd})}{7,000 \text{ gr/lb}}\right]$$

Where:

.

- E Emissions rate, lbs/hr.
- C, Concentration of lead in stack gas, dry basis, corrected to standard conditions, gr/dscf.
- Q_{sd} Dry volumetric stack gas flow rate corrected to standard conditions, dscf/hr.

Run #1:

$$\mathsf{E} = \frac{(0.000007)}{7,000} = 0.0021 \, \mathsf{lb/hr}$$

Run #2:

 $E = \frac{(<0.00003)}{7,000} = <0.0009 \text{ lb/hr}$

Run #3:

$$\mathsf{E} = \frac{(<0.000004)}{7,000} = <0.0011 \text{ lb/hr}$$

Format: csR3/03-004

ISOKINETIC VARIATION

I = 100 T_s
$$\left[\frac{(0.002669) (V_{ic} + \left(\frac{Y_i V_m}{T_m}\right) (P_{bar} + \Delta H/13.6)}{60 - \theta - V_s - P_s - A_n} \right]$$

Where:

1 = Percent isokinetic sampling.

100 = Conversion to percent.

T, - Absolute average stack gas temperature, °R.

0.002669 - Conversion factor, Hg - ft³/ml - °R.

V_{ic} = Total volume of liquid collected in impingers and silica gel, ml.

 $T_m = Absolute average dry gas meter temperature, °R.$

P_{bar} = Barometric pressure at sampling site, in. Hg.

 $\Delta H = \Delta H$ Average pressure differential across the orifice meter, in. H₂O.

13.6 – Specific gravity of mercury.

60 - Conversion seconds to minutes.

- Θ = Total sampling time, minutes.
- V, Stack gas velocity, ft/sec.

P_s = Absolute stack gas pressure, in. Hg.

 $A_n = Cross sectional area of nozzle, ft².$

 Y_i – Calibration factor.

Run #1:

$$1 = (100) (705) \begin{bmatrix} \frac{(0.002669) (207.60) + \frac{(0.979) (45.037)}{534} \begin{bmatrix} 29.75 + \frac{2.02}{13.6} \end{bmatrix}}{60 (60.00) (49.78) (29.75) (0.000412)} \end{bmatrix} = 97.0\%$$

Run #2:

$$I = (100) (707) \begin{bmatrix} (0.002669) (286.30) + (0.980) (46.823) \\ \hline 538 \\ \hline 60 \\ \hline (60.00) \\ \hline (50.24) \\ \hline (29.75) \\ \hline (0.000412) \end{bmatrix} = 105.7\%$$

Run #3:

$$I = (100) (707) \begin{bmatrix} \frac{(0.002669) (268.90) + \frac{(0.979) (43.831)}{539} [29.75 + \frac{1.87}{13.6}]}{60 (60.00) (47.44) (29.75) (0.000412)} \end{bmatrix} = 104.2\%$$

Format: IR3/09-001

RAMCON ENVIRONMENTAL CORPORATION

v

Ambient Temperature 60		MICA OR MICHT	•.
Baronetric Pressure 29, 75 mm	000	4.7.4	
Assumed Moisture, 8 / 9 mmm	000	419.8	
Probe Length, m(ft) , (4 writing	200	7,6	
Nozzle Identification No. , OD	04124		
Avg. Calibrated Nozzle Dia., (ir	1212 (-	255/252	ř
Probe Heater Setting Davr	ł		\$
Leak Rate, m ³ /min. (cfm) 00 or	101	Le Le	
Probe Liner Material Star Day			
Static Pressure, mm Hg (in. Hg)	õ t		
Filter No. 75, cov92			

