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1.0 INTRODUCTION

1.1 BACKGROUND

In 1985 the Department of Environmental Management (DEM) of the State
of Rhode Island initiated a Toxics Integration Project for the purpose of
estimating emissions of, and locating sources of toxic pollutants in the
Upper Bay Area of that state. Results from Phase I of the project
identified sewage sludge incinerators as potentially significant sources of
air toxics in the Upper Bay Area. The study concluded that ambient metal
concentrations from sludge incineration could pose a potentially significant
health risk to the exposed pubh‘c.1

As a result of the Phase I findings, the DEM contracted Radian
Corporation to conduct a more refined evaluation of toxic metal emissions
from two Rhode Island sewage sludge incinerators, the Cranston and
Providence (Fields Point) facilities. This more detailed Phase II
evaluation involved participating in a joint effort with the U.S.
Environmental Protection Agency’s Water Engineering Research Laboratory to
perform emission tests at the Cranston facility. Further, this Phase II
evaluation involved modeling of metal and organic emissions measured during
the Cranstcn test program and modeling of site-specific emission estimates
developed for the Providence incinerator.

This document describes results of the Phase II evaluation. The
specific objectives of the evaluation were to:

] develop site-specific emission estimates for arsenic, beryllium,
cadmium, copper, total chromium, hexavalent chromium, lead, nickel
selenium, and zinc emissions from the Providence (Fields Point)
and Cranston sewage sludge incinerators;

] develop estimates of the metal concentrations in ambient air

resulting from the incineration of sewage sludge using dispersion
modeling techniques;
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. estimate population exposure to metal emissions from each of the
two incinerators; and

° develop recommendations on incinerator and control device
operation that could be applied at the Rhode Island incinerators
to minimize emissions of toxic air pollutants.

As work progressed, these original objectives were expanded to include
compilation of organic emission data from sewage sludge incinerators,
development of organic emission estimates, and modeling of organic emission
estimates for the two Rhode Island incinerators.

1.2 REPORT ORGANIZATION

Section 2.0 of this report is an overview of the incineration processes
and control devices used at each of the two facilities. Section 3.0
summarizes emiséien estimates for each of the facilities and presents
emission data from literature sources for comparison. Section 4.0
summarizes the results of the risk assessment. Section 5.0 contains an
engineering evaluation of the design and operating characteristics of the
Cranston and Fields Point incineration and control systems and includes
recommendations on how operations could be altered to minimize air toxic
emissions. Section 6.0 lists the references used in preparing this
document.

The supporting data for the results presented in the text of this
document are included as appendices; Appendix A contains emission test
results from the Cranston test program. Appendix B describes the approach
used for deriving emission factors for the Fields Point incinerator.
Appendix C describes the approach used for performing the dispersion
modeling.
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2.0 SEWAGE SLUDGE INCINERATION AND FACILITY DESCRIPTION

This section provides an overview of sewage sludge incineration and,
where available, site-specific information pertaining to the two
incinerators that are the focus of this study.

Each of the facilities has multiple hearth incinerators. Neither of
the facilities was routinely operating their incinerators at the time this
study was initiated. The Cranston plant has since begun incinerating sludge
on a routine basis, and is currently incinerating approximately 15 dry tons
of sludge daily. The plant operates 24 hours per day, 5 days per week.2

The Fields Point incinerator has not been operational since 1982.
However, plant officials are currently considering the cost and feasibility
of resuming incCiinerator operation. If the incinerator were operational,
plant officials estimate that it would be operated continuously, resulting
in the incineration of approximately 60 dry tons of sludge dai]y.3

This section presents available information on incinerator and control
device design parameters, operation records, and sludge characteristics at
each of the two facilities. Section 2.1 describes multiple hearth
incinerators and a brief process description. Sections 2.2 and 2.3 contain
facility descriptions and design parameters for Cranston and Fields Point,
respectively.

2.1 OVERVIEW OF MULTIPLE-HEARTH INCINERATION

Each of the two Rhode Island facilities uses multiple-hearth furnaces
(MHF) for sludge incineration. Figure 2-1 illustrates the overall design of
an MHF. Multiple-hearth furnaces are cylindrically shaped and oriented
vertically. The outer shell is constructed of steel and surrounds a series
of horizontal refractory hearths. A hollow cast iron rotating shaft runs
through the center of the hearths. Cooling air is introduced into the shaft
by a fan located at its base. Attached to the central shaft are rabble
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Figure 2-1. Cross-sectional view of a multiple-hearth sewage
sludge incinerator.
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arms, which extend above the hearths. Each rabble arm is equipped with a
number of teeth, approximately 6 inches in length, and spaced about

10 inches apart. The teeth are shaped to rake the sludge in a spiral
motion, alternating in direction from the outside in, to the inside out,
between hearths. Either 2 or 4 rabble arms extend into each hearth.
Typically, the upper and lower hearths are fitted with 4 rabble arms, while
only 2 are placed within the middle hearths. Burners, which are fired using
auxilliary fuel, are located in the sidewalls of the hearths.

The size of MHFs used for incineration of sewage sludge typically range
from 6 hearth furnaces having an outer diameter of about 6 ft. and a total
effective hearth area of 85 sq. ft., to 12 hearth, 22 ft. diameter furnaces
with hearth areas of over 3000 sq. ft.4 Hearth loading rates range from
between 7 to 12 pounds of wet sludge per hour, per square foot. This
corresponds to furnace capacities of from 600 pounds of wet sludge per hour
up to 18 tons per_hour.

Partially dewatered sludge is fed into the periphery of the top hearth.
The motion of the rabble arms rakes the sludge toward the center shaft where
it drops through holes located near the edge of the hearth. In the next
hearth, the sludge is raked in the opposite direction. This process is
repeated in all of the subsequent hearths. The effect of the rabble motion
is to break up solid material to allow better surface contact with heat and
oxygen, and is arranged so that a sludge depth of about one inch is
maintained in each hearth at the design sludge flow rate.

Ambient air is first ducted through the central shaft and its
associated rabble arms. A portion, or all, of this air is then taken from
the top of the shaft and recirculated into the lowermost hearth as preheated
combustion air. Shaft cooling air which is not circulated back into the
furnace is ducted into the stack downstream of the air pollution control
devices. The combustion air flows upward through the drop holes in the
hearths, countercurrent to the flow of the sludge, before being exhausted
from the top hearth. Provisions are usually made to inject ambient air
directly into one of the middle hearths as well. '
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From the standpoint of the overall incineration process, multiple-
hearth furnaces can be divided into three zones. The upper hearths comprise
the drying zone where most of the moisture in the sludge is evaporated. The
temperature in the drying zone is typically between 800 and 1400°F.
Combustion occurs in the middle hearths (second zone) as the temperature is
increased to about 1700°F. The combustion zone can be further subdivided
into the upper-middle hearths where the volatile gases and solids are
burned, and the lower-middle hearths where most of the fixed carbon is
combusted. The third zone, made up of the lowermost hearth(s), is the
cooling zone. Hence, the ash is cooled as its heat is transferred to the
incoming combustion air.

Under proper operating conditions, 50 to 100 percent excess air must be
added to an MHF to ensure complete combustion of the sludge. Besides
enhancing contact between fuel and oxygen in the furnace, these relatively
high rates of excess air addition are necessary in order to compensate for
normal variations “in both the organic characteristics of the sludge feed and
the rate at which it enters the incinerator. When an inadequate amount of
excess air is available, only partial oxidation of the carbon will occur
with a resultant increase in emissions of carbon monoxide, soot, and
hydrocarbons. Too much excess air, on the other hand, can cause increased
entrainment of particulates and unnecessarily high fuel consumption.

Another important parameter in the operation of a multiple-hearth
sewage sludge incinerator is the rate of feed of the sludge cake. Any
sudden increase or decrease in load to the furnace can severely affect the
performance of the incinerator.? A sharp increase in the rate of feed has
been shown to lower the combustion zone in the furnace. This can
subsequently lead to a decrease in temperature within the combustion zone
and the potential for the fire to be extinguished. Conversely, a sudden
decrease in furnace load can cause excessively high temperatures in the
furnace with the attendant risk of damage to the refractories and rabble
castings. The moisture content of the sludge feed must also be kept
relatively constant for the same reasons.
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Maintaining a uniform rate of feed into an MHF can be difficult,
however. First, mechanical sludge dewatering devices are not capable of
producing a sludge cake of perfectly uniform moisture content. Second, at
most incineration plants, the sludge is fed directly from the treatment
facility to the dewatering device, and then directly into the incinerator.
Holding tanks are not usually available to independently control the rate of
sludge input into the furnace. A related problem is that it may take up to
an hour (or more) for the sludge to descend from the drying zone to the
combustion zone in a multiple-hearth incinerator.6 Thus, a change in the
furnace load may not be noticed by the furnace operators in time to take
corrective action. Moreover, there will be an additional delay before the
incinerator responds to these corrective measures and operations become
stable again.

The speed at which the rabble arms are rotated can also have a critical
impact on the operation of a multiple-hearth incinerator. Typically, the
rotational speed can be varied between less than 1 and 3 revolutions per
minute. As the speed of the rabble mechanism is increased, the rate of
drying in the upper hearths is increased and the combustion zones shift
upward. Combustion will also tend to take place in a greater number of
hearths. Experimental data have also demonstrated that the temperature of
the hottest hearth will drop as the speed of the rabble arm rotation is
increased.7 The opposite effects are observed when the speed of the rabble
motion is decreased.

