Note: This material is related to a section in AP42, Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

9.5.3 Meat Rendering Plants

Total VOC emissions for the Supercooker

TRC Environmental Corporation for IBP, Inc.

August 1998

1998 (post section publication) source test data.

The file name refers to the file number, the AP42 chapter and then the section. The file name "rel01_c01s02.pdf" would mean the file relates to AP42 chapter 1 section 2. The document may be out of date and related to a previous version of the section. The document has been saved for archival and historical purposes. The primary source should always be checked. If current related information is available, it will be posted on the AP42 webpage with the current version of the section.

ſ

October 13, 1998

Mr. Dave Meierhenry Air Quality Compliance Section Nebraska Department of Environmental Quality P. O. Box 98922 Lincoln, NE 68509-8922

RE: IBP, inc., Lexington, Nebraska Updates to the Lexington VOC Final Report

Dear Mr. Meierhenry:

Please find enclosed a copy of the updates for the final VOC report submitted August 26, 1998. The updates reflect the changes discussed with myself and TRC.

If you have any questions concerning the testing results or procedures used, please contact me a 402-241-3647 or you may contact Mr. Scott Miller, TRC Project Manager, at 630-810-1122.

Sincerely,

Recipillo Koup

Rechelle Kruse Air Pollution Control Engineer

Enclosure

•

c: Leo Lang Ryan Post Dallas Safriet

RK98-598/LE-Stack Tests

SECTION 2

SUMMARY OF RESULTS

On July 21,1998, testing was conducted to determine emission rates of the Supercooker exhaust at the IBP plant in Lexington, Nebraska. All testing was completed in accordance with approved test methodologies.

Table 2-1 summarizes the data for the Supercooker on July 21,1998 at the IBP plant located in Lexington, Nebraska.

Raw field data sheets are located in Appendix A. Process data recorded by IBP is located in Appendix B. Laboratory results are located in Appendix C. Equipment calibration data sheets are located in Appendix D. Calculation formulas can be found in Appendix E. All test procedures were conducted as stated in Section 3 except:

On Run #2&3 the moisture content was above saturation therefore moisture was determined by using stack temperature and the saturation table. On Run #1,2&3 RM 25, lab receipt data was used to calculate VOC emission rates. Lab receipt data was used because line loss was not taken into account when final tank measurements were taken. TRC feels that the lab receipt data is the accurate data to be used and is also considered worst case scenario.

Table 2-1	VOC Emission	Rates for	the Supercooker
------------------	--------------	------------------	-----------------

WET COOKER EXHA	UST EMISSION	RATE RESUL	TS
	TEST #1	TEST #2	TEST #3
TGNMO as Carbon, ppmc	358.0	273.0	296.0

AVG = 1.008 lbs/hr TGNMO as carbon

Table 4-1. Test Results - Supercooker Exhaust

Run No.	1	2	3	
Date	7-21-98	7-21-98	7-21-98	
Start Time	11:57	13:25	14:55	
Stop Time	12:57	14:25	15:55	AVERAGES
Barometric Pressure, in. Hg	28.80	28.80	28.80	28.80
Net Sampling Time, minutes	30.0	30.0	30.0	30.0
Volume Metered, cf	26.508	26.291	26.582	26.460
Avg. DGM Temp, F	93.4	99.00	102.80	98.4
AVG Delta H, in of H2O	2.00	2.00	2.00	2.00
AVG Delta H, in of Hg	0.1471	0.1471	0.1471	0.1471
DGM Calibration Factor	0.9951	0.9951	0.9951	0.9951
Volume of Gas Collected, dscf	24.349	23.908	24.009	24.089
Total Water Collected, mL	32.0	78.0	163.0	91.0
Volume of Water Vapor, scf	1,509	3.678	7.685	4.291
Moisture, % @ Saturation	5.8	7.2	8.6	7.2
Dry Mole Fraction, 100-%M	0.9417	0.9279	0.9143	0.9280
CO2 at Stack, % dry	0.0	0.0	0.0	0.0
O2 at Stack, % dry	20.9	20.9	20.9	20,9
CO + N2, % dry	79 1	79.1	79.1	79.1
Dry Molecular Weight, Ib/Ib mole	28.84	28.84	28.84	28.84
Wet Molecular Weight, Ib/Ib mole	28.20	28.05	27.91	28.06
Stack Diameter, in	10	10	10	10.00
Stack Area, sq. in. (@ pitot meas. location)	78.5	78.5	78.5	78.5
Static Pressure, in. of H2O	-0.62	-0.65	-0.61	-0.63
Stack Pressure, in. of Hg	28.75	28.75	28.76	28.75
Avg. Stack Temp., F	103.3	103.5	109.7	105.5
Avg. Sqroot of Delta P	1.0659	1.064	1.0663	1.0654
SDE Average	25.298	25.257	25.451	25.335
Pitot Coefficient	0.84	0.84	0.84	0.84
Stack Gas Velocity, afpm	3828.0	3832.2	3871.5	3843.9
Stack Flowrate, wet acfm	2,088	2,090	2,112	2,097
Stack Flowrate, dry scfm	1,771	1,746	1,720	1,746
Stack Flowrate, dry scf/hr	106,263	104,779	103,179	104,741
Stack Flowrate, wet scf/hr	1.1285E+05	1.1292E+05	1.1285E+05	112,873
TGNMO ppmc	358.00	273.00	296.00	309.00
TGNMO Lb/Hr as Carbon	1.184	0.890	0.950	1.008

IBP Lexington Supercooker

11

đ

í

.

METHOD 25 TABLE OF RESULTS

Client: TRC Environmental Corporation

ID#98156R Analyzed: 8/4/98

Project ID: 22214-0000-00011 (IBP/Lexington, Neb.) (Post-test PT data replaced by laboratory receipt data)

	Sample	r	—— Co	oncentra	tions (ppm)	C) ———		Mass
	Description	CO	CH4	C02	Noncon-	Conden-	TGNMO	Conc.
					densibles			(mgC/cu.m)
1	Super Cooker	2	17	6207	5	353	358	179
2	Super Cooker	4	18	5476	19	254	273	136
3	Super Cooker	< 3	21	3479	7	289	296	148

.< # = Concentration Below Practical Quantitation Limit</pre>

* Please refer to the "Comments on the Analyses" page of the report for additional information.

METHOD 25 DATA REPORT

Client: TRC Environmental Corporation

ID#98156R Analyzed: 8/4/98

Project ID: 22214-0000-00011 (IBP/Lexington, Neb.) (Post-test PT data replaced by laboratory receipt data)

Sample # 1 Super Cooker

Pressure, Temperature, Volume Data:

	Pressure	Temp.	P/T	
	(mm Hg)	(K)		Tank N283A:
Presampling	3.5	305.37	0.011	Tank Volume = 0.004542 cu.m
Postsampling	556.0	297.15	1.871	Volume Sampled = 0.003258 dscm
Lab Receipt	556.0	297.15	1.871	$\frac{\text{Lab Receipt } P/T}{\text{Postsampling } P/T} = 1.000$
Tank Final	1218.0	297.15	4.099	Trap GGI →
CV Final	1493.0	298.65	4.999	Collection Vessel 33:
				CV Volume = 0.008361 cu.m

Response Factors (RF), Practical Quantitation Limits (PQL), and Area Counts:

(RF area/ppmC)	PQL (ppmC)	Area 1	Area 2	Area 3
со	246.7	2	376	358	0
CH4	259.6	2	2,024	2,072	1,977
CO2	256.4	2	723,098	722,715	722,456
Noncondensibles	253.5	5	576	490	589
Condensibles	256.4	4	19,003	19,132	19,107

Recovery Oxidation Catalyst Efficiency Check: CO2/CH4 = 100.6% CO Blank = 0 area counts CO2 Blank = 3 ppm

<u>Concentrations</u> :	dd bb	mС		
*=corrected for Blank	Amount	±	SD	%RSD
CO*	2	±	2	86.7
CH4	17	±	0	2.3
C02*	6207	±	3	0.0
Noncondensibles	5	±	0	9.8
Condensibles*	353	±	1	0.4
TGNMO	358			

Mass Concentration 179 mgC/cu.m

METHOD 25 DATA REPORT

Client: TRC Environmental Corporation

ID#98156R Analyzed: 8/4/98

Project ID: 22214-0000-00011 (IBP/Lexington, Neb.) (Post-test PT data replaced by laboratory receipt data)

Sample # 2 Super Cooker

Pressure, Temperature, Volume Data:

	Pressure	Temp.	P/T	
	(mm Hg)	(K)		Tank 6209T:
Presampling	1.5	308.71	0.005	Tank Volume = 0.006126 cu.m
Postsampling	523.0	297.15	1.760	Volume Sampled = 0.004147 dscm
Lab Receipt	523.0	297.15	1.760	<u>Lab Receipt P/T</u> = 1.000 Postsampling P/T
Tank Final	1512.0	297.15	5.088	Trap DDZ →
CV Final	1500.0	299.65	5.006	Collection Vessel 12: CV Volume = 0.008343 cu.m

Response Factors (RF), Practical Quantitation Limits (PQL), and Area Counts:

	RF	PQL	Area 1	Area 2	Area 3
(area/ppmC)	(ppmC)			
CO	246.7	3	347	330	368
CH4	259.6	3	1,635	1,597	1,581
C02	256.4	3	485,063	485,058	485,253
Noncondensibles	253.5	6	1,703	1,679	1,669
Condensibles	256.4	4	17,479	17,554	17,528

Recovery Oxidation Catalyst Efficiency Check: CO2/CH4 = 100.5% CO Blank = 0 area counts CO2 Blank = 3 ppm

<u>Concentrations</u> :	qq qq	mС		
*=corrected for Blank	Amount	±	SD	%RSD
C0*	4	±	0	5.5
CH4	18	±	0	1.7
C02*	5476	±	1	0.0
Noncondensibles	19	±	0	1.0
Condensibles*	254	±	1	0.2
TGNMO	273			

Mass Concentration 136 mgC/cu.m

METHOD 25 DATA REPORT

Client: TRC Environmental Corporation

ID#98156R Analyzed: 8/4/98

Project ID: 22214-0000-00011 (IBP/Lexington, Neb.) (Post-test PT data replaced by laboratory receipt data)

Sample # 3 Super Cooker

Pressure, Temperature, Volume Data:

	Pressure	Temp.	P/T	
	(mm Hg)	(K)		Tank 6208T:
Presampling	4.2	308.71	0.014	Tank Volume = 0.006109 cu.m
Postsampling	555.0	298.15	1.861	Volume Sampled = 0.004354 dscm
Lab Receipt	555.0	298.15	1.861	<u>Lab Receipt P/T</u> = 1.000 Postsampling P/T = 1.000
Tank Final	1395.0	298.15	4.679	Trap GGE →
CV Final	1496.0	300.65	4.976	Collection Vessel 40: CV Volume = 0.008388 cu.m

Response Factors (RF), Practical Quantitation Limits (PQL), and Area Counts:

	RF (area/ppmC)	PQL (ppmC)	Area 1	Area 2	Area 3
CO	246.7	3	0	34	308
CH4	259.6	3	2,194	2,209	2,191
C02	256.4	3	353,186	352,875	353,081
Noncondensibles	3 253.5	6	645	699	638
Condensibles	256.4	3	20,779	20,939	20,728

Recovery Oxidation Catalyst Efficiency Check: CO2/CH4 = 100.4% CO Blank = 0 area counts CO2 Blank = 3 ppm

Concentrations:	gq	mC		
*=corrected for Blank	Amount	±	SD	%RSD
C0*	< 3			
CH4	21	±	0	0.4
C02*	3479	±	2	0.0
Noncondensibles	7	±	0	5.1
Condensibles*	289	±	2	0.5
TGNMO	296			
		_		

Mass Concentration 148 mgC/cu.m

< # = Concentration Below Practical Quantitation Limit

August 26, 1998

Mr. Dave Meirhenry Air Quality Compliance Section Nebraska Department of Environmental Quality P. O. Box 98922 Lincoln, NE 68509-8922

RE: IBP, inc., Lexington, Nebraska Inedible Cooking System VOC Test Report

Dear Mr. Meirhenry:

Please find enclosed a copy of the VOC Test Report for the IBP, Lexington, Nebraska, facility. The testing was conducted on July 21, 1998, by TRC Environmental Corporation. Volatile organic carbon testing was completed per the Nebraska Compliance Sampling Methods and was approved through protocol submittals. As shown in the detailed testing report on page 3, the average VOC (Total Hydrocarbons as Methane) emission rate from the steam heated Dupps Supercooker is 1.00 lbs/hr as carbon.

1

If you have any questions concerning the testing results or procedures used, please contact me a 402-241-3647 or you may contact Mr. Scott Miller, TRC Project Manager, at 630-810-1122.

Sincerely,

Record Kouse

Rechelle Kruse Air Pollution Control Engineer

Enclosures

c: Leo Lang (without test report) Ryan Post (with test report) Mr. Dallas Seifert, Federal EPA- AP-42 (with Test Report)

RK98-563/LE-Stack Testing

IBP, inc. P.O. BOX 515, DAKOTA CITY, NEBRASKA 68731 TELEPHONE: 402-494-2061

Project Summary:

IBP created a project to quantify VOC emissions from their rendering processes including blood dryers, edible dryers, and inedible cookers for both beef and pork. The testing was conducted on all three systems under various heating conditions. The intent was to quantify VOC emissions for natural gas system as well as steam systems and to prove or disprove the difference in VOCs from products developed in fuel fired vs. steam heated processes.