Schematic of Stack Cross Section

GAS TEMP LVG	CONDENSER OR LAST IMPINGER	٥F	53	53	53	53	SY	SY	SY	54	55	56	کح	کک	55
FILTER	TEMP	оF	754	FSC	253	568	55 C	247	842	She	249.	256	848	850	252
LE TEMP.	AS METER	Outlet	69	63	<i>ڊ</i> ې	ر ک	57	C۶	6.2	68	ઈઉ	69	فط	ې م	. لاط
GAS SAMP	AT DRY G	Inlet	Ęд	8.9	لر8	69	30	.70	02	<u>ڳ</u> ۶	26	82:	02.	0y	SU.
SAD	SAMPLE	ft3	49569	461.2	463.1	ትሪት ዓ	467.0	468.7	471.0	422.7	424.8	476.8	9.87Y	481.0	482.4
PRESSURE	DIFF. ORF. MIR	in H20	1.9	- 1.9	1.9	1.9	1.9	1.9	22	2.3	2.3	. 2.3	.23	C(,	2.2
VELOCITY	HEAD (Ps)	in H20	.52	.52	.52	.54	S4	.52	.60	<u>ر</u> ک	.63	.63	٢٤	48	، رح
STRICK	TTEMP (T _S)	е Е	244	742	צאץ	248	846	348	248	842	243	245	245	346	She
	VACUUM	in. Hg	S	Ś	Š	ار کر د	Ś	5	5	Ś	5	Ś	Ś	4	4
	SAMPLING	(0)min.	0:31-00	8:36	9:38-30	9:41	9:43-50	8:46	œ-24-8	8:51	9:53-30	9:56	25-92.9	9-01	2000
	TRAV. PT	Q.	_	7	M	5	ک ژ	`	Z	8	0-	0/	2	2	

:_.

Porm #REC-05

÷

Form	#REC-1	9	choot CO	Int DATE 9	-23-92-1004	TICN Xork	TEST)	ю. <u>Г</u>			
RAMCON en	iissions	test log	Sheer, w				CAS SAMPLE	TEMP.(*f)	SAMPLE	I NPINCER	
DAVESCE SAMP	LINC	VACUUM	STACK	VELOCITY	ORFICE DIFF. PRESSURE	YOLUME			BOX TEMP. (°F)	(J.)	
POINT THIOT		Hg Hg	1tmr Te (*f)	APS (In. H20)	AH (in. H20)	Vm (11.3)	= (100	370	56	
			270	89.	, 2.4	4.484.6	2			28	<u> </u>
24:		d l		イン・	22	426.5	8	7	940	00	
3 9:1	3-30		1 - 1	0.5	25	ት እያ ር	80	7/	244	58	
4 9:		5	141	<u>, 60</u>		רסע ל	24	.75	244	58	
S S	02.8	V	241	53	C.P.	C (B. 1	2.2	72.	256	58	
8	21	V	240	09	- 4.4	1017	62	27	256	58	
6	23-30	Ś	010	cs.	7	9: LL	0	73	しょけ	80	
0	76.	V	240	.52	1.1.4	1 - 1 -		22	170	Ç,	
			710	7	<u> </u>	498.3	63	1	127	0	Τ_
3		5			C -	499.9	83	.73	255	80	Т
109	2	7	1276			C 172	69.	73	249	40	T
1 19	02.55:	Ч	248	5,	\$		10	174	249	60	-
120	. 3°5	5	248	07	1.14	1503.51					
				•••							
			•					-			Γ.
				:							T
											Τ
- - 	•						. -				
								-			
				•							L
		-				-	 •	-			

RAMCON ENVIRONMENTAL CORPORATION

ŝ

. ..