However, changes in the speed of rotation of the rabble arms will
initially have just the opposite effects of those described above. For
example, an increase in the rabble arm speed will initially create an
internal increase in the load to the combustion zone. This will cause a
temporary decline of the burning zone and an overall decrease in the
temperature of the lower hearths. From 1 to 3 hours are required for an MHF
to stabilize after the speed of the rabble arms is changed. Because of the
transient furnace instabilities caused by such changes in the speed of the
rabble motion, adjustment of rabble arm speed is not an effective means of
controlling the process of combustion in a multiple-hearth incinerator.
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Rather, the speed of the rabble movement should be set slow enough to form
good furrows in the sludge, but fast enough to avoid crusting of the sludge
in the upper hearths. The optimum speed is a function of the sludge
moisture content and loading rate.

For optimum performance, the temperature profile within the furnace
should be controlled by adjusting the firing rate of the burners. Ideally,
only those burners located immediately above and below the combustion zone
should be used (depending on the number of hearths, and the capacities of
the available burners). This allows a greater sludge residence time in the
drying zone and can decrease turbulence in the upper hearths.

Theoretically, combustion can become self-sustaining in an MHF when
sludges having a heating value of at least 10,000 Btu/1b, a moisture content
of less than 75 percent, and a volatile solids fraction of at least 60 to
65 percent are incinerated. However, under autogenous conditions the
highest temperature in the furnace may only be about 900°F, which is
insufficient to destroy organics.8 Even at minimum excess air rates, some
auxilliary fuel must be burned in MHFs in order to maintain a minimum
temperature of 1350%F for destruction of odoriferous materials.4

As discussed above, the operation of multiple-hearth sludge
incinerators is complicated by the number of process variables, as well as
by the transient nature of some of the responses observed when these
variables are altered. To establish guidelines for the operation of MHF
incinerators, particularly for reducing the amount of fuel consumed, a
substantial amount of both theoretical and empirical research has been
conducted by the Indianapolis Center for Advanced Research (ICFAR).9
Although the best mode of operating any incinerator is a function of
numerous site-specific conditions, a number of general procedures have been
established as the result of the ICFAR work. These operational guidelines
include:

1. Use of shaft cooling air as combustion air;

2. Maintenance of sludge combustion on the lower burning hearths;

JES/022 2-6






3. Use of only those burners located on, or immediately adjacent to,
the combustion hearth(s);

4. Maintenance of rabble arm speed as slow as possible;
5. Minimization of rabble arm speed as slow as possible;

6. Ma;ntenance of sludge Toading rates at, or below, design capacity,
and;

7. Maintenance of excess air at 25 to 50 percent,

Fuel savings of from 30 to 70 percent have been attained at
incinerators where these procedures have been put into practice.s’9
Moreover, there are some indications that the operational procedures which

result in reductions in fuel use also result in decreased emissions of
particu]ates.9

2.2 CRANSTON -

2.2.1 General Information

The Cranston wastewater facility treats an average of 10.5 million
gallons of wastewater each day. The wastewater is estimated to be
approximately 80 percent municipal and 20 percent industrial. Industrial
contribution is primarily from Jewelry and fabricated metals products;
chemical and allied products; and primary metal products categories.1 The
facility is located southwest of the town of Cranston, approximately five
miles from Providence, Rhode Island.

Wastewater treatment is accomplished using conventional primary and
secondary treatment processes followed by chlorination. Sludge generated
during the water treatment processes and ash sludge from the scrubber
blowdown water are directed to sludge treatment tanks where the sludges are
chemically conditioned using lime and ferric chloride. These chemical
conditioning agents assist in the removal of water from the sludge solids.
Further dewatering is accomplished at the Cranston facility using filter
presses.
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The Cranston facility has two multiple-hearth incinerators, one an
18 foot 9-inch diameter furnace with 9 hearths with a design feed rate of
8,890 1bs wet sludge/hr and the other a 14 foot 3-inch diameter furnace with
6 hearths and a design feed rate of 4,600 1bs wet sludge/hr. Only the
smaller unit was operational at the time of this study. Based on discussion
with plant officials, there were no plans to bring the larger incinerator on
line in the near future since the small incinerator had more than sufficient
capacity to handle the sludge being produced by the plant. For these
reasons, this study focuses only on the smaller unit.

2;2.2 Cranston Sludge Characteristics

With the exception of data on solids and volatile solids, a limited
amount of data is available to characterize the dewatered sludge produced
and ultimately incinerated at the Cranston facility. Percent solids and
volatile solids of the sludge filter cake are generally determined several
times each day at an on-site laboratory. Table 2-1 presents a summary of
percent solids and percent volatile solids data for the Cranston sludge. As
seen in the table, solids content of the sludge feed is typically about
29 percent (i.e., moisture content of about 71 percent), while the percent
volatile solids are in the range of 56 to 61 percent. Higher heating values
of sludge samples collected during the October 1987 samples averaged about
6,500 Btu/dry 1b of sludge.

Data on sludge metal content consist of information developed during
the October 1987 EPA/WERL test program at the Cranston facility and grab
samples collected during 1985 and 1986. These data are reported in
Table 2-2.

Tables 2-3, 2-4, and 2-5 contain results from sludge analysis targeting
volatile organics, dioxins, and furan species, respectively.

2.2.3 Cranston Incinerator and Pollution Control System

As discussed in subsection 2.2.1, the focus of this study focuses on
the 14 foot 3-inch incinerator which is currently the only incinerator being
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used at the facility. The incinerator is a Nichols 6-hearth furnace that
has been rebuilt and upgraded. A schematic diagram of the 14 foot 3-inch
diameter incinerator and its pollution control system is presented in
Figure 2-2. Incinerator design data are presented in Table 2-6.

Sludge is fed to the top hearth of the incinerator at a rate of about
4500 1bs/hr (as-fired basis). Rabble arms rake the sludge around the
hearths and into a chute that drops the sludge to the next lower hearth.

The sludge is transferred to the lower hearth at the center of the
odd-numbered hearths and at the periphery of the even-numbered hearths.
Hearths 1 and 2 (top hearths) are designed as drying hearths. Hearths 3 and
4 are designed to be the combustion hearths. Hearths 5 and 6 are used to
cool the ash. Occasionally, some burning takes place on hearth 2 or

hearth 5. There are four rabble arms for the top hearths and two rabble
arms for the lower hearths.

The incinerator is also designed to burn grease and scum. These
constituents are normally injected on hearth 4. An auxiliary fuel system
consisting of natural gas burners is available to provide supplemental heat
when necessary. There are three burners which are positioned on hearth 2,
hearth 4, and hearth 6.

A shaft cooling air system is used to prevent overheating of the rabble
arm shaft. Center shaft cooling air is partially recycled for use as
combustion air, providing the furnace with pre-heated air. The remaining
center shaft cooling air is vented to the main stack. Combustion air may be
introduced through valves on hearths 2 through 6. Typically, most of the
combustion air is delivered to hearth six. The furnace is designed to
operate with a supply of excess air ranging from 50-150 percent.

Ash produced during the incineration process is discharged from the
bottom of the furnace. The ash is transported via bucket and screw
conveyors to an enclosed holding tank. The ash stofage tank is periodically
dumped into a truck for transport to a landfill. '

Flue gas from the incinerator passes th}ough an air pollution control
system consisting of an afterburner, a precooler, a variable throat venturi,
and a tray scrubber. The afterburner is a gas-fired external combustion

JES/022 2-16






wenyu O°H

i —

= ueny3 ¥/

1eqqniog Aes)
weweBuidw)

UMUBA

f

woelIsAs
Aianooey
188H

ueq
al ”
N1
{l ) .

181009914

"waj}sAs |043u0d uotrynyod
pue J40}eJ3ULDUL UOJSUBA) 3Y] jo weubelp dtLjewayds

"2-2 3Jnbiry
eBieyosiq
ysy
L F
sen
1y Buyoo) [~ lesmeN
yeys —e
v -
vy — aoBuIng
uonsnquwio?)
eBpnig
poeo4 “_H_
aBpnig
- | uV\
BuIngsyy m
X

.

»oelg

Hoerg
ssedAg

2-17

JES/022






TABLE 2-6. CRANSTON INCINERATOR AND AIR POLLUIéON
CONTROL SYSTEM DESIGN INFORMATION

Design Parameter Value
Incinerator
Manufacturer Nichols
Diameter 14 foot 3-in.
Number af hearths 6
Recommended sludge feed rate 4,597 1bs/hr (wet)
Recommended grease and scum feed 139 1b/hr
Exhaust gas volume 4,250 acfm @ 120°F
Excess air 50-150 percent
Oxygen: furnace exhaust 7-10 percent
Auxiliary fuel Natural gas
Operating Period 24-hr/day

Pollution Control System

Afterburner chamber temperature 1400-1500°F

Normal Maximum
Precooler water flow 70 gpm 100 gpm
Venturi 30 gpm 50 gpm
Tray scrubber 229 gpm 250 gpm
Gravity settler (discharge flow) 235 gpm 250 gpm
Scrubber system differential pressure, in. H20 20-38

Sludge Feed

Moisture, wt. percent 65
Solids, wt. percent 35
Combustible, percent of dry 59.2
Ash, percent of dry 40.8
Heating value, Btu/1b combustible 9,157
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chamber designed to destroy carbon monoxide and odorous unburned
hydrocarbons in the exhaust gases. The afterburner is not used in normal
operations at the Cranston facility.

The precooler reduces the temperature of the incoming flue gas and
thereby reduces the volumetric flow rate. This action allows the precooler
to isolate the scrubber system from the furnace so that, as the temperatures
of each change, they may move relative to each other.

A circular flow channel venturi with a variable throat is used to
remove larger particulate matter (soot) from the gas stream. Water is
injected into the throat of the venturi and particles are removed by
inertial impaction with the accelerating atomized liquid. Additionally, the
venturi section further cools the gases to approximately 160°F.