Ņ

Carlos Anno 1

A VOC test was conducted on the exhaust outlet of the Lexington steam Dupps Supercooker after the condenser per method 25 TGNMO.

Emission Data:

- -- -- --

Inedible Steam Cooker:

Test Data:	
Test #1	1.184 lbs/hr
Test #2	0.890 lbs/hr
Test #3	0.928 lbs/hr
Average	1.00 lbs/hr

Process Information During Test:Head Kill4,665 hd/dayInedible Yield39.6 lbs/hd finished craxInedible Operation20 hrs.

Total Inedible Crax Processed: [(4,645 hd/day) x (39.6 lbs/hd)]/20 hrs/day = 9,236.7 lbs/hr finished crax (9,236.7 lbs/hr) x (1 ton/2,000 lbs) = 4.62 tons/hr finished crax

4.62 tons/hr

1.00 lbs/hr

Inedible Crax Emission Factor: Crax Processed VOC Emissions from Blood Drying

1.00 lbs/hr/4.62 tons/hr = 0.23 lbs/ton finished crax

TRC

FINAL REPORT

TOTAL VOC EMISSIONS OF THE SUPERCOOKER

Prepared for

IBP, Inc. Lexington, Nebraska

Prepared By

TRC ENVIRONMENTAL CORPORATION DOWNERS GROVE, ILLINOIS 60515

August 21, 1998

TRC

1

FINAL REPORT

TOTAL VOC EMISSIONS OF THE SUPERCOOKER

Prepared for

IBP, Inc. Lexington, Nebraska

Prepared by

TRC ENVIRONMENTAL CORPORATION 1307 Butterfield Road, Suite 412 Downers Grove, IL 60515 (630) 810-1122

August 21, 1998

TRC Project No. 22214-11

DISCLAIMER

2

۰.

This report is intended for use solely by IBP, Inc. the specific purposes described in the contractual documents between TRC Environmental Corporation (TRC) and IBP. All professional services and reports generated by TRC have been prepared for IBP's purposes as described in the contract. The information, statements, and conclusions contained in the report have been prepared in accordance with the work statement, contract terms, and conditions. The report may be subject to differing interpretations and/or may be misinterpreted by third persons or entities who were not involved in the investigative or consultation process. TRC Environmental Corporation therefore expressly disclaims any liability to persons, other than IBP, who may use or rely upon this report in any way or for any purpose.

TABLE OF CONTENTS

`

2

١

ζ.

.

Section	P	age
LIST OF FIC	URES	iii
LIST OF AC	RONYMS AND ABBREVIATIONS	iv
PROGRAM	SUMMARY	, v
INTRODUC	rion	1
1.1	Project Scope	
1.2	Sampling Locations	
SUMMARY	OF RESULTS	2
FIELD SAM	PLING PROCEDURES	3
3.1	Field Sampling Summary	
	3.1.1 Pre-Sampling Preparation	
3.2	Sampling Methods	
	3.2.1 Flow Rate Measurements	
	3.2.2 CO_2 and O_2 Measurement	
	3.2.3 Moisture Measurement	
	3.2.4 Total Hydrocarbons	
<i>,</i>	3.2.4.1 USEPA Method 25 Train for TGNMO	
DATA REPO	RTING	7
	ata Reporting	
		•

LIST OF FIGURES

1

÷

۰

Figure 3-1	Method 25 Sampling Train	5
Figure 4-1	Measurement Data Flow Scheme)
Figure 4-2	Analytical Data Report Scheme 10)

LIST OF TABLES

Table 2-1	VOC Emission Rates for the Supercooker	 	•	 •	 •	•		 •	•	 •	2
Table 4-1	Test Results-Supercooker Exhaust	 		 •	 •		•				8

LIST OF APPENDICES

- Raw Field Data Sheets Α
- B Process Data

1

- С
- Laboratory Data Equipment Calibration Calculations Formulas D
- Ε

LIST OF ACRONYMS AND ABBREVIATIONS

.

۲.

acfm	actual cubic feet per minute
afmp	actual feet per minute
CEM	continuous emission monitor
CEMS	continuous emission monitoring system
cf	cubic feet
CO ₂	carbon dioxide
dscf	dry standard cubic feet
EPA	Environmental Protection Agency
°F	degrees Fahrenheit
ft	feet
in H ₂ O	inches of water
in Hg	inches of mercury
lb/hr	pounds per hour
O ₂	oxygen
ppm (v)	parts per million volume
QA/QC	Quality Assurance/Quality Control
scfm	standard cubic feet per minute
TGNMO	total gaseous non-methane organics
THC	total hydrocarbons
TRC	TRC Environmental Corporation
VOC	volatile organic compound

ſ

•

PROGRAM SUMMARY

The IBP, Inc. facility located in Lexington, Nebraska has a Supercooker in their rendering operations. TRC Environmental Corporation (TRC) was contracted by IBP, Inc. to conduct emission testing on the Supercooker. The major objectives of the test program was to collect representative flue gas samples and determine the emission rates of volatile organic compounds (VOC's) at the Supercooker exhaust.

TRC accomplished this objective through the use of acceptable test methods performed by trained and experienced staff. IBP, Inc. personnel were responsible for maintaining the proper operations during the emission test series. The emission test program was conducted on July 21,1998. The emission tests included sampling for total gaseous non-methane organics (TGNMO), total hydrocarbons (THC), volumetric flow rates, and moisture content of the Supercooker flue gas following USEPA Methods 1 (Sampling Location Selection), 2 (Flow Rate), 3 (CO₂ and O₂ for Molecular Weight), 4 (Moisture), and 25 (TGNMO).

SECTION I

INTRODUCTION

1.1 Project Scope

The IBP, Inc. facility operates a Supercooker at its Lexington, Nebraska facility. TRC was contracted by IBP, to conduct TGNMO emission testing for determination of volatile organic compound (VOC) emission rates of the Supercooker exhaust.

The major objective of the test program was to collect representative flue gas samples and determine emission rates of VOC at the Supercooker exhaust. Three 1-hour tests were conducted at the Supercooker exhaust, simultaneously with flow rates, CO_2 and O_2 for molecular weight, and moisture.

1.2 Sampling Locations

Sampling for TGNMO was conducted on the Supercooker exhaust. The inside stack dimension was measured to be 10 inches in diameter; therefore, the stack area equals 78.5 square inches. Stack gas velocity, moisture, and volumetric flow rates were measured simultaneously with the TGNMO sampling. The required number of sample points and the sample point locations for the velocity traverses of each source were calculated according to 40 CFR Part 60, Appendix A, Method 1. A copy of the field data sheet can be found in Appendix A.

SECTION 2

١

1

SUMMARY OF RESULTS

On July 21,1998, testing was conducted to determine emission rates of the Supercooker exhaust at the IBP plant in Lexington, Nebraska. All testing was completed in accordance with approved test methodologies.

Table 2-1 summarizes the data for the Supercooker on July 21,1998 at the IBP plant located in Lexington, Nebraska.

Raw field data sheets are located in Appendix A. Process data recorded by IBP is located in Appendix B. Laboratory results are located in Appendix C. Equipment calibration data sheets are located in Appendix D. Calculation formulas can be found in Appendix E. All test procedures were conducted as stated in Section 3. No anomalous data is reported.

WET COOKER EXHA	UST EMISSION	RATE RESUL	
TGNMO as Carbon, ppmc	358.0	273.0	TEST #3 289.0

AVG = 1.000 lbs/hr TGNMO as carbon

SECTION 3

FIELD SAMPLING PROCEDURES

3.1 Field Sampling Summary

After consideration of the program requirements, TRC provided a experienced professional to conduct the field effort. Mr. Thomas Lundin of the Chicago Measurements office performed the testing.

3.1.1 Pre-Sampling Preparation

- ----

i .

Equipment was inspected for proper operation and durability prior to calibration. All calibrations were performed prior to and at the conclusion of the emissions test program as shown below:

- Pitot tubes (QA Handbook Section 3.12, pp. 1-13 and USEPA Reference Method 2) measured for appropriate spacing and dimensions or calibrated in a wind tunnel. Rejection criteria given on the calibration sheet. Post-test check to inspect for damage.
- Thermocouples (QA Handbook Section 3.4,2,pp. 15-18) verified against a mercuryin-glass thermometer at three points including the anticipated measurement range. Acceptance limits - impinger ±2°F; DGM ±5.4°F; stack ±1.5 percent of stack temperature.
- Field barometer (QA Handbook Section 3.4.2, pp. 18-19) compared against a mercury-in-glass barometer or use the airport station's barometric pressure and correct for elevation. Acceptance criteria \pm 0.02 in. Hg; post-test check same.
- Method 25 rotometers (QA Handbook Section 3.17.2, pp. 4-8) calibrated against a standard bubble meter. Acceptance criteria - pretest $Y_i = 0.05Y$; post-test check -average 3 run theoretical volume $\pm 10\%$ of average 3 run actual volume.

3.2 Sampling Methods

1

3.2.1 Flow Rate Measurements

Velocity measurements at the sampling locations were made following EPA Reference Methods 1 and 2 simultaneously with the TGNMO and (THC) sampling. A Type-S pitot tube with an attached water manometer was used to measure the exhaust velocities at the sampling ports. An attached Type-K thermocouple with remote digimite was used to determine gas temperature.

3.2.2 CO₂ and O₂ Measurement

Tedlar^R bag flue gas samples were taken concurrently with the TGNMO sampling. A Fyrite was used to determine percent by volume of CO_2 and O_2 .

3.2.3 Moisture Measurement

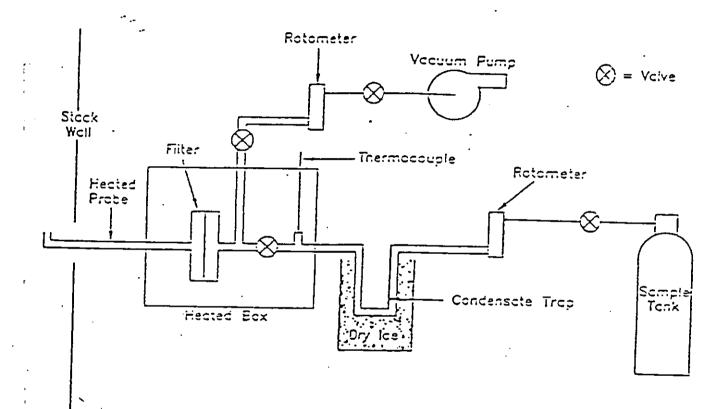
Moisture was measured simultaneously using USEPA Method 4 for each test run. The moisture train was operated for 30 minutes acquiring a minimum of 21 dry standard cubic feet of gas during the TGNMO sampling run.

3.2.4 Total Hydrocarbons

TRC conducted (TGNMO) testing at the Supercooker exhaust following USEPA RM25.

3.2.4.1 USEPA Method 25 Train for Total Gaseous Non-Methane Organics

TGNMO sampling as conducted following the criteria of USEPA Reference Test Method 25. Flue gas was sampled from the Supercooker exhaust at a constant rate through a heated probe and filter and a chilled condensate trap by means of an evacuated sample tank. The heated probe and oven were kept at a temperature of $\geq 265^{\circ}F$ and $250\pm 5^{\circ}F$ respectively


4

during the sampling. After completion of each test run, the trap and tank were sealed, labeled and documented on the chain-of-custody record. All traps were kept under dry ice until the moment of analysis. Three one-hour tests were conducted. A schematic representation of the sampling train is included as Figure 3-1.

Ň

1

Leak checks on the Method 25 train were performed before each sampling run. All leak checks and leakage rates are documented on the relevant field test data sheet. Copies of the field data sheets and summary calculations are included in Appendix A.

,

1

Figure 3-1 Method 25 Sampling Train

SECTION 4 DATA REPORTING

۰.

4.1 Data Reporting

1

۰.

A flow chart depicting the measurement data reporting scheme is shown in Figure 4-1. Figure 4-2 presents the analytical data validation and reporting scheme routinely used at TRC.

All data was reported in standard units depending on the measurement and the ultimate use of the data. The bulk of the data was computer processed and reported as follows:

- Gas Properties:
 - a. Moisture %
 - b. Flow rate, dscfm and acfm
 - c. Pressure, in. Hg
 - d. Temperature, °F
- Total Gaseous non-methane Organics as ppmc & lb/hr

Results of the testing conducted at the IBP plant on the Supercooker exhaust are contained in Table 4-1.

7

_ _ _

. . . .