MIKL OR MICH.	4(3,2	1214		225 /2			
Notes a	480	8	00413	<u>11/27</u> (ALL A	Deer V	21.01
Ambient Temperature (55 Banometric Boson	Assumed Molecure 29.75 mm	Probe Length, m(ft) (ft) writewa	Avg. Calibrated North Calibrated North	Probe Heater Setting Qarr	Probe Liner Willin, (cfm) . 0020	Static Pressure, m Holin un	Filter No. 75.0048

13		GAS TEMP LVG CONDENSER OR	Hanni Ista	¥.×	1.7		51	61	5	0	63	Ċ,		Cu	60		ð V	9 v v	N. N.
1200-01		FILITER HOLDER TEMP	- 6 -	7. T	N.K	\ \ \ \ \	225	254	754		254	253	752		253	253	253	246	
		MPLE TEMP. GAS METER °F	Outlet	5	R	7		73	、 し、	1	12	74	א	Ĩ	2	25	75	75	75
		AT DRY	Elet	14	۲Y	1		22	25	ŝ	×	80	08	0		53	83	. 84	So
		SAMPLE		922505	20805	889		5122	514.2	C12	0.77	5/8.3	7004	5222		1.425	259	22.8	29.5
: of Stark rm	PRESSURF	DIFF. ORF. MIR in Ho.	N7U 1	×E	2.6	5		~~	S S S	2			~		0		2	2 14	215
Schematic	VELOCITY	HEAD (Ps) in H20	2		20	S	L c		è S	5 2	r V	, , ,	5	:S2			2	38	55
	STRCK	TEMP (Ts) F	V		ž č	24)	546	070		152	222	2 4	512	248	しくと				1 24
•	There are	in. Hg	V		2 2		5				5	>		7	<u>ح</u>				
	SAMPLING	TIME (0) min.	の大の				D: 57-3	11:00		02.70.11	N:05	11:07-30		0	1:2-20	1.1~	NE-614	202	
		TRAV. PT NO.		۰ ۲	~		5	ς				0 0	Ŭ		0	11 11	1 2 1		

Prim Hand or

• ·

AMCON	l emissio	is test log	sheet, con	t. DATE C	1-23-931000	TIONX and	TEST	NO. 2		
		-	C I I C I	VELDCITY	ORFICE DIFF.	EAS	GAS SAMPLE	TEMP.('f)	SAMPLE	I MPINGER
VERSE	SAMPLING	VACUUM and Hg	TEMP	HEAD AP. (In H-D)	PRESSURE AM (in H2O)	Vm (11.3) Vm (11.3)	į	out	BOX TEMP. (*f)	5
	(uiu)	(8H . HE)	115	110	8	4162	42,	7<	346	90
2	05-22:11	Λ,	1070	0 3	0	524.2	28.	25	346	00
EV.	11.50		101		0	1 222	28	. 25	ንኦሮ	2
3	26-76	$\sqrt{\epsilon}$	107	20.		1.222	22) 2	JYC	60
2	11.55		6.5	27		C 922	88.	80	237	61
6	11:5/-4	2	022		· 12	240 Q	52	. 77	060	61
	07.11				2 V C	543.7	88	77	238	6/
ہ مر	<u></u>		Der 1		22	544.9	\$\$.	22	243	61
אן :			204		, 1.9	6.242	. 87	177	250	6/
୍ର :	(~~/. //		054	40	1.5	548.7	C8 .	8	250	5/
בן ב			254	, C	- 1.5	550.623	63.	76	250	63
*				· ·						
									+	
, ,										
			, , ,							
•	- - -									

•

RAMCON ENVIRONMENTAL CORPORATION

ł".,

100

割

ç a

Ambient Temperature Barometric Pressure Assumed Moisture, % Probe Length, m(ft) 270

ふくてん

Avg. Calibrated Nozzle Dia., (in.)

Nozzle Identification No

015 04

Dest

Leak Rate, m³/min. (cfm)

Probe Liner Material

Probe Heater Setting

ō ≁

> s S S S

Static Pressure, mm Hg (in. Hg)

Filter No.