The tray scrubber has four bubble cap trays for reduction of the
remaining fine particulate matter in the gas stream. Particulate reduction
is accomplished by physical contact with the liquid phase. The gas is
cooled to an exit temperature of about 120°F. Scrubber blowdown is
transferred to a gravity settler.

2.3 FIELDS POINT

2.3.1 General Information

The Fields Point wastewater facility treats an average of 52.5 million
gallons of wastewater each day. The facility is owned and operated by
Narraganset Bay Commission and is located southeast of Providence, Rhode
Island. The Fields Point treatment plant is reported to be the largest in
the New England area, serving an estimated population of 200,000.

Estimates of the influent wastewater composition indicate that
72 percent is from municipal sources while the remaining 28 percent
originates from industrial sources.7 Industrial contribution is primarily
from the jewelry and fabricated metals products; chemical and allied

products; and food and kindred products source categories.1
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Wastewater treatment processes include conventional primary and
secondary treatment followed by discharge to the Providence and Narranganset
Bay. Sludge generated during the treatment process is chemically
conditioned with Time and ferric chloride prior to dewatering using coil and
cloth filters. The facility generates approximately 51 dry tons of waste
sludge each day, which at the time of this study was being landfilled.

The Fields Point facility has two multiple-hearth incinerators on-site,
neither of which has been used for sludge disposal since 1982. According to
plant officials, only one of the incinerators (unit #2) is currently being
considered for future sludge incineration. Unit #2 was originally
constructed in 1959 and underwent extensive renovations in the late 1970’s.
Due to the renovations, the incinerator became subject to the EPA’s New
Source Performance Standards and subsequently the incinerator has been the
subject of litigation.

Consistent with future incineration plans, this study focuses only on
incinerator unit #2. Therefore the system descriptions in the following
subsections and the emission estimates and modeling discussed in
Sections 3.0 and 4.0 will be Timited to unit #2.

2.3.2 Fields Point Sludge Characteristics

Table 2-7 summarizes general information available on dewatered sludge
at the Fields Point facility. From the available meaquements, percent
solids average from about 22 to 30 percent with the most recent measurements
being approximately 23 percent. Table 2-8 contains monthly averages of
sludge metal concentrations from January 1985 to November 1986. The metals
that are present in the sludge at highest concentrations are zinc and copper
followed by nickel, chromium, and lead.

2.3.3 Fields Point Incinerator and Pollution Control System

As mentioned above, incinerator #2 at the Fields Point wastewater
treatment facility is a renovated multiple-hearth incinerator which was
originally built in 1959.
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TABLE 2-7.

GENERAL CHARACTERISTICS OF DEWATERED SLUDGE FROM THE
FIELDS POINT WASTEWATER TREATMENT PLANT

Parameter

September 1984 May
a through b through c
August 1982 September 1985 October 1987

Percent solids 30.1 21.8 23.2
Percent volatile solids NR 66.6 ~NR
0il1 and grease {(mg/kg) NR NR NR
Heating value (Btu/dry 1b) NR NR NR

aAver-age of three

sludge samples collected during August 10, 1982 compliance

test. Reported by GCA Corp., to Narrangansett Bay Water Quality Management
District Commission, September 1982. Reference 19.

bMonth]y averages

prepared by Daniel P. 0’Connor, Assistant Director for

Operations/Chief Engineer. Reference 20.

D1scharge monitoring report data for reporting period 1/01/86 - 12/31/87
average of monthly averages. Reference 21.

NR = Not reported.
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The incinerator was first owned by the City of Providence but was sold to
the Narranganset Bay Commission in 1982. Renovation of the unit, which was
performed by Nichols Engineering and Research Corporation, included
replacement of the incinerator refractory and rabble arm system, overhauling
and/or replacement of pumps, fans, and burners, replacement of gauges and
controls, and installation of a venturi/impingement scrubber system. A
schematic diagram of the 22 foot 3-inch diameter incinerator and its
pollution control system are presented in Figure 2-3. Incinerator design
data is presented in Table 2-9.

Studge is fed to the top hearth of the incinerator at a rate of about
10 tons per hour (wet basis). Rabble arms rake the sludge around the
hearths and into a chute that drops the sludge to the next Tower hearth.

The rabble teeth are set at an angle to the arms in such a way that when the
center shaft ang arms rotate, the teeth will rake the sludge toward the
center shaft on the even-numbered hearths and away from the center shaft on
the odd-numbered hearths. Therefore, the sludge is transferred to the lower
hearth at the center of the odd-numbered hearths and at the periphery of the
even-numbered hearths.

The upper part of the furnace is the drying zone. The number of
hearths required for drying the sludge is dependent upon the sludge feed
rate, moisture content, and percent combustibles. Generally, the drying
zone occupies hearths 1 through 4. Hearths 5 and 6 are the zones in which
combustion takes place while the remaining hearths (7-9) are the zones in
which the ash is cooled prior to being discharged into the ash system.

An auxiliary fuel system consisting of o0il burners is available to
provide auxiliary heat to support sludge combustion when necessary. In
addition, the auxiliary system provides heat for incinerator warm-up during
start-up periods and heat to maintain stand-by temperatures during periods
in which sludge feed is interrupted. Two burners are located on hearth
number 1, and four burners are located on each of hearths 5, 7, and 9.

A shaft cooling air system is used to prevent overheating of the rabble
arm shaft. Center shaft cooling air increases in temperature from ambient
to about 400°F. A portion of the cooling air may be recycled to hearths 7
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TABLE 2-9. FIELDS POINT INCINERATOR OPERATING AND DESIGN INFORMATION

Design Parameter Value
Incinerator

Manufacturer Nichols
Diameter 22 foot 3-inch

Number of hearths

Recommended sludge feed rate (maximum)

Exhaust gas volume

Excess air

Oxygen furnace exhaust

Auxiliary fuel

Hearth temperatures
Hearth
Hearth
Hearth
Hearth
Hearth
Hearth
Hearth
Hearth
Hearth

WOONO U WN =

Sludge Feed

Moisture, wt. percent
Solids, wt. percent
Volatile solids, percent of dry

9

10 tons/hr (wet)
89,537 acfm
50-125 percent
10-12 percent
No. 2 fuel oil

700 to 1ooogF
700 to 1200°F
1000 to 1300°F
1200 to 1600°F
1200 to 1600 F
1000 to 1400°F
800 to 1090°F
Below 800°F

Below 500°F

72 to 78 percent
22 to 28 percent
55 to 75 percent

SOURCE: Reference 23.
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and 9 for use as combustion air by means of a manually operated damper. The
remainder of the cooling air is exhausted through the cooling air exhaust
stack.

In addition to recycled shaft cooling air, combustion air is introduced
through slightly open doors, peep holes, auxiliary burners, etc., by the
suction created by the induced draft fan. The furnace is designed to
operate with a supply of excess air ranging from 50 to 125 percent.

Flue gas from the incinerator passes through an air pollution control
system consisting of an afterburner, a quencher section, a variable throat
venturi, and a tray scrubber. Air pollution control system design data are
presented in Table 2-10. The afterburner is an oil-fired external
combustion chamber designed to destroy carbon monoxide and unburned
hydrocarbon.

The first section of the scrubbing system is the quenching section. As
the gases flow hqgnward thorugh the quencher section, the gas stream is
washed by low pressure water sprays to entrap heavier particulate. Further,
sufficient water flow is introduced to the gas stream to reduce the
temperature and thereby reduce the volumetric flow rate. The gas stream
velocity in the quencher is controlled by a manually operated variable
throat venturi. The restriction imposed on the gas flow by the venturi
causes the gas velocity to increase. The water droplets scrub the particles
from the gas stream. Flue gases then enter the impingement scrubber section
which serves to further scrub and cool the exhaust stream. The impingement
section consists of two trays for reduction of fine particulate matter. The
perforated tray sheets are mounted directly above one another with water
supplied through two inlet nozzles located above the top tray plate. The
function of the perforated sheet is to break up the gas stream into high
velocity jets. With the flow of water across the tray, each jet is then
transformed into bubbles, which pass through the remaining tray and finally
through a mist eliminator to remove carry over prior to discharging the
gases through the scrubber outlet stack.
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TABLE 2-10. FIELDS POINT AIR POLLUTION CONTROL SYSTEM DESIGN DATA

Quencher venturi gas volume

Quencher venturi inlet gas temperature
Inlet pressure

Quencher pressure drop

Quencher ventufiugressure drop
Separator pressure drop

Quencher liquid rate

Venturi liquid rate

Cooler liquid rate

Outlet gas volume @ .32" w.c.

Outlet gas temperature

Total maximum scrubber system pressure drop

89,537 acfm

1400°F

- 2" w.c.

1 to 2" w.c.

23" w.c.

8" w.c.

220 gpm @ 15 p5197 75%F
400 gpm @ 3 psig, 75°F
1200 gpm @ 3 psig, 75°F
24,737 acfm

110°F

32" w.c.

SOURCE: Reference 23.
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3.0 EMISSION FACTOR ESTIMATES

This section presents emission factor estimates which are used as the
basis for dispersion modeling. In addition to emission factor estimates,
this section briefly describes the approach used to derive the estimates and
compares the emission estimates derived for each of the two facilities with
emissions data from the literature.

As a preface to this section, it is important that readers of this
document understand certain limitations associated with all emission factor
estimate approaches. No emission factor estimation approach is perfect.