IBP Lexington Supercooker Run No.	1	2	3	
Date	7-21-98	7-21-98	7-21-98	
Start Time	11:57	13:25	14:55	
Stop Time	12:57	14:25	15:55	AVERAGES
Barometric Pressure, in. Hg	28.80	28.80	28.80	28.80
Net Sampling Time, minutes	30.0	30.0	30.0	30.0
Volume Metered, cf	26.508	26.291	26.582	26.460
Avg. DGM Temp, F	93.4	99.00	102.80	98.4
AVG Delta H, in of H2O	2.00	2.00	2.00	2.00
AVG Delta H, in of Hg	0.1471	0.1471	0.1471	0.1471
DGM Calibration Factor	0.9951	0.9951	0.9951	0.9951
Volume of Gas Collected, dscf	24.349	23.908	24.009	24.089
Total Water Collected, mL	32.0	78.0	163.0	91.0
Volume of Water Vapor, scf	1.509	3.678	7.685	4.291
Moisture, % @ Saturation	5.8	7.2	8.6	7.2
Dry Mole Fraction, 100-%M	0.9417	0.9279	0.9143	0.9280
CO2 at Stack, % dry	0.0	0.0	0.0	0.0
O2 at Stack, % dry	20.9	20.9	20.9	20.9
CO + N2, % dry	79.1	79.1	79.1	79.1
Dry Molecular Weight, Ib/Ib mole	28.84	28.84	28.84	28.84
Wet Molecular Weight, Ib/Ib mole	28.20	28.05	27.91	28.06
Stack Diameter, in	10	10	10	10.00
Stack Area, sq. in. (@ pitot meas. location)	78.5	78.5	78.5	78.5
Static Pressure, in. of H2O	-0.62	-0.65	-0.61	-0.63
Stack Pressure, in. of Hg	28.75	28.75	28.76	28.75
Avg. Stack Temp., F	103.3	103.5	109.7	105.5
Avg. Sqroot of Delta P	1.0659	1.064	1.0663	1.0654
SDE Average	25.298	25.257	25.451	25.335
Pitot Coefficient	0.84	0.84	0.84	0.84
Stack Gas Velocity, afpm	3828.0	3832.2	3871.5	3843.9
Stack Flowrate, wet acfm	2,088	2,090	2,112	2,097
Stack Flowrate, dry scfm	1,771	1,746	1,720	1,746
Stack Flowrate, dry scf/hr	106,263	104,779	103,179	104,741
Stack Flowrate, wet scf/hr	1.1285E+05	1.1292E+05	1.1285E+05	112,873
TGNMO ppmc	358.00	273.00	289.00	306.67
TGNMO Lb/Hr as Carbon	1.184	0.890	0.928	1.000

Table 4-1. Test Results - Supercooker Exhaust

.

1

(

٠,

.

:

:

~

- -- --

__ _ _ ,

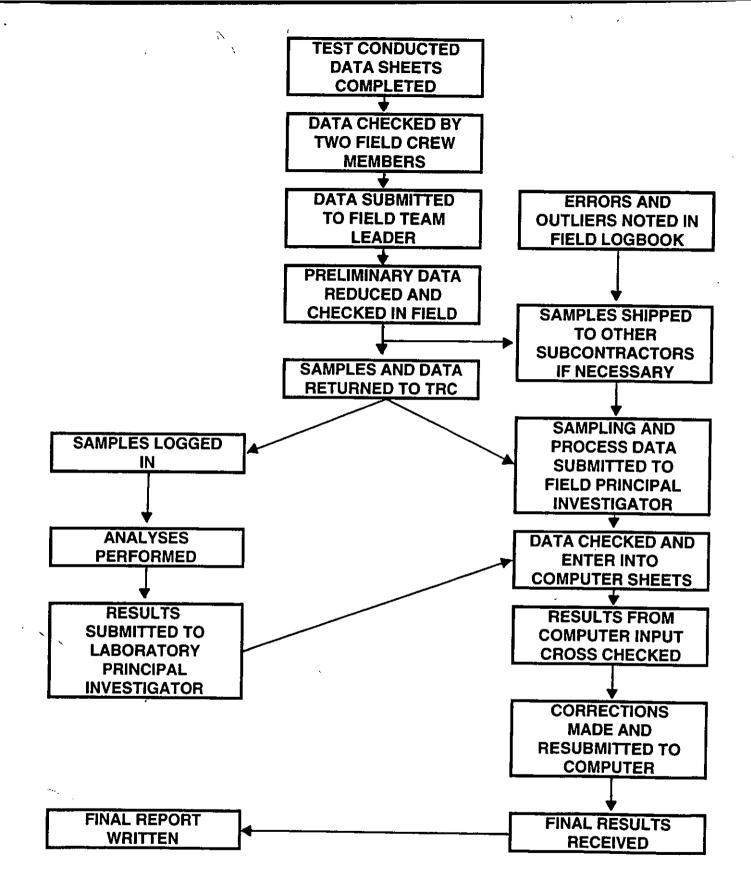
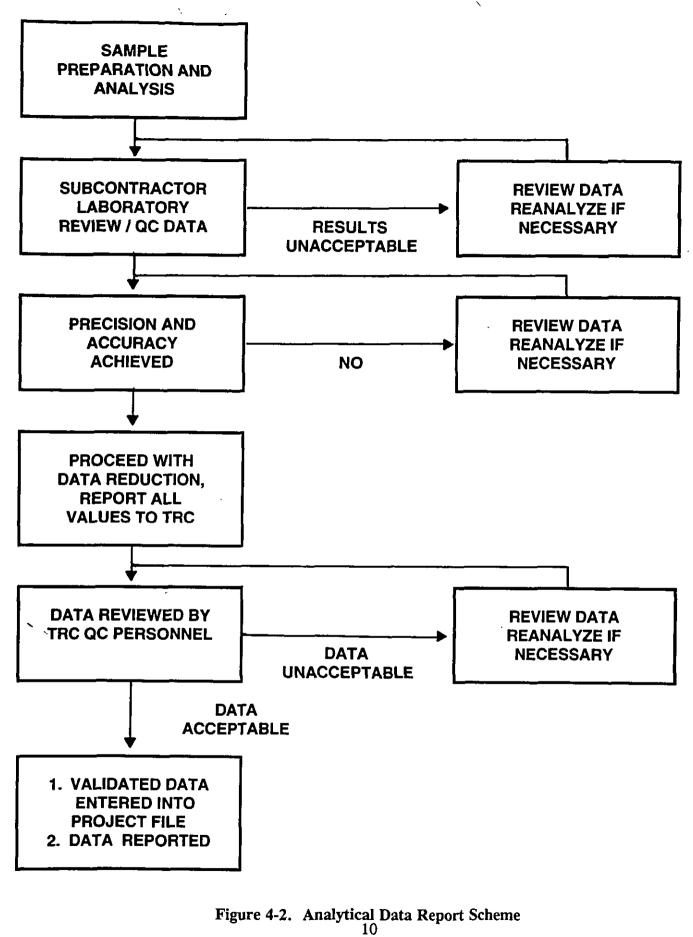



Figure 4-1. Measurement Data Flow Scheme

9

APPENDIX A

 δ^{\prime}

x.

`

ł . .

RAW FIELD DATA SHEETS

Traverse Point Location for Circular and Rectangular Ducts

~

7

١,

	ct Number	·				- Duct Diameter Upstream from Flow Disturbance (Distance 0)
lient		- Thank	Imagrow N	<u>B</u>		
Date:	K					
	ling Locati		INED, SI	lfar.	cooky	(1) Mighur Jambur la far
	al Stack D	iameter:	10		•	C. 40 Accurded an Streets of Ouets
	e Length:	_1.5_				
	Stack Diar		1).5			
		m Disturb		_15'		
Neare Calcul	st Downst		urbance (D):	8,5		
Calcu	ator .	<u> </u>	word			$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$
	Fraction of		Traverse	1	Traverse Point	5 Stark (Lunul w = 0.32) to 0.51 m (12-24 m).
Point Number	Stack ID (1/100)	Stack ID	Point	Nipple	Location	
	I		(1 x 2 = Point)	Length	includes nipple	Duct Diameter Downstream from Flow Disturbance (Distance C)
-1		10,	. 044	1.5	194	from Point of any Type Disturbance (Bend, Contraction, etc.)
_2			,746	\uparrow	296	Rectangular Duct Equivalent Diameter Determination $= \frac{2xLxW}{L-W}$
3			.296		4.46	Location of Traverse Points in Circular Stacks
4			,704		8.54	4 6 6 8 10 12 14 16 18 20 22 24
5			-854		10.0	2 25.0 14.6 10.5 8.2 6.7 5.7 4.9 4.4 3.9 3.5 3.2
6			,956		11.06	3 75.0 29.6 19.4 14.6 11.8 9.9 8.5 7.5 6.7 6.0 5.5 4 93.3 70.4 32.3 22.6 17.7 14.6 12.5 10.9 9.7 8.7 7.9
· 7						5 85.4 67.7 34.2 25.0 20.1 16.9 14.6 12.9 11.6 10.5 6 95.6 80.6 65.8 35.6 26.9 22.0 18.8 16.5 14.6 13.2
8.						7 89.5 77.4 64.4 36.6 28.3 23.6 20.4 18.0 16.1
9						9 91.8 82.3 73.1 62.5 38.2 30.6 26.2 23.0
10						11 93.3 85.4 78.0 70.4 61.2 39.3 32.3
11						12 97.9 90.1 83.1 76.4 69.4 60.7 39.8 13 94.3 87.5 81.2 75.0 68.5 60.2
12				[<u> </u>	14 98.2 91.5 85.4 79.6 73.8 67.7 15 95.1 89.1 83.5 78.2 72.8
13			.			16 98.4 92.5 87.1 82.0 77.0 17 95.6 90.3 85.4 80.6
						18 19 98.6 93.3 88.4 83.9 96.1 91.3 86.9
14						98.7 94.0 89.5
15					•	22 98.9 94.5
16						96.8 24 98.9
17						
18					·	Location of Traverse Points in Rectangular Stacks
19						1 25.0 16.7 12.5 10.0 8.3 7.1 6.3 5.6 5.0 4.5 4.2 2 75.0 50.0 37.5 30.0 25.0 21.4 188 15.7 15.0 13.6 12.5
20						3 83.3 62.5 50.0 41.7 35.7 31.3 27.8 25.0 22.7 20.8 4 87.5 70.0 58.3 5.0 43.8 38.9 35.0 31.8 29.2
21						5 90.0 75.0 64.3 56.3 50.0 45.0 40.9 37.5
22						7 92.9 81.3 72.2 65.0 59.1 54.2
. —						9 94.4 85.0 77.3 70.8
						95.0 85.4 79.2 11
24	<u> </u>					12 95.8

Method 25 Field Data

Client: Location: Date:	<u>IBR</u> <u>INED 60</u> 7-21-93	ne crox4r.	Project Number: Sample Location: Run Number: Operator:	57AUK 1 T. Lusipand
Tank Number:		Trap Number:	<u>GGN</u> Sample ID:	<i>R</i> /1
	Tank V Manometer	acuum Gauge	Barometric Pressure	Ambient Temperature
	mm/cm Hg	mm/cm Hg/in Hg	mm/cm Hg/in. Hg	C /E
Pretest	728	285	28.80	90'
Post Term	156	5.0	× //	96°

Pretest Leak Rate (mm/cm Hg/in Hg/5 min): 0.0' i Sma

1

		Gauge	Flowmeter	Temp	erature	
Clock Time	Sample Time	Vacuum mm/cm Hg	Setting ml/cm	Probe C/F	Box C/F	Comments
1157	0	235	40	130	120	
- 9 j -	5	27.0	Чо		119	Normal
9	10	250	40	139	120	Probe
N	15	23.0	40	129	121	heat set
A	20	21.0	40	130	121	to 135 C
28	25	120	40	128	121	
. 1/2	30	17.0	VO	129	121	Box heat
भ्र	35	15.0	ЧО	129	120	set to
X	40	13.0	4s	128	121	120 C
Ч Г	45	11.0	40	129	122	
溆	50	9,0	to	129	121	
*	55	7.0	to	129	122	
1257	60	5.0	40	129	21	

TRC ENVIRONMENTAL

Method 25 Field Data

Client:	_13P			Project Number:		
Location:	LEXINGTON 1	NB		Sample Location:	INED. Sulse	Caske
Date:	7-21-99			Run Number:	<u> </u>	
				Operator:	TILUNOW	
Tank Number:	6209	Trap Number:	D02	Sample ID:	R/2	
[Tank V	acuum	Ba	rometric	Ambient	
	Manometer	Gauge	Р	ressure	Temperature	
	mm/cm Hg	mm/cm Hg/in Hg	mm/	rm Hg/in. Hg	C (F)	
Pretest	730	28.5	â	8.3	96	
Post Term	154	5.5			96	

Pretest Leak Rate (mm/cm Hg/in Hg/5 min): 0.0 0 5mm

		Gauge	Flowmeter	Temp	erature	
Clock	Sample	Vacuum	Setting	Probe	Box	
Time	Time	mm/cm Hg	ml/cm	(Ĉy F	<u>C</u> F	Comments
1326	0	28.5	40	130	121	
	5	165	yo .	129	120	Normal
	10	25.0	so	131	172	Probe
	15	;23.0	50	130	122	heat set
	20	21.0	6 D	129	12)	to 135 C
	25	i9.0	60	131	120	
	30	17.0	60	130	122	Box heat
	35	15.0		130	122	set to
	40	13.0	60	131	121	120 C
	45	11.0	ا من	131	122	
	50	9,0	60	(30	120	
	55	7.0	Ou)	130	121	
1425	60	55	ي م	31	121	
					<u> </u>	
				u		
				· · · · · · · · · · · · · · · · ·		
					· · · · · · · · · · · · · · · · · · ·	