Schemetic of Stack Cross Section 3.78 20 929 # 1 Here Pitot Tube Coefficient Cp SO OC Meter Box No. Meter H 0 Sample Box No. ò C Factor Location Operator Run No. Plant Date

L			CTM/CK	VELOCITY	PRESSURE	GAS	GAS SAMP	LE TEMP.	FILTER	GAS TEMP LVG
SAMPLING VAC	NAC	MUN	aver.	(HEND	DIFF. ORF.	SAMPLE	AT DRY G	AS METER	TIEMP	LAST IMPINGER
TIME In	. 5	Ha	LSI LSI	in H20	in H20	ft]	Inlet	Outlet	оЪ	do
2.7. C		J	くる	22	284	50.9.20	.75	25:	325	en en
xc-01.0.	·	2	245	N N	1.3	5533	82	75	729	\$0
N. 60			245	.35	1.3	555.2	96.	27	224	Ŷ
N 2	•	7	345	35	51.	S57.0	. 28	アリ	64C	Ĵ
7255			247	55.	1,3	559.3	36.	25	250	60
02.65.61		- - - -	243	.3.5	· 1.3	559.9	80	Ś	250	Ş
		<u>,</u>	243	05	6,1	561.5	80	79	348	65
1.01.30		5	ってた	S.	. 1.9	583.3	80	25	252	64
	<u> </u>	5	243	C y	53	\$5.3	80.	75	252	69
22.64.1	·	<u> </u>	246	99	2.3	2(2)5	20	52	252	63
0(.)01		 7	248		2.2	2.92	· &0	75	2.52	رب ا
1.17.20		- J	270	x C X	3.3	<i>571.</i> Y	18	22	253	85
1.17 C	ke	5	07	5	50	573.5	20	75	248	53
		•	ر د	101						

Rorm #nrc-os

RAMCO	N emissio	ns test lo	g sheet, coi	nt. DATE 9	-23-53 LOC	VIIONOLUS CENTRA	en and and a set and a set a s	NO.		
RAVERSE	SAMPLING	VACININ	STACK	VELOCITY	ORFICE DIFF.	CAS	CAS SAMPLE	TEMP.("F)	SAMPLE	INPINCER
POINT	TIME (min)	an Hg (in Hg)	T _s (°f) 5	HEAD BPs (in. N20)	PRESSURE AN (in.H20)	YOLUME Vm (fl. ³)	E	out	60X TEMP. (*f)	(1)
0	1:22		240	47	19	3.225	28.	-76	345	C.
m	02-46:1	v V	240	.50	1.9	577.7	28.	74	225	60
5	CCI	Ń	240	SO	61	579.Y	12	R	575	60
~	02-40-1		240	50	1.9	581.5	82	-76	820	Ç
~	1:32	۰. ال	146	S	19	583.0	.82	<i>یک</i> ر.	してい	Ş
	1:34-30	ι. ·\	243	36	C.1	584.2	85	. 76	231	Ş
0 0	1:37	ţ	hhe	, 56	67.	586.5	85	X.	234	6'3
0	1:39-26	Ś	348	ty:	23	588.9	90	80	245	63
0	イニ	S	25¢	.62	2.3	590 S	90	So	345	ور
1	04-71-11	, S	250	<i>C</i> 3.	. 23	592.6	90	ß	261	63
12	1:47	S	DSC.	، دخ	21	594.231	90	80	261	63
				· · · ·			-	-		
				4.			: 			-
						•.				;
	- 25									
ی کو این کی این کی این کی	S.									

Company Name 11

GAS ANALYSIS BY FYRITE REFERENCE METHOD 3:

FUEL

F. FACTORS

i.

:

NOOD	1.0540
BARK	1.0830
ANTHRACITE	1.0699
BITUMINOUS	1.1398
LIGNITE	1.0761
DIL	1.3465
GAS	1.7489
PROPANE	1.5095
BUTANE	1.4791

	0 ₂ * =	20.9 - [F ₀ x CO ₂ *]
RUN #1:	¤	20.9 - [×]
RUN #2:	=	20.9 - [X]
RUN #3		20.9 - [×]

RUN 1:	cozz	3.0	CO23	2.8	cozx	2.8	AVG.	
	0 _{2%}	140	0 _{2X}	<u>14.4</u>	0 _{2X}	14.2	AVG.	
	N _{2X}		N ₂₈	·	N _{2X}		AVG.	
					· ,			•