A1l approaches are subject to error and are at best educated guesses. Even
emission factor estimates based on stack gas measurements are not perfect,
since the values only provide a "snapshot" of the emissions during a
particular time frame, on a particular day. However, derivation of emission
factors from actual emission measurements is the most accurate and reliable
approach. Emission factor estimates for the Cranston facility were derived
based on stack measurements and are therefore judged to be of the highest
quality.

Most often, emission factors are derived without site-specific emission
measurements. This approach relies heavily on literature sources and other
general information. Such a generalized approach provides a rough order of
magnitude type emission factor and does not necessarily reflect site-
specific considerations such as process and control device operations. The
approach used for estimating emission factors for the Fields Point facility
into this more generalized category of emission factor development
approaches. As discussed in Appendix B, to the extent possible, site-
specific information was used in the development of emission factors for the
Fields Point facility.

In summary, the emission factor estimates for the two facilities differ
in their relative accuracies. Emission factors for Cranston, which were
derived based on stack measurements, are judged to be of highest quality and
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Jjudged to be fairly accurate estimates of actual plant performance.
Emission factors derived for Fields Point are best ball park estimates of
plant performance and are not judged to be of the same accuracy as the
Cranston estimates.

Emission factor estimates are organized into five categories. These
categories include trace metals, volatile organics, semivolatile organics,
PCBs and pesticides, and chlorinated dioxins and furans. Each of these
emission categories are discussed in the following subsections.

3.1 TRACE METAL EMISSIONS

Table 3-1 presents trace metal emission estimates for both Cranston and
Fields Point facilities. Emissions are expressed on both an emission rate
(g/hr) and emission factor basis (mg/kg).

Trace meté% emission estimates for Cranston are based on measurements
performed during an October 1987 test program. Trace metal emission rates
shown in Table 3-1 reflect controlled metal emissions during periods of
normal or typical furnace and air pollution control system operation.
During the test program, three metals of interest (beryllium, selenium, and
hexavalent chromium) were either not detected or not quantified due to
analytical interferences. Beryllium and selenium emission rates were below
the analytical detection limits of 1 mg/hr. Hexavalent chromium emission
rates were not quantified due to unacceptable blank values. Hexavalent
chromium emissions were estimated by assuming that the ratio of hexavalent
to total chromium in the stack exhaust gas is in the same proportion as_the
incoming sludge feed. Based on measurements during the October 1987 test
program, this ratio of hexavalent to total chromium in the Cranston sludge
is approximately 0.07 to 1.

Metal emission estimates for the Fields Point facility were developed
based on both site-specific data and information from the literature. Site-
specific data considered in the estimation approach included information on
the facility’s sludge characteristics, furnace and air pollution equipment,
and operational practices.
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TABLE 3-1.  TRACE METAL EMISSION VALUES USED AS INPUTS
TO DISPERSION MODELING

Cranston? -7 Fields Pointb

Metal g/hr mg/kg 2;_; r  g/hr mg/kg
Arsenic (As) 0.025 0.04 0.091° 0.04°
Beryllium (Be) <0.001°¢ <0.002° 0.005° 0.002¢
Cadmium (Cd) 1.57 2.72 1.88 0.83
Copper (Cu) 3.13 5.44 139.87 61.62
Chromium (Cr) 2.81 4.89 22.37 9.85
Hexavalent ~ 0.208 0.35¢ 5. 589 2464
Chromium (Cr' ™)
Lead (Pb) o 17.94 31.20 24.78 10.92
Nickel (Ni) a 0.25 0.44 21.85 9.63
Selenium (Se) <0.001°¢ <0.002° 0.005° 0.002%
Zinc (In) 27.13 47.20 201.33 88.69

Trace metal emission values for Cranston are based on stack gas
measurements, except where noted.

bTrace metal emission values for Fields Point are estimated based on known

sludge characteristics, control device operating conditions, engineering
judgment, and literature sources, except where noted. A detailed descrip-
tion of the emission estimate procedure is included in Appendix B.

-~

CBeryHium and selenium were not detected. Values presented represent the
method detection limit and are therefore higher than the actual emission
rate.

dHexava]ent chromium emissions were estimated by assuming that the ratio of

hexavalent to total chromium in the stack exhaust is in the same proportion
as the incoming sludge feed.

®These trace metal emission estimates for Fields Point are based solely on
the -emission factor derived for the Cranston plant. There were insuffi-
cient literature or plant-specific data to support other emission estimate
approaches.

JES/022 3-3






Appendix B of this document describes in detail the model which was
developed as part of this study used for estimating metal emissions from the
Fields Point incinerator. With the exception of arsenic, beryllium,
selenium, and hexavalent chromium, emission factors for each of the metals
of interest were derived using the model. Arsenic, beryllium, and selenium
were derived from available literature sources as described for Cranston.
Hexavalent chromium emissions were estimated using the same approach as
described for the Cranston facility. The ratio of hexavalent to total
chromium in the Fields Point sludge is approximately 0.25 to 1.

In Table 3-1, note that on an emission rate basis (g/hr) Fields Point
emissions are typically much higher than Cranston. This is due to the
higher volumetric flowrate at Fields Point which is a result of the larger
furnace and higher siudge feed rate.

Table 3-2 shows a comparison between trace metal emission factors
estimated for the Cranston and Fields Point facility, and the range of
measured emission factors from literature sources. As seen in the table,
emission factors (mg metal emitted per kg of sludge burned) for the Cranston
facility are well within the range of those factors from literature sources.
When emission factors for the Fields Point facility are expressed on a
percentage of metal feed basis, as seen in Table 3-3, each of these emission
factors generally fall within the range of literature sources.

Table 3-4 summarizes trace metal emission from literature sources
expressed as mg of metal emitted per kg of dry sludge burned. Table 3-5
contains a summary of trace metal emissions from literature sources
expressed as percent of sludge metal feed (g metal emitted per g of metal
fed x 100).

3.2 VOLATILE ORGANIC EMISSIONS
Table 3-6 presents volatile organic emission estimates for both

Cranston and Fields Point facilities. Emissions are expressed on both an
emission rate (g/hr) and emission factor (mg/kg) basis.
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TABLE 3-6.

VOLATILE ORGANIC EMISSION VALUES USED AS INPUTS
FOR DISPERSION MODELING

Cranston? Fields Point?

Compound mg/hr mg/kg mg/hr mg/kg
Acetonitrile 6,158 10.71 24,312 10.71
Acrylonitrile 20,459 35.58 80,767 35.58
Benzene 4,169 7.25 17,593 7.25
Bromodichloromethane 8510 1.48P 3,3600 1.48P
Bromomethane 29b 0.05b 114b. 0.05b
2-Butanone (MEK) 5,238 9.11 20,680 9.11
Carbon Tetrachloride 12 0.02 45 0.02
Chlorobenzene 506 0.88 1,998 0.88
Chloroethane a60P 0.80° 1,816° 0.80°
Chloromethane 2,967 5.160 11,713 5.16
Chloroform 236 0.41 931 0.41
1,1-Dichloroethane 132° 0.23" 522P 0.23"
1,2-Dichloroethane 12 0.02 45 0.02
trans-1,2 Dichloroethane 29 0.05 114 0.05
1,1-Dichloroethene 1440 0.25° 568" 0.25
Ethylbenzene 1,006 1.75 3,973 1.75
Methylene Chloride 1,392 2.42 5,493 2.42
Tetrachlioroethene 845 1.47 3,337 1.47
Toluene 3,927 6.83 15,504 6.83
1,1,1-Trichloroethane 1,047 1.82 4,131 1.82
Trichloroethene 1,432 2.49 5,652 2.49
Vinyl Chloride 960 1.67 3,791 1.67
Xylene 2,323" 4.04P 9,171° 4.04°

. qolatile organic emi

ssion factors are based on stack gas measurements at

Cranston, except where noted. No emission measurements were performed at

Fields Point.

bEmission factor for this compound is based on literature sources.
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Volatile organic emission estimates for Cranston are based on
measurements performed during an October 1987 test program. Volatile
organic emission rates shown in Table 3-6 reflect controlled emissions
during periods of normal or typical furnace and air pollution control
systems operation. Emission estimates for those organics not quantified in
the Cranston test program were derived based on available literature.

Table 3-6 denotes and distinguishes between those emission factor estimates
based on Cranston measurements and literature sources.

Volatile organic emission estimates for the Fields Point facility were
based on emission (mg per kg of dry sludge) factors derived from the
Cranston test program. Such an approach provides only an order of magnitude
type estimate for Fields Point. No attempt was made to manipulate or
"adjust" the Cranston values to derive different emission factors for Fields
Point. Attempts to adjust emission values would imply that the relationship
between specific gperating parameters and conditions and organic emissions
is quantitatively known. There is no justification for assuming that the
organic emission factors should differ significantly between the two plants.
Table 3-7 a compares emission factors estimated for the Cranston and Fields
Point facilities with the range of measured emission factors from literature
sources. Table 3-8 contains a summary of volatile organic emissions from
sludge incinerators as available from the Titerature.