TRC ENVIRONMENTAL

Method 25 Field Data

Client:	789)			Project Number:		
Location:			-	Sample Location:	INED. SUM	A CORER
Date:	7-7-1-98		•	Run Number:	 ~~	
			•	Operator:	T. Lunpin	
				•		·
Tank Number:	6208	Trap Number:	GGE	Sample ID:	F13	
<u> </u>		-		·		_
	Tank V	acuum	Baro	metric	Ambient	
	Manometer	Gauge	Pre	ssure	Temperature	
	mm/cm Hg	mm/cm Hg/in Hg	mm/cm	Hg/in. Hg	<i>A</i> D E	
Pretest	7.0%	29.0	28	.8	96.3	
Post Term	115	4.5		<i>u</i>	<u> </u>	
			<u>ل</u>			-
Pretest Leak R	.ate (mm/cm Hg/	in Hg/5 min):	<u> </u>	e sund		
		Gauge	Flowmeter	_	erature	
Clock	Sample	Vacuum	Setting	Probe	Box	
Time	Time	mm/cm Hg	ml / cm	Ô/ F	<u>()</u> /F	Comments
1455	0	28.5	60	131	120	
·	5	216.5	60	131	122	Normal
	10	24.5	60	120	122	Probe
	15	22.5	<u>40</u>	131	121	heat set
•	20	20.5	60	132	122	to 135 C
	25	18.5	60	131	120	
	30	16.5	(øD	131	120	Box heat
	35	14.5	6	132	120	set to
· .	40	12.5	60	133	121	120 C
	45	10.5	60	(3)	121	
`	50	<u>ą</u> .5	Q	130	<u> </u>	
	55	6.5	60	130	121	
1550	60	4.5	ي كما	132	121	
	·					
L						
	· · · · · · · · · · · · · · · · · · ·					

TRC ENVIRONMENTAL

VELOCIT	(TRAVERSE		
Plant: LBP	Date: 7.21.98	, ,	
Unit Number: JNED, Super: Cours	Stack Diameter (in.):	10"	
Load Condition:	Stack Gauge Pressure	("11.0): (). (2
Run No.:)	Operators: T. Lun	IDIN	
Project No.:			
Barometric Pressure at Ground Level ("IIg): 28-70			
Pitot Tube ID:	<u> </u>		
Pitot Tube Coefficient: 54	Port Change Pitot Leak Check	Pass	Fail
Estimated Stack CO ₂ %: <u>00</u> 0,%: <u>119</u> 11,0%:	Port #1	x	
Platform Elevation (feet):	Port #2		
Schematic of Stuck Cross Section:	Port #3	<u> </u>	
	Port #4		<u></u>
Laxe	$\frac{1}{15} = 1.0$	6 29	
1 an 25 R'G	$\bar{1}_{5} = 103$	3	

Traverse Point Number	Velocity Ilead (In Il ₂ 0)	Stack Temp. (F)		Traverse Point Number	Velocity Head (In H ₂ 0)	Stack Temp. (F)
1	1.10	102		1	1.12	103
2	1,30	102		2	1.25	102
3	1.12	103		3	1.10	204
4	1.05	104		4	1.08	104
.5	1.22	103		5	1.2	105
4	1:06	103		6	1.05	104
				· · ·		
					<u> </u>	_
			_			
					,	
	<u> </u>					
Ļ <u> </u>	<u> </u>				<u> </u>	
Average:	<u> </u>			Average:		

,

-.

.

TRC

VELOCITY	TRAVERSE
Plant: 189	Date: 7-21,98
Unit Number: INED SUME Cooky	Stack Diameter (in.): 10"
Load Condition:	Stack Gauge Pressure ("H10): 6 . 15
Run No.: 2	Operators: T. Lungorf
Project No.:	
Barometric Pressure at Ground Level ("IIg): 28.8	
Pitot Tube ID:	
Pitot Tube Coefficient:	Port Change Pitot Leak Check <u>Pass</u> <u>Fail</u>
Estimated Stack CO3%: 01 0.%: 29 11.0%:	Port #1
Platform Elevation (feet):	Port #2
Schematic of Stack Cross Section:	Port #3
	Port #4
Ser Com*1	VAR = 1.0640
<i>A</i> ¹	T5 = 103.5

Traverse Point Number	Velocity Ilead (In II ₂ 0)	Stack Teinp. (F)		Traverse Point Number	Velocity Head (In II ₂ 0)	Stack Temp. (F)
1	1.12	102		1	1,15	102
2	1.27	102		2	1.2	103
3	1.10	103		3	1.12	103
<u> </u>	1.06	105		<u> </u>	1.10	<i>10</i> 5
5	1.20	101		<u> </u>	1-23	105
6	1.0	104		6	1.05	104
ļ						
				ļ	,	
				ļ		
		ļ	Į			
Average:		<u> </u>		Average:		

Reference:

.

•

:

47

40 CFR-60, Appendix-A,-Method-2

VELOCIT	Y TRAVERSE	<u></u>	
PLONE: IBP /LEANWOON, NB	Date: 7-21-98	/:	
Unit Number: INED GUILE ZOOKHE	Stack Diameter (in.):	10"	
Load Condition:	Stack Gauge Pressur	e ("11,0): () (01
Run No.: 3	Operators: 7. Lu		
Project No.:		. <u></u>	
Barometric Pressure at Ground Level ("IIg): 28-8			
Pitot Tube ID:			
Pitot Tube Coefficient:	Port Change Pitot Leak Check	Pass	Fail
Estimated Stack CO ₂ %: <u>0,0</u> 0,%: <u>20.4</u> 11,0%:	Port #1	\checkmark	
Platform Elevation (feet):	Port #2	\checkmark	
Schematic of Stack Cross Section:	Port #3		
	Port #4	_	<u> </u>
Scelunt	-VAP= 1. 75= 11	0663	
	15= 11	09.7	

Traverse Point Number	Velocity Head (In H ₂ 0)	Stack Temp. (F)	Traverse Point Number	Velocity Head (In H ₂ 0)
l	1.15	109	1	1.14
2	1.25	109	2	1.23
3	1,10	110	3	1.14
ų	1.07	111	Ч	1.10
5	1.2	110	5	1.25
4	1.03	rog	6	0.1
·		· ·		
·				
	<u> </u>	<u> </u>		
Average:			Average:	

•

÷

.

1

40 CFR 60, Appendix A, Method 2

TRC

Stack Temp. (F)

109

160

110

108

		30 Elevation: @ gurul	
-u MINATION	Ambient Temperature: 90°	Barometric Pressure: (BP): 28.80 Elevation: @ gurl	Probe Length & Type: 3, 54,
FGI 72-0 MOISTURE DETERMINATION	Plant Name: 159 /12X1NGTON Unit: JUED. SUPE 2 COORFIG Ambient Tomperature: 90'	Date: 7-21-43	Sampling Location: JNED. 24.42 Elevation: UD

.

		15 CANS CALL							
		Valiphing Lovation: JINCO. V. W. Elevetion:	Elevation: 40	ProbeL	Probe Length & Type: 3'	\$.			
	Run Number:			Meter B	Meter Box Number: 3	Gamm	Gamma IVI. , 9451		
	Operator: 1 · 1	· Luwin	Raviawer:	Leak Chack:	Pre-test:	0.00 10 12" Post-fast	0.00		
							H		Ň
Traverse Point Number	Elapsed Time	Clock Time	Gas Meter Reading {Ft ³ }	DELTA H (in H ₂ O)	İmpinger Temperature	Gas Meter	Ges Meter Temperature	Pump Vecuum	
-	0	1158	347.405	3.0	(L)	INLET "F	OUTLET •F		
	2		4018		10	× 60		<i>.</i> , .	
	0	~	C 10h		20		- (0.0	
	15		410.7		35		22	5.5	
	20		1151				27	5.0	
					58	77	93	5.0	
	\$	D.	4.4.5		41	93	93	50	
	R	12 EF	423.913				, , ,		_
	-								
									_
	-								_
			Vm = 26,589	он = 3,0		Ave :	Aug. 934		-
	-		-	Analvtical Data		$T_{m} = \frac{93.4}{23.4}$			_
	Impinger #1 Welch		moinger #2 Weight						
Final	118			B JUBIBAA C # JBEUNDIN		Silica Gel Weight g	22		
Initial	1321		A.O.						
Nat Cain	c				b)v				
	18	+++	+	હ	+	n	V ₁ (grams) Total		
								1	
	Net volume o Average above	Net volume of gas through dry	gas	moisture Calculation: meter at meter condition:	$ions = V_m = c_m$	<i>36.50</i> ⁸ cu. ft.	ft.		
		unue meter ter	mperature (1 " +	460) = 460	H° H				

•

. .04715(VL) + <u>17.64 (Y)(Vm)(BP</u>) Tm + 460 4.715 (VL)

Percent moisture = M ==

REF: CFR 60, App. A, Method 4

FOI 75-6 MOISTURE DETERMINATION

1

ł

ł

i

Plant Name: T.S. / L	ZXMENON	Unit: THED. Swee Codes	Ambient Temperature: $\frac{2}{9}\mathcal{D}^{*}$	
Date: 7- 21-92			Barometric Pressure: (BP): 28, 8 Elevation: C 9 rad	Elevation: @ gran
Sampling Location: 573()		Elevation: 40'	Probe Length & Type: 2' 57	
Run Number: À			Mater Box Number: 3	Gemme: [V]: , 9951
Operator: T WOIN	م	Reviewer:	Leak Check: Pre-test: 0.002 @ 10 "Post-test: D. 091 (7 11"	Post-tast: D. Obl 7 114

١

Traverse Point	t Elapsed Time	Clock Time	Gas Meter Reading	DELTA	İmpinger	Gas Meter	Gas Meter Temperature	Pump Vecuum
			1-1-1	(0 ² H u)	lemperature (F°)	INLET "F	OUTLET •F	("0H)
	0	1326	424.157	OC	67	95	1997) 1	0'8
	S		478.2		63	47		s.s
	C1		432.9		وہ	101	96	8.0
	18		431,3		rs.	io3	98	5.8
	20		1.144	-	59	105	99	8.0
	, 25		ין ין ין		29	101	99	0 Ø
	Ŗ	1355	150,448					
		•						
	•							
			vm = 26.291	ند = H∆		Avg.:	Avg.:	
			Anal	Analytical Data			6.9	

..04715(VL) + <u>17.64 (Y)(Vm)(BP)</u> 4.715 (VL)

11 Percent moisture = M

е° Average absolute meter temperature ($T_m + 460$) = 5590

Moisture Calculation:

V_L (grame) Total

۵

S

+

+

13

Silice Gel Weight g

Impinger #3 Weight g

Impinger #2 Weight g

Impinger #1 Weight g

200 200 200

l

ß 201

k 166

ſ

+

و

Net Gain

Final Initial REF: CFR 60, App. A, Method 4 Tm + 460

?

·	Ν.				F	<u> </u>			<u>r-</u>	T			<u> </u>	1	<u> </u>			<u> </u>							
ж. : .7 - *				12 %		Pump Vecuum (Hg*)	5		N	ý	5	Ś													CFR 60, App. A, Method 4
r		ë	101. 9951	0.001 @		21	outlet of	101	101	102	203	102						Avg.:	6.		(()(2)/		V, (grams) Total	ft.	CFR 60, A
; ; ; ;		A. S. Elevetion:	2	O.000 10 Post-test: 0		<u>Ne ter</u>	INLET "F	70]	03	105	101	108	1 45					Avg.:	Tm = 102.3	lica Gal Wainht a			IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	<u>24.572</u> cu. ft.	REF:
· ·	Ambient Temperature: 95	iele (1 & Type: 3			Impinger Tompereture	(64	er O	اما	62	64								5		200	+	" " "	
RMINATIC		Barometric P	Probe Length & Type: Meter Box Number:	Leak Check: Pre-test:		DELTA H (in H ₂ O)													ata	Impinger #3 Weight g	4	١	7	ulation: er conditior = <u>ऽ७२.</u> १	<u>(Y)(Vm)(BP)</u> Tm + 460
. 17. Detei	Rocks R						20											₽ H⊽	Analytical Data	tmoir		-		re Calcı at metı + 460)	
FC. 17 MOISTURE DETERMINATION	UNITYED SUPER		Elevation:	Reviewer:		Gae Meter Reading (F1 ³)	457, 405	462.0	466.J	470.9	475.3	. 1, 67 H	4 <i>8</i> 4.18 ⁷					Vm = 26.582		Impinger #2 Weight g	اەر	اعت	+ 9	Noisture Calculation: Net volume of gas through dry gas meter at meter conditions Average absolute meter temperature $(T_m + 460) = 562.5 \circ$	<u>4.715 (VL)</u> .04715(VL) + <u>17.64</u>
	LEXMERON UN			œ			S											-		Impinger	1	1	9	hrough c eter tem	Ŏ
e				FIGNA			14 55						1526							E B			+	of gas t olute m	∥ ∑
ŗ		Date: 7-21	Run Number: 3		, j		0	5	્વ	15	20	کر	લ્ધ				-			Impinger #1 Weight g	236 236	Lad I	(136)	Net volume o Average abs	Percent moisture =
; · ·						Number															Final	Initial	Net Gain		Perci
								_																	