RUN	2:	cozx	30	cozx	3.6	ĊO _{ZX}		AVG	
		0 _{2%}	15.5	0 ₂₅	15.4	0 _{2X}	16.0	AVG	
		N _{2X}	<u> </u>	N ₂₈	• · ·	N _{2X}		AVG	
RUN	3:	cozx	3-6	co _{2x}	3.8	co _{zx}	3.8	AVG	
		0 _{2X}	15.0	0 _{2%}	15.2	0 _{2X}	15.0	AVG	

TYPE S PITOT TUBE INSPECTION DATA FORM

Pitot tube assembly level? _____ yes no Pitot tube openings damaged? ____ yes (explain below) _V no $\alpha_1 = \underline{1.3}^{\circ} (\langle 10^{\circ} \rangle, \ \alpha_2 = \underline{0.6}^{\circ} (\langle 10^{\circ} \rangle, \ \beta_1 = \underline{0.5}^{\circ} (\langle 5^{\circ} \rangle,$ $\beta_2 = 1.46^{\circ} (<5^{\circ})$ $y = 2.9^{\circ}, \theta = 1.7^{\circ}, A = .97 \text{ cm} (\text{in.})$ $z = A \sin \gamma =$ ____O \int cm (in.); <0.32 cm (<1/8 in.), $w = A \sin \theta = ..., 03$ cm (in.); <.08 cm (<1/32 in.) $D_{+} = 36 \text{ cm (in.)}$ Comments: Calibration required? _____ yes no

... [

Quality Assurance Handbook M2-1.7

ЧA

TYPE S PITOT TUBE INSPECTION DATA FORM

Pitot tube assembly level? _____ yes _____ no Pitot tube openings damaged? _____ yes (explain below) _____ no $\alpha_1 = \underline{2.3}^{\circ} (\langle 10^{\circ} \rangle, \alpha_2 = \underline{.5}^{\circ} (\langle 10^{\circ} \rangle, \beta_1 = \underline{1.8}^{\circ} (\langle 5^{\circ} \rangle,$ $\beta_2 = 1.5^{\circ} (<5^{\circ})$ $y = 3.2^{\circ}, \theta = 1.0^{\circ}, A = ..., 98^{\circ}$ cm (in.) $z = A \sin \gamma = ____O \int cm (in.); <0.32 cm (<1/8 in.),$ $w = A \sin \theta = 02 \text{ cm (in.)}; <.08 \text{ cm (<1/32 in.)}$ $P_{A} = ..., 219 = ..., cm (in.) P_{b} = ..., 29 = ..., cm (in.)$ Comments: Calibration required? _____ yes _____ no

i :

ł

Quality Assurance Handbook M2-1.7

MB

RAMCON

Lear Siegler Stack Sampler

Form No. EED-17-2

6

STACK TEMPERATURE SENSOR CALIBRATION DATA FORM

Date	5-5-90		Thermocouple number	64
Ambient	temperature <u>}</u>	<u>С</u> °С Ва	rometric pressure <u>29</u>	, 78 in. Hg
Calibrat	or Stume	Reference:	mercury-in-glass _	
			other	

Reference point number	Source ^a (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference, ^b %
A	Ice Bath	35	32	0
B	Boiling	212	211	. 00 5
C	Boiling	381	378	,008
a	andient			

^aType of calibration system used. ^b $\left[\frac{(ref temp, °C + 273) - (test thermom temp, °C + 273)}{ref temp, °C + 273}\right] 100 \le 1.5\%.$

Quality Assurance Handbook M5-2.5

POSTTEST DRY GAS METER CALIBE JON DATA FORM (English Units) A Date 9-29-93

Test No.

in.Hg Barometric Pressure $P_b = \overline{30} \cdot \overline{50}$

Meter Box No. MULDe Dry Gas Meler No.