3.3 SEMIVOLATILE ORGANIC EMISSIONS

Table 3-9 presents semivolatile organic emission estimates for the
Cranston and Fields Point facilities. Since semivolatile organics were not
measured in controlled off-gases during the Cranston test program, and no
data are available for Fields Point, the data presented are simply averages
from literature sources. Note that semivolatiles are divided into two
categories, acid and base compounds. Of the semivolatile acid category,
only two compounds have been quantified during incinerator tests. These
are 2-nitrophenol and phenol. Of the semivolatile base category, four
compounds have been quantified. These include three dichlorobenzene isomers
and bis(é-ethy]hexy])phtha]ate. For the purpose of deriving order of
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TABLE 3-9. SEMIVOLATILE ORGANIC EMISSION ESTIMATES FOR CRANSTON AND
FIELDS POINT SEWAGE SLUDGE INCINERATORS
(mg emitted/kg dry sludge burned)

. Average from b Fie]dsb
Compound Literature Sources®™ Cranston Point
Acid Compounds
2-Chlorophenol <0.015 0.015 0.015
2,4-Dichlorophenol <0.030 0.030 0.030
2,4-Dimethylphenol <0.023 0.023 0.023
2,6-Dinitro-o-cresol <0.119 0.119 0.119
2,4-Dinitrophenol <0.515 0.515 0.515
2-Nitrophenol 3.821 3.821 3.821
4-Nitrophenol <0.285 0.285 0.285
p-Chloro-m-cresol <0.038 0.038 0.038
Pentachlorophent] <0.120 0.120 0.120
Pheno]l 34.542 34.542 34.542
2,4,6-Trichlorophenol <0.046 0.046 0.046
Base Compounds
Benzo(a)pyrene <0.022 0.022 0.022
Bis(2-Ethylhexyl)pthalate 1.019 1.019 1.019
1,2-Dichlorobenzene 1.137 1.137 1.137
1,3-Dichlorobenzene 0.864 0.864 0.864
1,4-Dichlorobenzene 6.069 6.069 6.069
Perchloroethylene v <0.040 0.040 0.040
1,2,4-Trichlorobenzene <0.024 0.024 0.024

3Less than values indicate the detection 1imit of nondetectable compounds.

bNo semivolatile emission tests were performed on controlled stack gases at
either Cranston or Fields Point. The values presented are order of magni-
tude type estimates based on literature sources. In most cases the emission
factor estimate is based on detection limit of the analytical technique
during the target analysis (i.e., most conservative estimate).
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magnitude type emission estimates, compounds quantified and reported in the
literature were used. In cases where compounds were not detected, the
analytical detection limit was used as the emission estimates, which
represents worst case scenario. Tables 3-10 and 3-11 contain summaries of
semivolatile acid and base emission factors from literature sources.

3.4 PCB AND PESTICIDE EMISSIONS

PCBs and pesticides were not measured during the Cranston test program.
Order of magnitude type emission estimates for both the Cranston and Fields
Point incinerators are shown in Table 3-12. Although specifically targeted,
PCBs and pesticides have not been quantified in emissions from sludge
incinerators. Values in the table represent the analytical detection limits
(expressed on emission factor basis). Table 3-13 contains detection limits
reported duriné’;bree test programs in which PCB and pesticide emissions
were targeted.

3.5 DIOXIN AND FURAN EMISSIONS

Tables 3-14 and 3-15 present chlorinated dioxin and furan emission
estimates for both Cranston and Fields Point. Emissions are expressed on an
emission factor basis (ug/kg sludge) by congener and on a emission factor
basis normalized to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxic
equivalents.

Presentation of CDDs and CDFs as 2,3,7,8-CDD toxic equivalents were
developed by EPA for the purpose of deriving and reporting single emission
values that relate directly to the toxicity of 2,3,7,8-TCDD.40 Toxic
equivalent factors were assigned to each CDD/CDF isomer or class and were
multiplied by the emission factor for that isomer or class.

Tables 3-16 and 3-17 contain a summary of CDD and CDF emission factors
based on literature sources of emission test at sludge incinerators. Note
that the data base for these emissions consists of three series of tests
conducted as part of the EPA National Dioxin study, and two test series
conducted at the Cranston facility. One of the series of tests at Cranston
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TABLE 3-10. SUMMARY OF ORGANIC ACID COMPOUND EMISSIONS
FROM SEWAGE SLUDGE INCINERATORS
(ug/kg- dry sludge burned)

WERL WERL WERL
Compound Site 13 site 2P Site 3¢ Average
2-Chlorophenol <2,465 <12.0 <18.8 <15.4
2,4-Dichloropheno] <2,890 <22.7 <37.5 <30.1
2,4-Dimethylphenol <3,206 <17.4 <28.2 <22.8
2,6-Dimethylphenol <9,344 <190.8 <46.9 <118.9
2,4-Dinitrophenol <18,749 <344.2 <686.3 <515.3
2-Nitropheno] <5,616 3821.4 <65.9 3,821.49
4-Nitropheno].; <7,792 <213.5 <356.2 <284.9
p-Chloro-m-cresol <3,989 <28.0 <46.9 <37.5
Pentachlorophenol <5,568 <89.4 <150.3. <119.9
Phenol <1,840  34,541.6 <18.8 34,541 .69
2,4,6-Trichlorophenol <3,886 <34.7 <56.5 <45.6

aReference 25, not included in average.
bReference 26.

CReference 27.

Based on emissions quantified at only one site.
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TABLE 3-11. SUMMARY OF ORGANIC BASE COMPOUND EMISSIONS
FROM SEWAGE SLUDGE INCINERATORS
(ug emitted/kg dry sludge burned)

WERL WERL WERL
Compound Site 12 Site 20 Site 3° Average
Benzo(a)pyrene <1,263 <16.0 <28.2 <22.1
Bis(2-Ethylhexyl)phthalate 2,417 374.9 265.8 1,019.2
1,2-Dichlorobenzene 2,677 732.5 <18.8 1,136.5
1,3-Dichlorobenzene 2,259 333.6 <18.8 864.2
1,4-Dichlorobenzene 6,069 <13.3 <18.8 6,069¢
Perchloroethylene <2,993 <33.4 <46.9 <40.2
1,2,4-Trichlorobenzene <2,156 <18.7 <28.2 <23.5

3Reference 25.
bReference 26.
CReference 27.
dBased on emissions quantified at only one site.
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TABLE 3-12. PESTICIDE, PCB, and DIOXIN/FURAN EMISSION ESTIMATES FOR
CRANSTON AND FIELDS POINT SEWAGE SLUDGE INCINERATORS
(ug emitted/kg dry sludge burned)

Average from Fields
Compound Literature Sources Cranston® Point?
Aldrin <0.030 0.030 0.030
Chlordane <0.452 0.452 0.452
Dieldrin <0.046 0.046 0.046
PCB-1242 <0.452 0.452 ' 0.452
PCB-1254 <0.542 0.542 0.542
PCB-1221 <0.452 0.452 0.452
PCB-1232 " <0.452 0.452 0.452
PCB-1248 - <0.542 0.542 0.542
PCB-1260 <0.542 0.542 0.542
PCB-1016 , <0.452 0.452 0.452
2,3,7,8-TCDD 0.097° 0.097°

(toxic equiva]ents)C

No pesticide or PCB emission tests were performed at Cranston or Fields
Point. The values presented are order of magnitude type estimates based on
emissions measured at other incinerators (see Table 3-13). 1In all cases,
the emission factor estimate is based on the detection 1imit of nondetect-
able compounds. This approach results in a worst case type emission
estimate.

bDioxin and furan emissions were measured at the Cranston facility. The
2,3,7,8-TCDD toxic equivalent factor derived for Cranston is also used
for Fields Point.

CReference 40.
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TABLE 3-13. SUMMARY OF PCB AND PESTICIDE EMISSIONS

FROM SEWAGE SLUDGE INCINERATORS
(ug emitted/kg dry sludge burned)

WERL a WERL b WERL c
Compound Site 1 Site 2 Site 3 Average
Aldrin <12,495 <22.7 <37.5 <30.1
Chlordane NR <340.2 <562.9 <451.6
Dieldrin <11,286 <34.7 <56.3 <45.5
PCB-lZ{Z NR <340.2 <562.9 <451.6
PCB-1254 NR <408.3 <675.9 <542.1
PCB-1221 NR <340.2 <562.9 <451.6
PCB-1232 - NR <340.2 <562.9 <451.6
PCB-1248 ' NR <408.3 <675.9 <542.1
PCB-1260 NR <408.3 <675.9 <542.1
PCB-1016 NR <340.2 <562.9 <451.6

3Reference 25, not included in average.
bReference 26.
CReference 27.
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was performed while the furnace and air pollution control systems were being
operated under normal conditions. The second test series at Cranston was
performed during periods in which the auxiliary afterburner was used and

the furnace was intentionally maintained at temperatures much hotter than
normal.
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4.0 RISK ASSESSMENT

In general, risk assessments can be performed at various levels of
detail ranging from a screening analysis to a very refined analysis. The
latter uses sophisticated po]]dtant fate and transport models to estimate
environmental concentrations in air, water, and soil and subsequent human
exposure via multiple pathways (i.e., inhalation, ingestion, and dermal
routes). The objective of this risk assessment was to provide a screening
Tevel analysis of exposure and risk related to human exposure to emitted
pollutants via the inhalation pathway. Results of this analysis include an
estimate of exposure and resulting health effects for both carcinogenic and
noncarcinogenic pollutants determined to be emitted from the two incine-
rators. Table.4-1 lists the specific carcinogens and noncarcinogens
included. .

The following two sections describe the methods used -in developing the
screening analysis and the results of those analyses.

4.1 EXPOSURE AND RISK ESTIMATION METHODOLOGY

This section summarizes the methods used to estimate human exposure and
risk from incinerator emissions of hazardous pollutants. This analysis
includes estimation of exposure and risk from inhalation of the pollutants
and does not include an analysis of either pollutant ingestion (resulting
from the consumption of local crops, soil, or water contaminated via
atmospheric deposition) or dermal contact. In this study it was assumed
that the inhalation pathway represents the majority of human exposure
resulting from incinerator-based emissions. Therefore, modeling in this
study was confined to inhalation.