APPENDIX B

ť

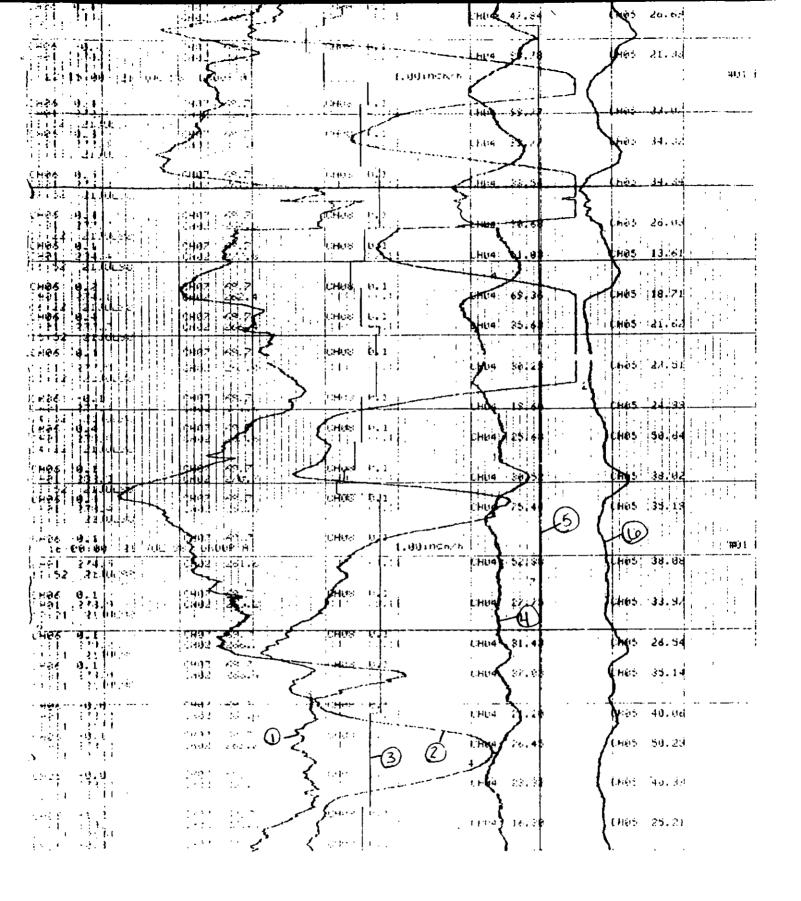
`

N

PROCESS DATA

	13 FR IBP	MHIN	13	883248140	0 83317		
Attn: Rochel							、 、
LEXINGTON PLAN	T	W/E	07/25/98		DAILY STAT	TISTICS	REVISE
SLAUGHTER	MON	TUE	WED	THU	FRI	SAT	TOTA
······································					·	,	
A SHIFT KILL				-	•		
GROSS HOURS	8	Ĝ	8	8	8	4	
NET HOURS	7 75	7.75	7 75	75	7.75	3 75	4
ACT SUNSHINE MIN	0	6	0	8	0	0	
PD SUNSHINE MIN	0	6	0	8	0	0	
HEAD KILLED	2.365	2,365	2,214	2,365	2,230	1,101	12
LIVE WT	3,013,537	2,876,047	2,837,450	2,962,056	2,863,579	1,438,911	15,991
DRESS WT	1,923,966	1,846,132	1,815,978	1,077,733	1,816,021	911,511	10,191
B SHIFT KILL							
GROSS HOURS	7.5	8	6	7.25	B	7.25	
NET HOURS	7.25	7.75	7.75	7	75	7	4
ACT SUNSHINE MIN	٥	0	0	0	10	0	
PD SUNSHINE MIN	0	0	0	0	10	0	
HEAD KILLED	2,064	2,300	2,285	2.070	2,369	2,127	13
LIVE WT	2.557.531	2.844,342	2,872,447	2.557.631	2,908.257	2,622,023	16,362
DRESS WT	1,622,899	1,802,018	1,828,515	1,640,912	1,858,149	1,683,083	10,435
TOTAL KILL #'S							
GROSS HOURS	15.5	16	16	15 25	16	11.25	
NET HOURS	15	15 5	15.5	14.5	15.25	10.75	
ACT SUNSHINE MIN	0	6	0	8	10	0	
PD SUNSHINE MIN	0	6	0	8	10	0	
HEAD KILLED	4,429	4,665	4,499	4,435	4,599	3,228	25
LIVE WT	5.571,068	5,720,389	5,709,897	5,519,687	5,771,836	4,050,934	32,353
DRESSWT	3,546,865	3,648,150	3,644,494	3,518,645	3,674,170	2,594,594	20,626
CONDEMNS	t	1	3	4	. 4	4	
SLUNKS	2	21	3	0	0	0	
PERFECT KILL	4,576	4,730	4,730	4,500	4,734	3,279	26
PLANNED KILL	4,831	4,960	4,992	4,707	4,938	3,462	27.
HD FROM PERFECT	(147)	(65)	(231)	(65)	(135)	(51)	(
HD FROM PLANNED	(402)	(295)	(493)	(272)	(339)	(234)	(2.
TARGETED HD A	2,365	2,365	2,365	2,365	2,365	1.144	12.
TARGETED HO B	2,211	2,365	2,365	2,135	2,365	2,135	13,
TARGET % A	100.00%	100.00%	93 62%	100.00%	94.29%	96.26%	97.4
TARGET % B	93.34%	97 25%	96.62%	96.96%	100.17%	99.63%	97.3
PROCESSING	MON	TUE	WED	THU	FRI	SAT	TOTAL
A SHIFT CUT					2,209.5	1,576.5	12,25
A SHIFT CUT HEAD CUT	2,086.0	2,013.5	2,206.0	2,167.5			
	2,086.0 8	2,013.5 8	2,206.0 B	2,167,5 8	8	5.5	4
HEAD CUT			_	-			4
HEAD CUT GROSS HOURS	8	8 .	B	8	8	5.5	,
HEAD CUT GROSS HOURS NET HOURS B SHIFT CUT	8 <u>7.75</u>	8 7 <u>75</u>	8 7.75	8	8	5.5	11.56
HEAD CUT GROSS HOURS NET HOURS B SHIFT CUT HEAD CUT	8 <u>7.75</u> 1,981.5	8 7.75 1,942.0	B	8 7.75	8 7.75	5.5 <u>5.25</u>	,
HEAD CUT GROSS HOURS NET HOURS B SHIFT CUT	8 <u>7.75</u>	8 7 <u>75</u>	8 <u>7.75</u> 2,008.5	8 <u>7.75</u> 1,956.5	8 <u>7.75</u> 2.099.5	5.5 5.25 1,574 0	,
HEAD CUT GROSS HOURS NET HOURS B SHIFT CUT HEAD CUT GROSS HOURS NET HOURS	8 <u>7.75</u> 1,981.5 6	8 <u>7.75</u> 1,942.0 8	8 7.75 2,008.5 8	8 <u>7.75</u> 1.956.5 8	8 <u>7.75</u> 2.099.5 8	5.5 5.25 1,574 0 6	11.56
HEAD CUT GROSS HOURS NET HOURS B SHIFT CUT HEAD CUT GROSS HOURS NET HOURS TOTAL CUT #'S	8 7.75 1.981.5 6 7.75	8 7.75 1,942.0 8 7.75	8 7.75 2,008.5 8 7.75	8 7.75 1,956.5 8 7.75	8 7.75 2.099.5 8 7.75	5.5 5.25 1,574 0 6	, 11.56
HEAD CUT GROSS HOURS NET HOURS B SHIFT CUT HEAD CUT GROSS HOURS NET HOURS	8 <u>7.75</u> 1,981.5 6	8 <u>7.75</u> 1,942.0 8	8 7.75 2,008.5 8	8 <u>7.75</u> 1.956.5 8	8 <u>7.75</u> 2.099.5 8	5.5 5.25 1.574 0 6 5.75	11,56

•


والمرابع المراجع والمراجع والمحمد المحموم والمحاد المراجعين والمحم

** TOTAL PAGE.01 **

 $\mathbf{X}^{(i)}$

17 19 90 ENP ZENP 202 <u>II</u> ETRET VALUE 70 3PP 2 COON DISCHAREE 2 12 3 POSITICN VALVE 22 B STED 4 LEVEL 4 .9.1 5 CLOY VACOUM PRESSURE To SPD - Notind. **B** CCCKOR 6 CONTROL WHEEL 16 - Not INC VALVE FRED

3317 AHM: Rochelle

APPENDIX C

`.

`

.

1

1

ι.

LABORATORY DATA

Method 25 Analytical Results

prepared for

TRC ENVIRONMENTAL CORPORATION

1307 Butterfield Road, Suite 420 Downers Grove, IL 60515

bу

.

Triangle Environmental Services, Inc.

Reviewed by

Donna Nolen-Weathington Laboratory Analyst

. .

Approved by:

Larry W. Taylor Laboratory Supervisor Approved by:

John Y. Morimoto, Ph.D.

QA Officer

Report 98156

August 6, 1998

P.O. Box 13294

1.4

Research Triangle Park, NC 27709

(800) 367-4862

Triangle Environmental Services, Inc. METHOD 25 TABLE OF RESULTS

Project ID: 22214-0000-00011 (IBP/Lexington, Neb.) (Post-test PT data replaced by laboratory receipt data)

	Sam	ple			co	oncentra	tions (ppm	c) ———		n Mass
	Descr	iption		CO	CH4	CO2	Noncon-	Conden-	TGNMO	Conc.
							densibles			(mgC/cu.m)
1	Super			2	17	6207	5	353	358	179
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Super			Λ	18	5476	19	254	273	136
********	-						ر بین میں میں میں میں میں میں میں میں میں میں			120
3	Super		<	З,	21	3479	. 7	289	296	, 148

< # = Concentration Below Practical Quantitation Limit

ι.

* Please refer to the "Comments on the Analyses" page of the report for additional information.

÷...

, .

. 1

:

. . .

## Triangle Environmental Services, Inc. METHOD 25 PROCEDURES

#### CALIBRATION

Initial calibrations and operational checks of the recovery and analytical systems are conducted at a frequency of no greater than one year between sets. The calibrations satisfy the requirements for Methods 25, 25-C, and 10-B.

Triplicate injections of a calibration gas mixture consisting of 200.0 ppm carbon monoxide, 50.0 ppm methane, 10000 ppm carbon dioxide, and 20.00 ppm propane are made immediately before and after each batch of samples. Daily response factors are calculated from the pre-batch integrated responses (average area count / concentration in ppmC) and must agree within 10% of the response factors of the initial calibrations. Further, the post-batch response factors must agree within 2% of the pre-batch response factors. Both criteria must be met before the analyses are considered valid.

#### CONDENSATE RECOVERY

To flush the trap of CO₂, hydrocarbon-free air is flushed through the trap maintained at -78 °C into the sample tank until less than 10 ppm CO₂ is detected in the flow stream (the concentration of CO₂ is monitored with an NDIR CO₂ detector and measured using a CO₂ analyzer). The sample tank is pressurized to about 1200 mm Hg for analysis and is replaced with an intermediate collection vessel (ICV).

الملاقات والمراجع والمراجع والمراجع

To oxidize the organic material in the trap, hydrocarbon-free air is then passed through the trap heated to 250 °C and the recovery oxidation catalyst into the ICV until less than 10 ppm CO₂ is detected in the flow stream. The ICV is pressurized to about 1200 mm Hg for analysis.

#### ANALYSIS

All samples, which include the daily calibration gas mixture, sample tanks, and ICVs, are analyzed in triplicate using a computer-interfaced gas chromatograph equipped with an automated gas sampling system and a flame ionization detector (FID). CO, CH₄, and CO₂ are eluted from the Unibead 1S-Carbosieve G column and pass through the analytical oxidation and reduction catalyst to the FID. The column is then backflushed to elute the nonmethane organic (NMO) fraction, which passes through the analytical oxidation and reduction catalysts to the FID.

#### CALCULATIONS

Calculations are done in accord with USEPA Method 25 procedures. A sample calculation for one of the samples is provided in the report. CO and CO₂ blanks are used to compensate for a background concentration of (1) "CO" due to the interference of O₂ resulting from the coelution of O₂ and CO and (2) CO₂ due to CO₂ and organic compounds in the recovery carrier gas. A concentration of noncondensibles or condensibles of less than the PQL is considered to be zero in computing the TGNMO.

#### EQUIPMENT

Tanks and ICVs are twice evacuated and filled with ambient air filtered through charcoal and are then evacuated to below 10 mm Hg and monitored for at least an hour to check that the tanks do not leak more than 1 mm Hg/hour. They are then pressurized to greater than ambient pressure with helium, analyzed to ensure < 2 ppmC NMO, and stored for later use.

Traps are flushed at 300 °C for at least 30 minutes with compressed air. Each trap is then flushed at 300 °C for thirty minutes with hydrocarbon-free air. The effluent is then routed through an oxidation catalyst and a reduction catalyst for analysis by FID-GC to confirm less than 10 ppmC total C.