(t., + 460) 534 $\frac{V_{w} P_{b} (l_{d} + 460)}{V_{d} \left(P_{b} + \frac{\Delta H}{13.6}\right) \left(l_{w} + \frac{A}{\sqrt{3}}\right)}$ 76 0 V 30 י דר 997 833 ، Vacuum Setting in. Hg Ц С Ð Đ ш 2225 Avg.† 735 3 ÷ Dry Gas Meter Outlet (t_a) ц. Temperature lnlet (* 5 8 Wet Test Meter 3 ÷ しん しん Dry Gas Meter Ş £ **Gas Volume** Wet Test Meter S 10 10 3 Manomeler Setting Orifice in. H₂O (H∆), 0 0 9 YOOI 9.MS

t If there is only one thermometer on the dry gas meter, record the temperature under t_d where:

5

\$ \$

990

d v v

ŝ

しへ

99

10

0

گ ل گ ل

ġ

>

- Gas volume passing through the wet test meter, ft³. י ~
 - Gas volume passing through the dry gas meter, ft³. ו ~
 - Temperature of the gas in the wet test meter, °F. । उ
- Temperature of the inlet gas of the dry gas meter, °F. I
- Temperature of the outlet gas of the dry gas meter, °F.
- Average temperature of the gas in the dry gas meter, obtained by the average of t_{d_1} and t_{d_0} °F. ا ت
 - Pressure differential across orifice, in. H₂O. - H0
- Ratio of accuracy of wet test meter to dry gas meter for each run. ן גר
- Average ratio of accuracy of wet test meter to dry gas meter for all three runs; tolerance = pretest Y \pm 0.05Y. ≻
- Barometric pressure, in. Hg. ן ב
- Time of calibration run, minutes. н Ф

F:\FORMS\DryGasMe.Cal

Quality Assurance Handbook M4-2.4A

Plant No.

Pretest Y

	b (l _a + 460) + AH 1 4	13.6) (m + 460)
Units) Plant No.	Pretest Y	1.950
nglish	>-	298. 299.
VGRM (E	Vacuum Setting	1. H
DATA	(G) (D)	min 9.32 11.8
SITEST DRY GAS METER CALIB. (TION ale 9-7-73 Meter Box N Hg Dry Gas Meter No.	Temperature Wet Test Dry Gas Meter Meter Inlet Outlet	« (4) (4) (4) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7
PO:	Gas Volume Wet Test Dry Gas Meter Meter (V.)	290.000 1104 28076 2010 1104 290.2020 1104 290.2020 1104
Test No. Barometric Pre:	Orifice Manometer Setting (ΔH),	a in H,0 2.0 3, U
		しょう

.)

 \dagger If there is only one thermometer on the dry gas meter, record the temperature under t_{d} where:

9

941 ر م

- י ל<
- Gas volume passing through the wet test meter, ft³. ו ~
 - Gas volume passing through the dry gas meter, ft3. ا ځ
 - Temperature of the gas in the wet test meter, °F. । र्जे
- Temperature of the inlet gas of the dry gas meter, °F. । ______
- Temperature of the outlet gas of the dry gas meter, °F. ן בי
- Average temperature of the gas in the dry gas meter, obtained by the average of t_{d} and $t_{d\sigma}$ °F. AH -
 - Pressure differential across orifice, in. H,O. ۔ حر
 - Ratio of accuracy of wet test meter to dry gas meter for each run. ۲ ۲
- Average ratio of accuracy of wet test meter to dry gas meter for all three runs;
 - Barometric pressure, in. Hg. ہ م
- Time of calibration run, minutes. **н** Ф

F:\FORMS\DryGasMe.Cal

Quality Assurance Handbook M4-2.4A

Name: Mr. Sumner Buck <u>Title:</u> President

Qualifications: Mr. Buck is a graduate of the University of Mississippi with graduate studies at Memphis State University and State Technical Institute of Memphis. He is a graduate of the EPA 450 "Source Sampling for Particulate Pollutant's" course and the 474 "Continuous Emissions Monitoring" courses outlined by EPA at Research Triangle Park, N.C. He has been directly involved in conducting and supervising air emission testing for over 15 years. He has personally conducted over 400 air emission tests. He currently sponsors and directs visual emission certification schools for US EPA Method 9.