In general, three steps are followed in estimating incinerator-based
human exposure and risk: 1) estimation of ambient air pollutant concen-
trations using atmospheric dispersion models, 2) exposure assessment (i.e.,
matching of ambient air concentrations with exposed population), and
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TABLE 4-1. CARCINOGENIC AND NONCARCINOGENIC POLLUTANTS

Noncarcinogenic Carcinogenic

Pollutants CAS No. Pollutants CAS No.
ACETONITRILE 75-05-8  ACRYLOMITRILE 107-13-1
ALDRIN 309-00-2  ARSENIC 7440-38-2
BROMOD | CHLOROME T HANE 75-27-4  BENZENE 71-43-2
BROMOMETHANE (METHYL BROMIDE) 74-83-9  BENZOCA)PYRENE 50-32-8
2-BUTANONE (MEK) 78-93-3  BERYLLIUM 7440-41-7
CHLOROBENZENE 108-90-7  BIS(2-ETHYLHEXYL )PHTHALATE 117-81-7
P-CHLORO-M-CRESOL 59-50-7  CADMIUM 7440-43-9
CHLORODANE 57-74-9  CARBON TETRACHLORIDE 56-23-5
CHLOROETHANE (ETHYL CHLORIDE) 75-00-3  CHLOROFORM 67-66-3
CHLOROMETHANE (METHYL CHLORIDE) 74-87-3  CHROMIUM VI 7440-47-3
2-CHLOROPHENOL 95-57-8 1,2, -DICHLOROETHANE 107-06-2
CHROMIUM 7640-47-3  METHYLENE CHLORIDE 75-09-2
COPPER 7440-50-8  NICKEL 7440-02-0
1,2-DICHLOROBENZENE $5-50-1  PCB-1016
1,3-DICHLOROBENZENE.. 541-73-1  PCB-1221
1,4-DICHLOROBENZENE:- 106-46-7  PCB-1232
1,1-DICHLOROETHANE 75-34-3  PCB-1242 53469-21-9
1,1-DICHLOROETHENE 75-35-4  PCB-1248
2,4-DICHLOROPHENOL 25167-81-1  PCB-1254 11097-69-1
DIELDRIN 60-57-1  PCB-1260
2,4-DIMETHYLPHENOL 1300-71-6  TOTAL PCBs 1334-36-3
2,6-DINITRO-0-CRESOL 534-52-1  PERCHLOROETHYLENE 127-18-4
2,4-DINITROPHENOL 51-28-5 2378 TCDD 1746-01-6
ETHYLBENZENE 100-41-4  TETRACHLOROETHENE 127-18-6
LEAD 7439-92-1  TRICHLOROETHENE 79-01-6
2-N1TROPHENOL : 88-75-5  VINYL CHLORIDE 75-01-4
4-NITROPHENOL 100-02-7
PENTACHLOROPHENOL 87-86-5
PHENOL 108-75-2
SELENIUM 7752-49-2
TOLUENE 108-88-3
1,2,4-TRICHLOROBENZENE 120-82-1
1,1, 1-TRICHLOROETHANE 71-55-6
2,4,6-TRICHLOROPHENOL 83-06-2
XYLENE 1330-20-7
ZINC 7440-66-6
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3) characterization of potential health risk to the exposed population. A
summary of the procedures followed to conduct the exposure and risk
assessment follows; a more complete description of the procedures, and
specifically the computer models used, appears in Appendix C.

4.1.1 Estimation of Ambient Air Pollutant Concentrations

The Industrial Source Complex (ISC) atmospheric dispersion model was
used to estimate the ambient air concentrations resuiting from pollutant
emissions from the incinerators.35 ISC is an EPA-approved guideline model.
The ISC model has both a short-term (ISCST) version and a long-term (ISCLT)
version. ISCST is used to estimate ground level concentrations on an hourly
basis for periods up to a year. ISCLT is used to estimate annual average
ground level concentrations. In this study ISCLT was used to estimate both
carcinogenic and noncarcinogenic pollutant concentrations. These long-term
average concentrations were used to estimate the risk of cancer and indicate
the 1ikelihood of adverse health effects due to chronic exposure to
noncarcinogens. ISCST was used in a screening mode to predict a maximum
24-hour concentration likely to occur. This concentration was used to
characterize the Tikelihood of acute health effects due to short-term
exposures.

To execute the ISC models, three sets of input data are necessary:

1) emission source characterizations, 2) meteorological data representative
of the study area, and 3) model-specific option settings. Table 4-2 lists
the specific emission source characteristics, excluding emission rate, used
to perform the atmospheric dispersion modeling for the Cranston and Fields
Point facilities. These data were either gathered during site visits,
supplied by Rhode Isiand DEM personnel, or generated by reviewing facility
plot plans. Emission rate estimates used to perform the modeling were
presented and discussed in Section 3.0 of this document.

The meteorological data used for ISCLT were suppiied by the Rhode
Island DEM and represent data from the Providence/Francis/Green National
Weather Service (NWS) site for the years 1968 to 1972. Because ISCST was
executed in a screening mode, NWS hourly sequential meteorological data
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TABLE 4-2. SOURCE

CHARACTERISTICS FOR INCINERATION FACILITIES

Source Incineration Facility
Characteristics Fields Point Cranston
Latitude 41° 477 27" 41° 45’ 00"
Longitude 71° 237 15" 71° 267 00"
Stack Height (meters) 21.6 23.2
Exit Gas Velocity (m/sec) 1.15 12.2
Exit Gas Temperature (°K) 316 323
Stack Diameter (meters) 1.1 0.46
Building Height (meters) 15.5 15.2
Building Width (meters) 13.8 25.9
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were not used. Rather, worst case hourly meteorological data were used to
estimate a single maximum short term 1-hour average concentration. The
maximum l-hour average concentration was converted to a maximum 24-hour
average concentration using the factor 0.4, recommended in the EPA report
Guidelines on Air Quality Maintenance Planning and Analysis, Volume 10R. 30

The model-specific options required for execution of ISC for this study
are listed in Table 4-2.

4.1.2 Exposure Assessment Methodology

The objective of most exposure assessments is to match the predicted
ambient concentrations to the population residing in the study area and
estimate the levels to which people are exposed. The EPA Human Exposure
Model (HEM) was used to estimate human exposure to the carcinogenic
pollutants inclyded in this study.37 The HEM is a computer model that
matches ambient concentrations with the population to estimate human
exposure. The model combines a data base reflecting U.S. Census Bureau
residence-based population data from the 1980 census with the ambient
concentrations predicted by ISCLT. The HEM reports both the exposure level
associated with the maximum exposed individual and the aggregate exposure
reflecting the total population exposure.

For noncarcinogenic pollutants no attempt was made to match
concentrations with specific populations. Instead the maximum concentra-
tions predicted by ISC were reported here as the maximum level to which
anyone in the study area was potentially exposed. These data were reported
on both a short-term (24-hour) and long-term basis (annual).

4.1.3 Risk Characterization Methodology

In characterizing the risk of potential health effects the HEM
calculated exposure and risk measures and the Rhode Island AAL levels were
used for carcinogenic pollutants, and a comparison with the Rhode
Island Acceptable Ambient Level (AAL) were used for noncarcinogenic
pollutants. The AAL is the maximum allowable ambient air concentrations of
a toxic air contaminant listed in the Rhode Island Air Toxics Regu]atipns
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at or beyond the facility’s property fenceline. In general, Rhode Island
AALs for carcinogens are established based on individual lifetime cancer
risks in the range of 10'6 to 10_5.39 For carcinogenic pollutants in this
study the following two risk measures were estimated for both the Cranston
and the Fields Point incinerators:

Maximum Exposed Individual (MEI)

The MEI is a measure of the maximum long-term average ambient air
concentration that anyone in the study area (i.e., within 50 km
of an incinerator) will experience. This value can be compared
directly to the Rhode Island annual average AAL value.

Maximum Individual Risk (MIR)

The MIR is a measure of the estimated risk of cancer to the
maximum exposed individuals. It is computed by multiplying the
exposure for the MEI by the pollutant cancer unit risk factor
(URF). The URF represents the probability of contracting cancer
given"a Tifetime exposure to 1 microgram per cubic meter of the
pollutamt in the breathing air. When multiplied by an actual or
estimated exposure the result is an estimate of the risk of
cancer due to a lTifetime exposure. Rhode Island AAL values are
genera%&y based on individual lifetime risks in the 10. to 10
range.

5

For noncarcinogens the following measures of exposure were estimated
for the two incinerators:

JES/022

Maximum Exposed Individual - Annual Average

The maximum exposed individual is a measure of the maximum
annual average ambient concentration that anyone in the study
area (i.e., within 50 km of an incinerator) is predicted to
experience. This exposure value can be compared to the Rhode
Island annual average AAL value.

Maximum Exposed Individual - 24-hour Average

The maximum exposed individual is a measure of the maximum
24-hour average ambient concentration that anyone in the study
area (i.e., within 50 km of an incinerator) will experience.
This exposure value can be compared to the Rhode Island 24-hour
average AAL value.
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Rhode Island has developed a set of procedures discussed in Rhode
Island Air Standard Setting Procedures that is used to determine the need to
Tist a substance as toxic and discusses the development of an acceptable
ambient Tevel (AAL) of exposure to the substance.39
evaluating the substance include:

Criteria used in

0 absorption, metabolism, and excretion;

° physical and chemical information;

) mutagenicity;

(] carcinogenicity;

° teratogenicity/fetotoxicity/reproductive effects;
° other toxics effects; and

) existing standards and guidelines.
An acceptable risk for substances with sufficient or substantial effects of
carcinogenicity, or that have been classified by IARC or NTP as "sufficient
animal," is in the range of 10 to 107° for an individual lifetime risk.
Other criteria have been adopted that adjust LOAEL’s (Lowest Adverse Effect
Level) and NOAEL’s (No Adverse Effect Level) derived from human occupational
studies of acceptable quality and derived from animal studies on human
experimental exposures -using factors discussed in the Air Standard Setting

Procedures.