Sampling units are reconditioned by replacing filters and checking that all sections operate properly. The unit is heated (with a PTFE line used in place of a trap) and is flushed with zero air for at least thirty minutes before an aliquot of this flow is injected into the analyzer. If the total carbon concentration is below 10 ppm, the unit is made ready for use and stored for shipment.

# Triangle Environmental Services, Inc. METHOD 25 SAMPLE CALCULATION

Client: TRC Environmental Corporation

ID#98156 Analyzed: 8/4/98

14 V

Project ID: 22214-0000-00011 (IBP/Lexington, Neb.)

Sample # 1 Super Cooker

#### DATA

 $\mathbb{H}^{(n)}_{\mathcal{F}}$ 

Note: All pressure values have been converted when necessary to mm Hg and all temperature values to Kelvin.

Pressure, Temperature, Volume Data:

	Pressure	Temp.	
	(mm Hg)…"	····· (K) ···	Tank N283A:
Presampling	3.5	305.37	Tank Volume = 0.004542 cu.m
Postsampling	575.5	305.37	
Lab Receipt	556.0	297.15	
Tank Final	1218.0	297.15	Trap GGI →
CV Final	1493.0	298.65	Collection Vessel 33:
		· , 4>+ ·	CV Volume = 0.008361 cu.m

#### Response Factors (RF), Practical Quantitation Limits (PQL), and Area Counts:

(	RF area/ppmC)	PQL (ppmC)	Area l	Area 2	Area 3
со	246.7	2	376	358	0
СН4	259.6	2	2,024	2,072	1,977
CO2	256.4	2	723,098	722,715	722,456
Noncondensibles	253.5	5	576	490	589
Condensibles	256.4	4	19,003	19,132	19,107

الالار متعاومة فالمتعام والمراجع المراجع المراجع المراجع

CO Blank = 0 area counts CO2 Blank = 3 ppm

#### CALCULATIONS

Measured Concentrations, corrected for blank (ppmC):

Cm(CO) = [Area(CO) - CO Blank] / RF(CO)= [ 376 - 0 ] / 246.7 = 1.5= [ 358 - 0 ] / 246.7 = 1.5= [ 0 - 0 ] / 246.7 = 0.0Cm(CH4) = Area(CH4)/RF(CH4)= 2024 / 259.6 = 7.8= 2072 / 259.6 = 8.0= 1977 / 259.6 = 7.6Cm(CO2) = Area(CO2)/RF(CO2) - CO2 Blank= 723098 / 256.4 - 3 = 2817.2= 722715 / 256.4 - 3 = 2815.7= 722456 / 256.4 - 3 = 2814.7 Triangle Environmental Services, Inc. Method 25 Sample Calculation (p. 2) Cm(Noncondensibles) = Area(Noncondensibles)/RF(Noncondensibles) = 576 / 253.5 = 2.3= 490 / 253.5 = 1.9= 589 / 253.5 = 2.3Cm(Condensibles) = Area(Condensibles)/RF(Condensibles) - CO2 Blank = 19003 / 256.4 - 3 = 71.1= 19132 / 256.4 - 3 = 71.6= 19107 / 256.4 - 3 = 71.5<u>Pressure-Temperature Ratio, Q(i) = P(i)/T(i) (mm Hq/K):</u> Q(2) = 3.5 / 305.37 = 0.011Tank Presampling: Tank Postsampling: Q(1) = 575.5 / 305.37 = 1.885 Q(5) = 556.0 / 297.15 = 1.871Tank Lab Receipt: Tank Final: Q(3) = 1218.0 / 297.15 = 4.099CV Final: Q(4) = 1493.0 / 298.65 = 4.999Volume sampled (dscm) = 0.3857 x Tank Volume x [Q(1)-Q(2)] $= 0.3857 \times 0.004542 \times [1.885 - 0.011]$ = 0.003281Averages and % Relative Standard Deviations (%RSD) of Cm's are calculated. (%RSD of C=%RSD of Cm) <u>Calculated Concentrations</u> (ppmC):  $C(CO) = Q(3)/[Q(1)-Q(2)] \times Cm(CO)$  $= 4.099/(1.885 - 0.011) \times 1.0 = 2.2$  $C(CH4) = Q(3)/[Q(1)-Q(2)] \times Cm(CH4)$  $= 4.099/(1.885 - 0.011) \times 7.8 = 17.1$  $C(CO2) = Q(3)/[Q(1)-Q(2)] \times Cm(CO2)$  $= 4.099/(1.885 - 0.011) \times 2815.9 = 6161.9$  $C(Noncondensibles) = Q(3)/[Q(1)-Q(2)] \times Cm(Noncondensibles)$  $= 4.099/(1.885 - 0.011) \times 2.2 = 4.8$ C(Condensibles) = Volume(CV)/Volume(Tank) x Q(4)/[Q(1)-Q(2)] x Cm(Condensibles)  $= 0.008361/0.004542 \times 4.999/(1.885 - 0.011) \times 71.4 = 350.9$ Total Gaseous Non-Methane Organics(TGNMO)=C(Noncondensibles)+C(Condensibles) **= 4.8 +350.9** = 355.6 Mass Concentration (mgC/cu.m)  $\approx$  0.4993 x TGNMO  $= 0.4993 \times 355.6 = 177.6$ 

. . . . . . . . . . .

.....

## Triangle Environmental Services, Inc. METHOD 25 SAMPLE QA/QC DATA

------

#### DAILY RECOVERY SYSTEM CHECKS

4.3.1.1* Condensate Recovery System Leak Check

Evacuate system to ≤10 mm Hg absolute pressure, isolate system, and monitor for ten minutes. Requirement: Pressure Change ≤3 mm Hg

4.3.1.2* Condensate Recovery System Background Test

Analyze recovery system effluent for CO₂ concentrations. Requirement: CO₂  $\leq$  10 ppm

#### 4.3.1.3* Condensate Oxidation Catalyst Efficiency Check

Analyze 1% methane standard through oxidation catalyst. Requirement:  $CO_2 = CH_4$  concentration  $\pm 2\%$ 

#### DAILY ANALYZER CHECKS

#### 5.3* Daily Calibration

**Response Factor Checks** 

Requirement: Daily RF = Initial RF ± 10% See the individual sample data sheet for the daily response factor

	Initial RF for Analyzer A 4/8/98	Initial RF for Analyzer B 4/21/98
со	219.06	247.37
CH₄	227.99	250.07
CO2	225.44	250.03
NMO	228.34	250.52

Triplicate injections of a mixture of CO, CH₄, CO₂, and C₃H₈ are made before and after each batch of samples.

* USEPA Method 25 Protocol Reference Number

Triangle Environmental Services, Inc.

#### INITIAL CONDENSATE RECOVERY SYSTEM TESTS

#### 5.1.1* Carrier and Auxiliary Gas Blank

Requirement:  $CO + CH_4 + CO_2 + NMO \le 5 ppm$ 

5.1.3* System Performance Check

Volume Injected	Compound	Ave	rage 9	% Rec	overy		% ]	RSD	
50 uL	Hexane	101	102	98.8	104.6	0.058	0.101	1.68	0.229
50 uL	Decane	97	100	93.7	103.3	0.120	0.047	1.7	0.359
10 uL	Hexane	104	107	92	90.0	0.118	0.145	1.206	0.135
<u>10 uL</u>	Decane	98	97	99.6	93.3	0.119	0.232	1.36	0.254
	Requirement:	_	100	± 10%	>		5	5	

#### INITIAL NMO ANALYZER PERFORMANCE CHECKS

5.2.1* Oxidation Catalyst Efficiency Check Analyzer A,4/8/98; Analyzer B,4/21/98

FID response with reduction catalyst in bypass mode = 0, 0 Requirement: ≤1%

#### 5.2.2* Reduction Catalyst Efficiency Check Analyzer A,4/8/98; Analyzer B,4/21/98

Response of CH, with oxidation and reduction catalysts in series mode compared to response with both catalysts in bypass mode. 100.0%, 100.0% Requirement: > 95%

5.2.3* Analyzer Linearity Check+NMO Calibration Analyzer A,4/8/98;Analyzer B,4/21/98

100x(1-RF/RFaver	age)	Requirement:
max. dev. CO:		± 2.5%
max. dev. CH₄:	-2.00%, -1.77%	± 2.5%
max. dev. CO ₂ :	+1.71%, +2.10%	± 2.5%
max. dev. NMO:	-1.42%, -1.12%	± 2.5%
max. %RSD:	1.50%, 0.54%	≤ 2%
<u>RF (NMO)</u>	0.98, 1.00	$1.0 \pm 0.1$
$RF(CO_2)$	0.98, 1.00	1.0 ± 0.1

· ..'

* USEPA Method 25 Protocol Reference Number

• • •

#### 5.2.4* System Performance Check

Analyzer A,4/8/98; Analyzer B,4/21/98, 5/1/98

a.a. ak

	Measured Value	, Expected Value	Requirement
	Analyzer A	Analyzer B	
Propane in Mix	19.6, 20.0	20.22, 20.0	± 5%
Hexane	50.6, 51.6	51.6, 51.6	± 5%
Toluene	20.3, 20.0	19.34, 20.0	± 5%
Methanol	104.5, 109.1	109.55, 109.0	± 5%

#### **EQUIPMENT CHECKS**

#### 4.1.1* Clean Sampling Equipment Check

Sample Unit	<10	ppmC total C	@ 100%
Тгар	<10	ppmC total C	@ 100%
Tank	< 2	ppmC NMO	@ 100%

#### 4.1.2* Sample Tank Evacuation and Leak Check

201.4

Tank evacuated to  $\leq 10$  mm Hg absolute pressure, monitored for  $\geq 1$  hour, and passed for use if no pressure change (< 1 mm Hg/br) is noted.

#### 5.4* Sample Tank and ICV Volumes

Tank weighed empty, filled with deionized distilled water (temperature recorded), and weighed to the nearest 2 g. Volume calculated based on density of water at that temperature and results recorded in permanent file.

* USEPA Method 25 Protocol Reference Number

# Triangle Environmental Services, Inc. METHOD 25 DATA REPORT

Client: TRC Environmental Corporation

 $\mathbf{i}$ 

ID#98156 Analyzed: 8/4/98

N

Project ID: 22214-0000-00011 (IBP/Lexington, Neb.)

Sample # 1 Super Cooker

#### Pressure, Temperature, Volume Data:

	Pressure	Temp.	P/T	Tank N283A:
	(mm Hg)	(K)		
Presampling	3.5	305.37	0.011	Tank Volume = 0.004542 cu.m
Postsampling		305.37	1.885	Volume sampled = $0.003281 \text{ dscm}^3$
Lab Receipt	556.0	297.15	1.871	$\frac{\text{Lab Receipt } P/T}{\text{Postsampling } P/T} = 0.993$
Tank Final	1218.0	297.15	4.099	Trap GGI →
CV Final	1493.0	298.65	4.999	Collection Vessel 33:
				CV Volume = 0.008361 cu.m

#### Response Factors (RF), Practical Quantitation Limits (PQL), and Area Counts:

	RF (area/ppmC)	PQL (ppmC)	Area 1	Area 2	Area 3
CO	246.7	2	376	358	0
СН4	259.6	2	2,024	2,072	1,977
co2	256.4	2	723,098	722,715	722,456
Noncondensible	s 253.5	5	576	490	589
Condensibles	256.4	4	19,003	19,132	19,107

Recovery Oxidation Catalyst Efficiency Check: CO2/CH4 = 100.6% CO Blank = 0 area counts CO2 Blank = 3 ppm

Concentrations:	pp	mC		
*=corrected for Blank	Amount	±	SD	&RSD
CO*	2	±	2	86.7
CH4	17 ·	±	0	2.3
C02*	6162	±	3	0.0
Noncondensibles	5	±	0	9.8
Condensibles*	351 [,]	±	1 1	0.4
TGNMO	356			

1

Mass Concentration

. . . . . . . . . . . . . . . . . . .

178 mgC/cu.m

1

# Triangle Environmental Services, Inc. METHOD 25 DATA REPORT

Sample # 2 Super Cooker

Pressure, Temperature, Volume Data:

2

	Pressure (mm Hq)	Temp. (K)	P/T	Tank 6209T:
Presampling	1.5	308.71	0.005	Tank Volume = 0.006126 cu.m
Postsampling	577.5	308.71	1.871	Volume Sampled = 0.004409 dscm
Lab Receipt	523.0	297.15	1.760	$\frac{\text{Lab Receipt } P/T}{\text{Postsampling } P/T} = 0.941$
Tank Final	1512.0	297.15	5.088	Trap DDZ →
CV Final	1500.0	299.65	5.006	Collection Vessel 12: CV Volume = 0.008343 cu.m

#### Response Factors (RF), Practical Quantitation Limits (PQL), and Area Counts:

	RF (area/ppmC)	PQL (ppmC)	Area 1	Area 2	Area 3
co	246.7	3	347	330	368
CH4	259.6	3	1,635	1,597	1,581
CO2	256.4	3	485,063	485,058	485,253
Noncondensible	s 253.5	6	1,703	1,679	1,669
Condensibles	256.4	3	17,479	17,554	17,528

Recovery Oxidation Catalyst Efficiency Check: CO2/CH4 = 100.5% CO Blank = 0 area counts CO2 Blank = 3 ppm

Concentrations:	PP	mC	·			
*=corrected for Blank	Amount	±	SD	&RSD	.* '	
CO*	4	t	0	5.5		
CH4	17	±	0	1.7		
CO2*	5152	±	1	0.0		
Noncondensibles	18	±	0	1.0		
Condensibles*	239 -	±	1	0.2		
TGNMO	257				·	

Mass Concentration

۰.