Project Duties: Mr. Buck is responsible for the overall supervision of each testing project. This includes the correspondence to the State Regulatory Agency and the plant personnel regarding scheduling, testing requirements, etc. He will assist in supervision of the project preparation for each team involved and the overall organization between the testing crew(s) and facility.

<u>Name</u>: Mr. Joe Sewell <u>Title</u>: Vice President

4

Qualifications: Mr. Sewell is currently serving as the Vice President of RAMCON Environmental Corporation. Mr. Sewell is a graduate of Christian Brothers University in Memphis, Tennessee where he obtained a Bachelor of Science degree in Chemical Engineering. He has conducted and supervised air emissions testing projects ranging a broad spectrum of facility process categories. His accomplishments include the development of the instrumental branch of emissions testing utilizing continuous emission monitors and gas chromatography. Mr. Sewell performs a major role in the upgrading of testing capabilities and professional quality that RAMCON Environmental Corporation offers.

Project Duties: Mr. Sewell provides staff engineering and project administration to ensure the integrity of the requested services. He serves as the primary contact person for RAMCON Environmental Corporation handling all correspondence between the facility personnel involved in the project and respective state agency representative(s). He provides project leadership to RAMCON Environmental Corporation field supervisors and managers involved in the testing project.

<u>Name:</u> Mr. Ray Jenkins <u>Title:</u> Source Sampling Director

6. 0.1.

Qualifications: Mr. Jenkins is serving as the Source Sampling Director for RAMCON Environmental Corporation. He was promoted to this leadership position after gaining a significant amount of experience in conducting and providing field supervision of a variety of air testing projects. Mr. Jenkins has personally conducted and/or supervised all of the prevalent EPA approved procedures with expertise in the instrumental analyzer procedures. He graduated from Memphis State University obtaining a Bachelor of Science degree in Biology. He is also currently certified to conduct US EPA Reference Method 9 for the visual determination of emission opacity.

Project Duties: Mr. Jenkins provides project leadership to the Team Leaders and Field Technicians. He ensures the test crew(s) involved in the test project will be properly informed to his respective duties and responsibilities during the testing process. Mr. Jenkins also serves as the Quality Assurance/Quality Control Coordinator and provides guidance in QA/QC to each Team Leader with regard to sample integrity.

<u>Name</u>: Mr. Tommy South <u>Title</u>: Laboratory Technician

Qualifications: Mr. South is currently serving as Laboratory Technician. He is proficient in conducting many analysis procedures such as front and back-half particulate analysis, titrations, extractions, etc.

<u>Project Duties</u>: Mr. South conducts the laboratory analysis on the particulate samples. He is also responsible for accepting the remaining field samples from the Field Sample Bank

Manager and performing inspection as to integrity. He documents the transfer on the chain of custody forms and distributed the subcontracted samples to the respective laboratories.

Name: Mr. Allen Turner <u>Title</u>: Team Leader

Qualifications: Mr. Turner has been employed with RAMCON Environmental Corporation for five years. Altogether, he has sampled approximately 300 stacks of all types. Mr. Turner became qualified for a Team Leader in 1988 and has served as such since that time. He is a current V.E. reader and continues his studies at State Technical Institute in Memphis, Tennessee. Mr. Turner has extensive experience in EPA Methods 1-9.

Project Duties: Mr. Turner is responsible for isokinetic sampling procedures, including but not limited to, Method 5 for particulate, multi-metals, PAH, calibration and cleaning of necessary equipment for his testing. His duties on-site include assembling the sample train, leak checking the system, operation of the train and recording the test data on the field data forms.