Together these measures of exposure and risk form the basis of risk
management decisions concerning the operation of the incineration
facilities.

4.2 EXPOSURE AND RISK RESULTS

This section discusses the results of the exposure/risk assessment
analysis. Figure 4-1 shows annual avefage concentration isopleths for the
ISCLT results based on a 1 gram per second emission rate. To the north,
east, and west of the Cranston incinerator the distance where the concentra-
tion falls below 0.05 ug/m3 extends to 7 kilometers. The concentration
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value of 0.05 ug/m3 was arbitrarily selected since the concentration value
at any given location must be multiplied by the pollutant-specific emission
rate to calculate the actual concentration.

Figure 4-2 shows the annual average concentration isopleths for the
Fields Point incinerator. The annual average concentrations shown in this
figure were also based on ISCLT model results using a 1 gram per second
emission rate. As expected, the general shape of the isopleths is similar
to those shown in Figure 4-1 for the Cranston incinerator.

Figure 4-3 shows the population density (peop]e/kmz) in an
approximately 20-kilometer-square area centered around the Cranston and
Field Point incinerators. The population density is overlayed on grid cells
that are 3-square-kilometers in size. The area of greatest population
density is to the east of the Fields Point incinerator and north of the
Cranston incinerator. The combination of the annual average concentration
isopleths shown.in Figures 4-1 and 4-2, and the population density shown in
Figure 4-3 shows the location of population exposed to pollutant
concentrations from the incinerator emissions.

4.2.1 Carcinogen Exposure and Risk

Tables 4-3 and 4-4 contain pollutant-specific data for the following
measures:

. emission rate (rate at which po]]utant'is emitted into the
atmosphere after incineration),

° unit cancer risk factor (from EPA and CAG),

° maximum individual exposure (maximum annual average
concentration predicted using ISCLT scaled by pollutant-

specific emission rate),

° The Rhoge Island annual average AAL and the AAL with LAER
in mg/m”,

0 maximum individual risk, and .

° estimated increase in total annual cancer incidence due to
incinerator emissions.

JES/022 4-9






Figure 4-2. Providence (Fields Point) - Annual Average Concentration (ug/m?3)
Based on a 1 gram/second Emission Rate
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The following is a summary of significant results:

1. Maximum individual exposurg ranges from 5.43 x 10'8 ug/m3 for
2,3,7,8-TCDD to 2.01 x 10 ug/m3 forgacrylonitrile for the
Cranston fici]ity and from 6.22 x 10°° ug/m3 for 2,3,7,8-TCDD to
1.19 x 10 ° ug/m3 for acrylonitrile for the Fields Point facility.

2. Maximum individual risk ranges from 7.456x 10'11 for
bis(2-ethyThexyl)phthalate to 2.75 x_}g' for cadmium for the
Cranston facility and fgom 4.43 x 10 for bis(2-ethylhexyl)-
phthalate to 9.87 x 107° for hexavalent chromium for the Fields
Point facility.

Maximum individual risk values (the risk parameter which forms the basis
for the Rhode Island AALs) for estimated emissions from Cranston and Fields
Point are shown in Tables 4-3 and 4-4, respectively. Note that for all
listed pollutants, the corresponding risk levels are within ranges
considered acceptable by the Rhode Island Department of Environmental
Management. ’

For the Crangion facility (see Table 4-3), the four pollutants that
showed the highest associated maximum individual risks were acrylonitrile,
dioxin/furans (2,3,7,8-TCDD), cadmium and hexavalent chromium. Of these
four pollutants, hexavalent chromium was the only estimated value; others
were based on actual measurements. As discussed in Section 5.0 of this
document (Engineering Evaluation and Recommendations), strong evidence
suggests that acrylonitrile and dioxin/furan emissions from the Cranston
incinerator may be largely products of incomplete combustion (PICs) as
opposed to being volatilized from incoming sludge feed. Cadmium emissions
and associated maximum individual risk Tevels are due mainly to Tow cadmium
removal efficiencies by the scrubber (~ 50%). This low removal efficiency
may be attributed to cadmium being associated with smaller particles that
are not effectively removed by wet scrubbers.

For the Fields Point facility (see Table 4-4) the pollutants showihg
the highest associated maximum individual risks were acrylonitrile, dioxin/
furans (2,3,7,8-TCDD), cadmium, hexavalent chromium, and nickel. As
discussed in Section 3.0 of this document (Emission Factor Estimates), and
reiterated in footnotes to tables, no emission measurements were performed
at Fields Point. Generally, pollutant risk values are similar for the two
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plants since, in many cases, the Fields Point emission values were based on
measurements at Cranston. Nickel emission estimates and risk Tevels for
Fields Point differ from Cranston due primarily to the differences in nickel
concentrations in the sludge at the two facilities. Average sludge nickel
concentrations at Fields Point during 1986 were approximately 500 ppm (see
Table 2-8), whereas average nickel concentration of incoming sludge at
Cranston during the October 1987 test was only about 300 ppm (see

Table 2-2).

While the numbers in Tables 4-3 and 4-4 assign numbers for exposure and
risk to specific chemicals at the two facilities, they are not absolute
values. Rather, there are two generally accepted interpretations of these
numbers. First, the numbers are intended to be used for comparisons. That
is, given a relatively large number of sources and pollutants these
estimates of exposure and risk are used to rank the sources and pollutants
for regulatory purposes. When ranked by source and pollutant these numbers
represent where kegu1atory resources should be allocated. In this context
the numbers are not intended as an estimate of actual exposure and risk
expected to occur. The HEM is typically used by EPA to make comparisons
among large numbers of pollutants and/or sources. In this particular case,
the HEM results may be used to compare potential risks associated with
alternative sludge disposal options (e.g., landfill, ocean dumping, land
application, etc.).

The second use of these numbers is as estimates of exposure and risk
that represent approximate worst case conditions. The modeling approach
taken to estimate human exposure and risk contains the following key
assumptions: '

1. Emission rates used represent a continuous release for a lifetime,
that is, seventy years.

2. The distribution of population in the study area is character-
ized by 1980 residence-based data at the Block Group/Enumeration
District level of resolution and remains constant for a lifetime.

3.  Individual exposure is experienced only at the geographic location

associated with the residence and is computed using ambient air
concentrations only.
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4. The URFs used represent pollutant-specific risks that EPA
characterizes as an upper bound estimate not likely to be less
than the actual risk but which may be significantly higher than
the actual risk.

These assumptions are important to consider in the exposure and risk
assessment procedures because the knowledge and data required to quantify
the uncertainty in estimating these quantities is still being developed.
Given the procedures currently available to characterize exposure and risk,
and the lack of data, very conservative assumptions are often used in
exposure/risk analyses. For example, because estimates of less than
lifetime risk from exposure to carcinogens are not available, the assumption
of lTifetime exposure is required.

4.2.2 Noncarcinogen Exposure and Risk

-

Tables 4-5 and 4-6 contain pollutant-specific data for the following
measures:

0 emission factor (amount of pollutant per unit of sludge
burned),

° emission rate (rate at which pollutant is emitted into
atmosphere after incineration),

0 maximum individual 24-hour average exposure,
() maximum individual annual average exposure, and

) Rhode Island annual average AAL and AAL with LAER in
mg/m~ per pollutant.

The following is a summary of significant results:

1.  Maximum iggividual annual average exposure,ranges from
1.69 x 10 = ug/m3 for aldrin to 2.65 x 197 ug/m~ for zinc for
the Crans;gn facility and from 1.00 x 10 ° ug/m3 for aldrin to
2.96 x 10 ° ug/m3 for zinc for the Fields Point facility.

2. Maximum igqividual 24-hour average exposurg ranges from
2.77 x 10 * ug/m3 for aldrin to 4.35 x 196 ug/m3 for zinc for
the Cranston facility and from 2.73 x 10 ~ ug/m3 for aldrin to
9.93 ug/m3 for lead for the Fields Point facility.
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Rhode Island has adopted the AAL values included in the Rhode Island
Air Pollution Control Regulation No. 22 as allowable exposure levels. The
derivation of the Rhode Island AAL is discussed in Section 4.2.1. Exposure

levels above the AAL are considered unacceptable based on the health effects
associated with exposure to the toxic substance.
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5.0 ENGINEERING EVALUATION AND RECOMMENDATIONS

Emissions from sewage sludge incinerators are affected by the design
of the incinerator, the type and design of the contro] device used, the
characteristics of the sludge being burned, as well as the method of
operation of the incinerator and control device.

The major variable affecting particulate as well as particulate-bound
metal and particulate-bound organic emissions is the operating pressure drop
of the wet scrubbing system. The particulate removal efficiency of a given
wet scrubber increases as the pressure drop of the scrubber increases.
Removal efficiency of particle-bound metals and particle-bound organics also
increases with increasing pressure drop, although the magnitude of these
emissions and particulate emissions differ due to their relative size
distributions. "The single most effective means of minimizing particulate,
particulate-bound metal and particulate-bound organic emissions is to
continuously operate the scrubber system at the maximum pressure drop
conditions.