128 mgC/cu.m

# Triangle Environmental Services, Inc. METHOD 25 DATA REPORT

Client: TRC Environmental.Corporation .... ID#98156 -Analyzed:-8/4/98~

Project ID: 22214-0000-00011 (IBP/Lexington, Neb.)

Sample # 3 Super Cooker

Pressure, Temperature, Volume Data:

	Pressure (MN Hq)	Temp. (K)	P/T	Tank 6208T:
Presampling	4.2	308.71	0.014	Tank Volume = $0.006109$ cu.m
Postsampling	615.2	308.71	1.993	Volume Sampled = 0.004663 dscm
Lab Receipt	555.0	298.15	1.861	$\frac{\text{Lab Receipt } P/T}{\text{Postsampling } P/T} = 0.934$
Tank Final	1395.0	298.15	4.679	Trap GGE →
CV Final	1496.0	300.65	4.976	Collection Vessel 40: CV Volume = 0.008388 cu.m

#### Response Factors (RF), Practical Quantitation Limits (PQL), and Area Counts:

	RF (area/ppmC)	PQL (Dmcq)	Area 1	Area 2	Area 3
со	246.7	2	. 0	34	308
CH4	259.6	2	2,194	2,209	2,191
CO2	256.4	2	353,186	352,875	353,081
Noncondensible	s 253.5	5	645	699	638
Condensibles	256.4	3	20,779	20,939	20,728

Recovery Oxidation Catalyst Efficiency Check: CO2/CH4 = 100.4% CO Blank = 0 area counts CO2 Blank = 3 ppm

Concentrations:	r pp	mC	— , ·	
*=corrected for Blank	Amount	±	SD	%RSD
C0*	< 2			
CH4	20	±	<b>0</b> I m	0.4
C02*	3248	±	1 :	0.0
Noncondensibles	6	±	0	5.1
Condensibles*	270	±	1	0.5
TGNMO	276			•

#### Mass Concentration 138 mgC/cu.m

< # = Concentration Below Practical Quantitation Limit

# Chain of Custody

1

**۲**۰ ،

ς.

Elver, internation	hmenjuj tents, ₁₂	Star Star	27 2 3 3 3	\$ \$ \$ \$ \$ \$	(630) 310-1122 CHA JF Cur	A JF C, 0D'CO	•	۰ ۲۰۰ ۱۰۰
PROJECT NO. 2,2,3,14-000 -	PROJECT I		Tw 1	ver	LEXMETON, NB		PARAMETERS	
SAMPLERS: (Signature)	1			<b>e</b>	(Printed)	/ / / ×	////	· ·
Jam J	L	• ]			Tom Lunding	2 / 2 / c / /		BEMARKS
FIELD SAMPLE NUMBER	DATE	TIME	сомь.	8 <b>4</b> AD	STATION LOCATION	20 45 V		
233 (JANK)	7/1/246	1121	>		Supre Cooker Exhaust		<b>₹</b>	Aunityses for RM 25
GGI (TRAP)	1/3/48 1151	1151	>		M. 1'	× -		
62001 (TANE)	84/ <b>6</b> 2/1	13,72	>		2	×		
	1/2 /2	13.25	>		2	<b>&gt;</b>		
LZOS (TANK)	7/ <b>3</b> 458	الا ^{حن}	>		•			
GGE (TRAP)	84/adl	14 ⁵⁵	$\checkmark$		2			
					-			
Relinquished by: (Signature)	lener L	1/2	Date / Time 7/28/98 (CDP.H	/ Time روحه ۲	Received by: (Signature)	Relinquished by: <i>Signature)</i>	Date / Time	Received by: Symmetry
Printed)	ł	2	41021 86/HC/L	1021 S	(Printed) 2,4	(Printed)		(Printed)
Relinquished by: <i>(Signature)</i>	nature)		Date /	/ Time	Received for Laboratory by: (Signature)	Date / Time Remarks 7/24/28 12:34 4440		
(Printed)					"Unell & Wirnet	sont		
Citizet Constant Blue								

Distribution: Original Plus One Accompanies Shipment (white and yellow); Capy to Coordinator Field Files (pink).

# METHOD 25 SAMPLE DATA Triangle Environmental Services, Inc.

, y , y

Company Name:	IBP / LEXINGTON	I, NB	Date: 7	-21-98
Units of Measure:	Pressure: 🖾 mm		Temperature: 🕅	•F 🗌 •C
Run #	Tank ID # 28	3	Trap ID # GG	}
Description (20 character limit)	SUPER	СООК	E R	
	Barometric Pressure	Taok Vacuum	Absolute Pressure	Temperature
Pre-Test Data	28.8	28.5	728	90'5
Post-Test Data	28.8	5.0	156	96.5
Run.# 2	Tank ID # . Let	69	Trap ID # .DD	2
Description (20 character limit)	SUPER	COOK	ER	
	Barometric Pressure	Tank Vacuum	Absolute Pressure	Temperature
Pre-Test Data	238	285	730	96.8
Post-Test Data	23.8.	5,5	154	46
Run # 3	Tank ID # · 62	ويرجعه المتحدث والمتحدث والمتحدث	Trap ID # GGE	
Description (20 character limit)		- C O O K		
	Barometric Pressure	Tank Vacuum	Absolute Pressure	Temperature
Pre-Test Data	28.75	723 385	726	965
Post-Test Data	28:75	13th 4.5	115	968
Run # .	Tank ID #	•	Trap ID #	
Description (20 character limit)				
*210-04	Barometric Pressure	Tank Vacuum	Absolute Pressure	Temperature
Pre-Test Data			·	
Post-Test Data		-		
Run #	Tank ID #		Trap ID #	
Description 20 character limit)				
	Barometric Pressure	Tank Vacuum	Absolute Pressure	Temperature
Pre-Test Dala				
Post-Test Data		•		
مد المالية الم	Pack in S		1919 H 191 W	
Description 20 character limit)				
	Barometric Pressure	Tank Vacuum	Absolute Pressure	Temperature
Pre-Test Data			· · · · · · · · · · · · · · · · · · ·	

. [QA forms]m25_data.frm 8/94

•

APPENDIX D

Ň

# EQUIPMENT CALIBRATION

DEFTECT DO		047 IDD 4 170							
PRETEST DRY METER BOX N		CALIBRATIU	N DATA FU	RM (ENGLIS 3	H UNITS)				
DRY GAS MET		,		1197469					
DATE:	DR HOMDER,	•		2/2/98					
REFERENCE 1	FEST METER I	NUMBER-		27865					
DELTA-H		0.5	1	1.5	2	2.5	3	3.5	4
Vwr	521.055	527.050	533.777	539.676	546.597	552.364	558.432	564.039	569.999
Vdr	37,435	43.636	50.553	56,606	63.691	69,599	75.930	81.677	87.795
Tw		68	70	70	70	70	70	70	70
Tdi		75	81	87	91	95	97	98	100
Tdo		77	77	79	80	81	83	84	85
Td(AVE)		75.8	79.0	82.8	85.3	87.8	89.8	91.0	92.3
THETA	ļ	14.0	11.0	8.0	8.1	6.0	6.0	5.0	5.0
VAC.		1	1	1	1	1	1	1	1
Yi		0.9797	0.9866	0.9943	1.0000	1.0026	0.9868	1.0055	1.0050
DELTA-H@i		1.5263	1.4989	1.5358	1.5181	1.4928	1.6121	1.5263	1.5403
Vw		5.995	6.727	5.899	6.921	5.767	6.068	5.607	5.96
Vd		6.201	6.917	6.053	7.085	5.908	6.331	5.747	6.118
Vd/Min.		0.4429	0.6288	0.7566	0.8747	0.9847	1.0552	1.1494	1.2236
Y(AVE)		0.9951							
DELTA-H@(A)	VIE)	1.5313	(	CALIBRATEI	D BY		D.W.		
Pbar		29.47							

1

#### Vwr=REFERENCE TEST METER READING

Vdr=DRY GAS METER READING

Vw=GAS VOLUME PASSING THROUGH THE REFERENCE TEST METER, CUBIC FEET Vd=GAS VOLUME PASSING THROUGH THE DRY GAS METER, CUBIC FEET Tw=TEMPERATURE OF THE GAS IN THE REFERENCE TEST METER, DEGREES F Tdi=TEMPERATURE OF THE INLET GAS OF THE DRY GAS METER, DEGREES F Tdo=TEMPERATURE OF THE OUTLET GAS OF THE DRY GAS METER, DEGREES F Td=AVERAGE TEMPERATURE OF THE GAS IN THE DRY GAS METER, DEGREES F DELTA-H=PRESSURE DIFFERENTIAL ACROSS ORIFICE, in. WATER Yi=RATIO OF ACCURACY OF REFERENCE TEST METER TO DRY GAS METER FOR EACH RUN Y=AVERAGE RATIO OF ACCURACY OF REFERENCE TEST METER TO DRY GAS METER DELTA-H@i=ORIFICE PRESSURE DIFFERENTIAL THAT EQUATES TO 0.75 cfm OF AIR AT 68 DEGREES F AND 29.92 INCHES OF Hg, INCHES OF WATER

DELTA-H@=AVERAGE ORIFICE PRESSURE DIFFERENTIAL THAT EQUATES TO 0.75 cfm OF AIR

AT 68 DEGREES F AND 29.92 INCHES OF Hg.,INCHES OF WATER TOLERENCE OF YI=PLUS OR MINUS 0.020 FROM Y TOLERENCE OF DELTA-H@I=PLUS OR MINUS 0.20 FROM DELTA-H@

Pbar=BAROMETRIC PRESSURE, in. Hg.

THETA=TIME OF CALIBRATION RUN, Min.

Thermocouple Calibration Form

۰.

, [ 7

Meter Box #3

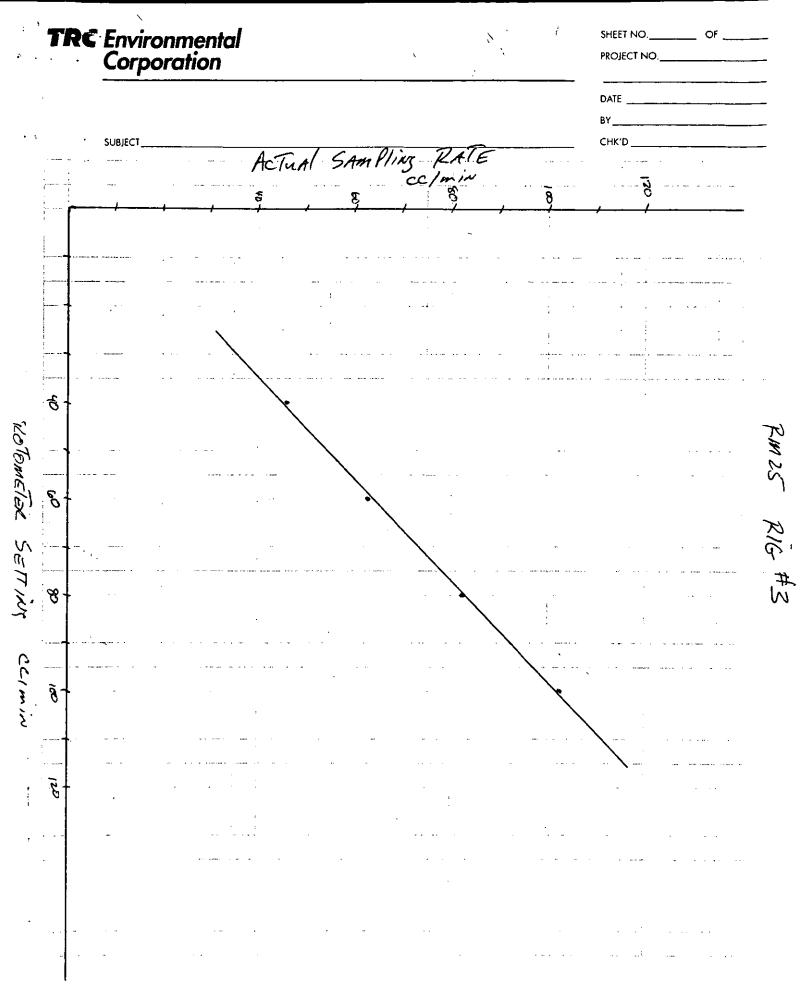
Thermocouple	Thermocouple Temperature	Reference Temp #1	Temperature Reading #2	Reference Temp #2	Temperature	Reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the reference by the refere
1 Stack	71	72	188	186	288	286
2 Probe	71	72	188	186	288	َ 286
3 Filter	72	72	187	186	287	286
4 Impingers	71	72	187	186	288	286
5 Spare	71	72	187	186	287	286
6 DGM In	39	38	71	72	109	108
7 DGM Out	38	38	71	72	109	108
:						

SRM 4-8-96 Calibrated By: Date:

Criteria: Impinger temperature must be with 2 °F of reference temperature Criteria: DGM temperature must be with ±5.4 °F of reference temperature Criteria: Stack temperature must be with 1.5% of reference temperature

. '

٢


# **ROTOMETER CALIBRATION SHEET**

Date:	4/28/97
Initials:	
Part #:	RIG #1

<b>Rotometer Scale:</b>	0	~120	) <u>c</u> en
Rotometer Use:	Rmz	5 SAM	<u>Me</u> Ris
Calibrated Agains	st:{E	3ios	DC-1

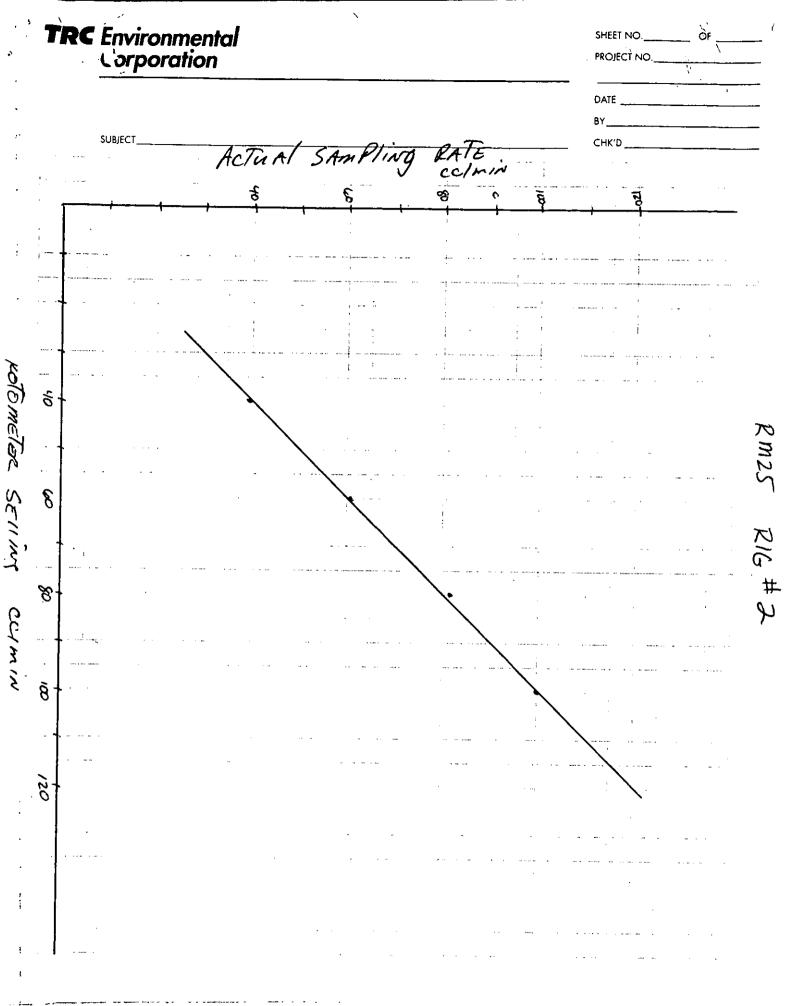
`

Setting on Rotometer (cc/min)	Volume (mL)	Time (sec)	Actual Sampling Rate (cc/min)
40		· · · · ·	38,66
60			61.12
80			80.39
(00			98.52



# **ROTOMETER CALIBRATION SHEE**

۲


Date:	4/28/97
Initials:	<i>Qu</i>
Part #:	RIG #2

7

'\

Rotometer Scale: d/20 ccm Rotometer Use: R/s Sm Ple Ris Calibrated Against: Los DC-1

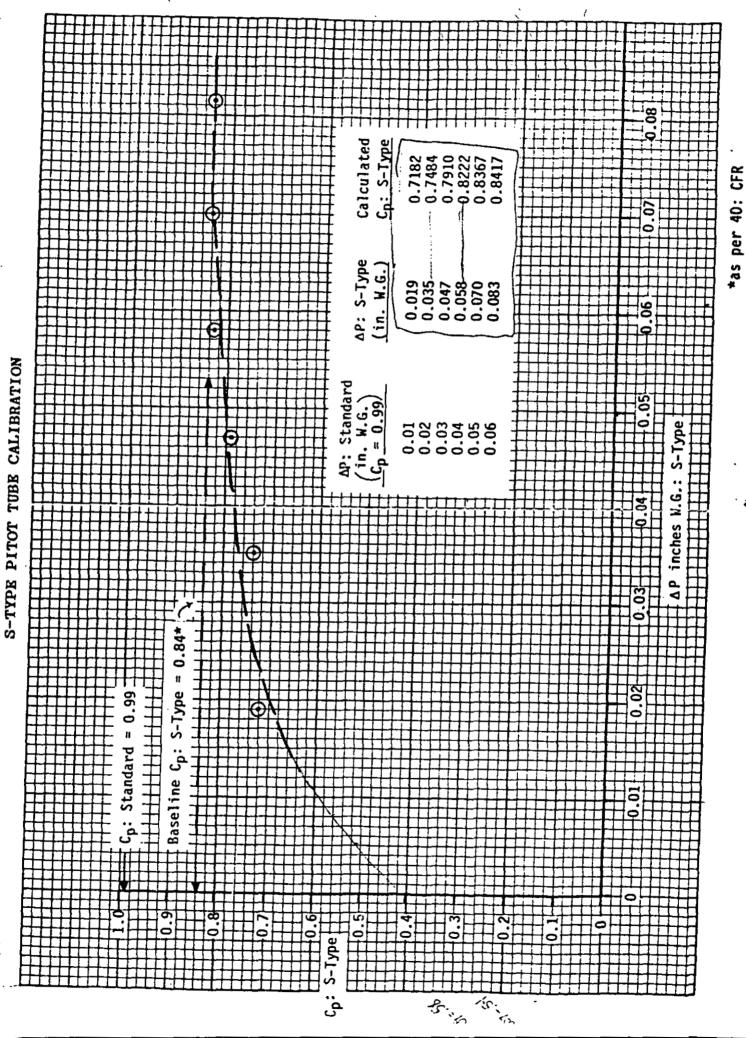
WARAFARAMINE IN A BANKAKA AND AND A A			
Setting			tual Sang Rate min) 95
on Rotometer	Volume	Time	Sang Bate
(cc/min)	(mL)	(sec)	(nin)
40			95
60			10
80			31
100		<u> </u>	.3
		<b></b>	
		l	
	·	·	
	······		
		······································	
			T



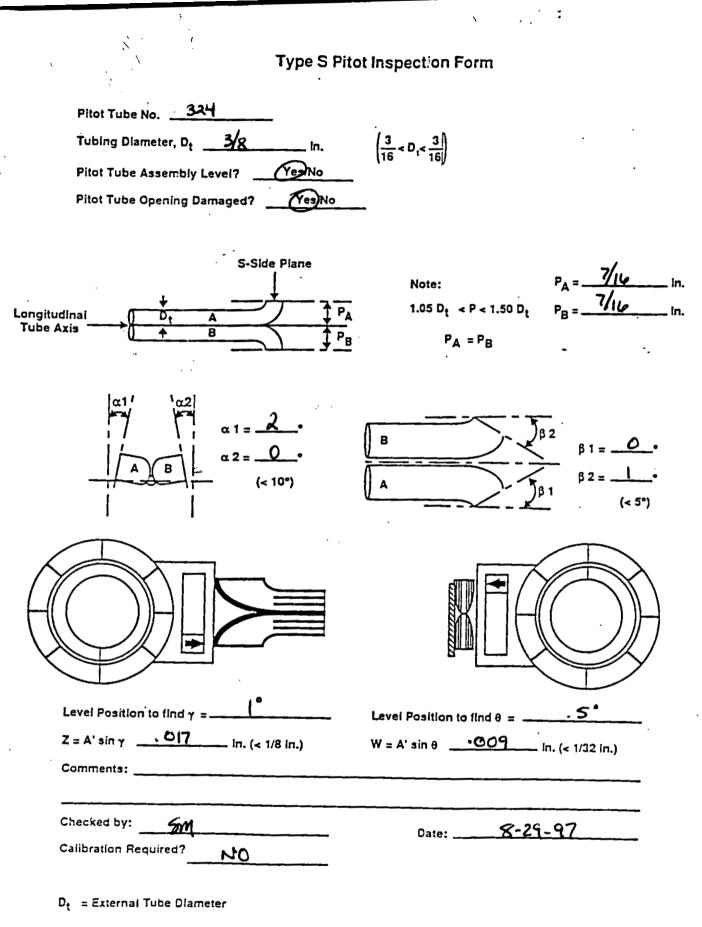
# **ROTOMETER CALIBRATION SHEET**

2

Date:	4/28/97
Initials:	DW
Part #:	RIG #3


١,

Rotometer Scale: <u>0-120 ccm</u> Rotometer Use: <u>RM25 SAMPLER</u> Calibrated Against: <u>Bios</u> <u>D</u>C-1


Setting on Rotometer	Volume (mL)	Time (sec)	Actual Sampling Rate (cc/min)
(cc/min) 40	(1112)	(306)	46.27
F			10.21
60			63.03
80			82.97
100			102.40
			· · · · · · · · · · · · · · · · · · ·

TRC	Environmental Corporation	X	· · · · · · · · · · · · · · · · · · ·			SHEET NO (	
· -	SUBJECT					DATE BY CHK'D	
• • • • •		Act	Tural Ro By cel	TOMETER mine	A EADing		
· · · · · · · · · · · · · · · · · · ·					n mandar area a		
			· · · · · · · · · · · · · · · · · · ·		are - a andre e anta - e	· · · · · · · · · · · · · · · · · · ·	· · · ·
		·····	••••••••••••••••••••••••••••••••••••••	· · · ·		······································	•
5-	··· •			. <b>.</b>			<b>ا</b> ر
)						······································	
▶ •						· · · · · · · · · · · · ·	
t i			; 			• •	C
e B	an an ann a' annaich ann a' ann a' annaich ann a' ann	<u></u>					
21							
è	ه د به قد مع د		- · ·	 		• • • • •	
			19 16au - 11	<b>.</b>			

_ (



1.5



TRC

A' = Distance Between Tips ( $P_A + P_B$ ) inches

:

\$

APPENDIX E

`

# **CALCULATION FORMULAS**

# **CALCULATION FORMULAS**

*`,* .

i

۰,

` بو

ē (,

:

ŗ :

1

5

Linearity	Percent Difference = <u>Analyzer Response - Cylinder Value</u> x 100 Span
Bias	System Bias = <u>System Response - Analyzer Respor</u> x 100 Span
Drift	System Drift = <u>System Response - Previous System Response</u> x 100 Span
Moisture	Moisture = <u>100 x Volume water vapor (scf)</u> (Volume Gas (dscf) + Volume water vapor)
Stack Area	Area = 3.14 x Radius^2
AFPM	Actual Feet per Minute = 5130 x .84 x SDE Avg x (1 / (stack pres. Hg x wet MW)) ^.5
ACFM	Actual Cubic Feet/Min = AFPM x Stack Area (sqaure feet)
DSCFM	Dry Std. Cubic Feet/Min = SCFH / 60 min 20.9
DSCF/HR	Dry Std. Cubic Feet/Hr = MMBTU/HR x F-Factor x (20.0/ (20.9-{RUN# O2%}))
MMBTU / HR	Million BTU's per Hour = Fuel Flow (scfm gas) x Heat Content ( BTU/scf) x 60 min/hr
Humidity	Humidity (gal H2O/gal. air Taken From Chart (Wet bulb / Dry bulb temps)
EFFLUENT GAS	S CONC CALCULATION GAS CONC. = (Avg Stk Conc - Avg Zero Cal) x (Span Conc/(Avg Span Cal - Avg Zero Cal))
<b>PPM NOx</b>	NOx PPM @15% O2 = PPM NOx x ((20.9% O2 · 15% O2)/(20.9% O2 - Actual O2%))
PPM CO	CO PPM @15% O2 = PPM CO x ( ( 20.9% O2 - 15% O2 ) / (20.9% O2 - Actual O2% ) )
ISO NOx	ISO NOx = PPM NOx @15% O2 x { (760/Barometric mm Hg}^.5 x 2.178^(19 x (gH2O/gAir00633)) } x (288/Ambient temperature in degrees (K))^1.53
LBS/HR NOx	Pounds per hour NOx = PPM ISO NOx x 1.554E-7 x 46 (MW) x DSCFM
LBS/HR VOC's	Pounds per hour VOC's = PPM (C3H8 - CH4) x 1.554E-7 x 16.01 (MW) x DSCFM
LBS/HR CO	Pounds per hour CO = PPM CO x 1.554E-7 x 28 (MW) x DSCFM
F-Factor	F-Factor, dscf / MMBTU = {1,000,000 x (3.64x%H)+(1.53x%C)+(.57x%S)+(.14x%N)46x%O)] / GCV, (I