The major variable affecting organic emissions is the operating
temperatures of the incinerator and the external afterburner. Organic
emissions from sludge incineration occur primarily by two mechanisms. The
first is volatilization of organic constituents contained in the sludge
during drying, the second is the formation of products of incomplete
combustion (PIC) through pyrosynthesis. This second mechanism involves the
combination of carbon and hydrogen atoms at elevated temperatures by means
of free-radical paths. Chemical mass balances performed during analysis of
the Cranston test data strongly support this second mechanism (PIC) as being
a major mechanism by which many target species are formed.38 For example,
mass flow rates of benzene, acetonitrile, vinly chloride, and acrylonitrile
measured in the incinerator offgases are between 20 and 300 times larger
than the mass flow of these compounds entering the system from the sludge
and scrubber water. Similarly, dioxin/furan emission rates (2,3,7,8 toxic
equivalents) measured in the controlled offgases are approximately 10 times
larger than the mass flow entering the system from the sludge.
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The primary means of minimizing emissions of organics from sludge
incinerators is to maintain temperatures of 1400°F to 1700°F in the
combustion zone along with sufficient quantities of excess air. Maintaining
these temperatures requires the use of auxiliary fuel in most cases. Such
temperatures along with good mixing and sufficient residence times are
capable of oxidizing organic compounds to CO2 and water. Maintaining
temperatures in the range of 1400-1800°F in the afterburner along with
oxygen contents of ~ 6 to 8 percent allows the destruction of organics
volatilized from the sludge feed. Finally, organic emissions may also occur
as a result of using plant influent water as scrubber feed. In
such cases, volatile organics may be stripped from the untreated water and
emitted. Use of plant effluent water for operating the scrubber will
minimize these potential emissions.

Specific recommendations for applying these principles at each of the
two Rhode Island incinerators are discussed in the following subsections.

5.1 CRANSTON

No historical records were available for evaluating the scrubber
operation practices at the Cranston facility since the incinerator had only
recently begun operation. However, based on an on-site inspection of the
pollution control system conducted during early stages of this project, the
scrubber system is judged to be capable of achieving and maintaining good
emission reduction of particulate and particulate bound metal emissions.
This conclusion is based on design of the scrubber and the presence of the
automatic variable throat damper system. The venturi damper is
automatically controlled so that scrubber pressure drop can be continuously
maintained at optimal conditions despite changes in the flue gas flow
characteristics. The effectiveness of the Cranston scrubber system was
demonstrated during the October 1987 test series. These data are shown in
Table 5-1. Note that particulate removal efficiency of the scrubber system
averaged 97 percent. Note also that reduction in metal emissions also
occurred with removal efficiencies ranging from 37 percent for lead, to
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99 percent for chromium (lower removal efficiencies for metals are expected
since particle bound metals are predominately associated with smaller
diameter particles and since some fraction of the metal being emitted is
generally assumed to be in the vapor phase).

Changes to the existing scrubber system or operational practices at the
Cranston facility are not recommended. Particulate and particulate bound
emissions can continue to be minimized by continuing to monitor the
operation of the automatic variable throat damper and the corresponding
scrubber Ap.

Organic emissions at the Cranston facility can be minimized by
maintaining combustion zone temperatures of approximately 1400°F or greater,
and by operating the external afterburner as designed. Table 5-2 contains a
summary of furnace and afterburner temperatures recorded during the inlet
VOST test runs at the Cranston incinerator. Note that three different
furnace/afterburner conditions were tested. These are characterized as
normal operation truns 01-03), hot furnace/no afterburner (runs 07-09), and
hot furnace with afterburner (runs 04-06).

The effect of furnace temperature and afterburner use is demonstrated
clearly by results in Tables 5-3 and 5-4. Table 5-3 shows the continuous
emission monitor averages for each of the three sets of furnace/afterburner
operating conditions. Dramatic reductions in carbon monoxide and total
hydrocarbon emissions occur when furnace temperatures remain hot and the
external afterburner is used (runs 04-06). Table 5-4 also shows similar
reductions for volatile organic emissions under these conditions.

In addition to showing the effect of the afterburner,.the data in
Table 5-4 provides insight into some of the causal factors that influence
organic emissions from sludge incinerators, specifically furnace
temperature. As seen in the table, flue gas measurements for each detected
compound are dramatically higher when furnace temperatures are low (normal
operation). These data combined with the mass balance analysis described
earlier in this section support the conclusion that PIC information may be
a major cause of organic emissions under normal operating conditions.
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TABLE 5-2. SUMMARY OF FURNACE AND AFTERBURNER TEMPERATURES AND OPERATING
CONDITIONS DURING THE INLET VOST TESTS AT CRANSTON
Average Average Average
Run 01-03 Run 07-09 Run 04-06
Normal Hot Furnace Hot Furnace
Operation No Afterburner Hot Afterburner
Hearth #1 °F 844 919 972
Hearth #2 °F 1213 1484 1424
Hearth #3 °F 1378 1649 1590
Hearth #4 °F 1219 1235 1153
Hearth #5 °F . 1021 844 856
Afterburner Temperature Of 906 1264 1374
Venturi Ap 19.4 20.6 23.1
JES/022
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TABLE 5-3. COMPARISON OF DIFFERENT FURNACE AND AFTERBURNER OPERATING
CONDITIONS ON CARBON MONOXIDE AND TOTAL HYDROCARBON EMISSIONS

Average Average
Run 01-03 Run 04-06
Normal Hot Furnace
Parameter Operation Hot Afterburner
0, ppmV 10.97 | 11.21
CO2 ppmV 6.94 9.80
CO ppmV 1200 190
THC ppmV . 13.4 1.21
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TABLE 5-4. COMPARISON OF DIFFERENT FURNACE AND AFTERBURNER OPERATING
CONDITIONS ON VOLATILE ORGANIC MASS FLOW RATES AT THE

INLET TO THE SCRUBBER - CRANSTON

Flue Gas Inlet (mg/hr)

Averagea Averagea Averagea
Run 01-03 Run 07-09 Run 04-06
Normal Hot Furnace Hot Furnace

Compound Operation No Afterburner Hot Afterburner
Acetonitrile 60,625° 3,615 881
Acrylonitrile 30,728 11,534 1,625°
Benzene 5,683 817 449
2-Butanone (MEK) 7,854 NDC 54.4
Carbon Tetrachloride 25.5b 22.5 4.71
Chlorobenzene ) 1,077 57.7 21.7b
Chloroform ) 94.6" 33.6 13.8
1,2-Dichloroethane ND© ND® ND©
Trans-1,2-Dichloroethene ND® ND® ND©
Ethylbenzene 1,635 ND® 63.1
Methylene Chloride 9l.0 13.8 13.1
Pyridine ND® ND® ND©
Tetrachloroethene 947 50 1.78
Toluene 3,512 62.7 330
1,1,1-Trichloroethane 50.5 36.5 5.06
Trichloroethene 290 41.5 2.47
Vinyl Chloride 3,106 ND© ND©

4Furnace and afterburner temperatures and conditions are delineated in

Table 5-2.
b

“ND = Not detected.

JES/022
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Based on these data and observations during on-site visits, recommen-
.dations on ways to minimize organic emissions for the Cranston plant

include:

JES/022

Continue to use the auxiliary afterburner on a routine basis,
adhering closely to the temperature, oxygen, and residence time
design requirements.

Maintain "hot" furnace c8nditions so that combustion zone
temperatures exceed 1400°F.

Use auxiliary fuel to maintain desired furnace and afterburner
temperatures. Autogeneous burning of Cranston sludge will not
achieve and maintain sufficient temperatures to optimize reduction
of organic emissions.

Implement a routine maintenance schedule. Episodic emissions
often occur as a result of equipment failure. Routine maintenance
should inciude incinerator controls, burners, dampers, and
monitoring devices as well as scrubbers, pumps, and sludge
dewatering presses. For example, during the October 1987 emission
test the oxygen monitors located in the incinerator exhaust stream
were not functioning properly. This malfunction affected the
amount of combustion air introduced into the incinerator since the
monitoring devices automatically controlled the air inlet damper.
Installation of a blow back system within the 0, sampling lines
would eliminate plugging problems, which are thé cause of
erroneous 0, readings. Other maintenance related items observed
while on-si%e include the "sticking" of the siudge feed door in
the open position. The sludge feed door should be dampered such
that the amount of excess ambient air drawn into the furnace is
minimized. In the open position, ambient air cools the exhaust,
severely affecting temperatures in the afterburner thereby
resulting in poor organic reduction.

Minimize the occurrence of transient operation such as start-up,
shut-down, temperature excursions, feed rate changes, feed
interruption, etc. Air emissions under transient conditions may
be significantly higher than those emissions when the furnace is
operating under steady-state conditions. Practical ways to
minimize transient operation include 24-hour per day, 7 day per
week operation, scheduled shut-downs for periodic maintenance, and
the use of trained, experienced furnace operators.
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5.2 FIELDS POINT

Since the Fields Point incinerator was not operating at the time of
this study, recommendations for minimizing emissions are based on historical
records and an on-site equipment evaluation. Therefore, emission estimates
presented in Section 3.0 and the engineering evaluation and recommendations
presented in this section do not reflect any upgrades or modifications that
may be planned as part of future renovations. Daily operating records for
the most recent period (July 1982) of operation were reviewed and a summary
of these records is presented in Table 5-5. As seen in the table, sludge
feed was interrupted frequently, and the feed rates varied considerably from
hour to hour and day to day. Interruptions in sludge feed were the result
of equipment failures. These failures occurred in either the sludge
conveying system which transports sludge from the dewatering presses to the
incinerator, or in the filter presses. Frequent interruptions to sludge
feed causes wide variations in incinerator temperatures, excess air, and
exhaust gas flow rates thereby adversely affecting the performance of the
scrubber system. _

These operating records, also seen in Table 5-5, demonstrate that
incinerator temperatures rarely achieved (less than 10% of the operating
time) 1400°F in the combustion zone. Further, since records did not contain
data on afterburner temperatures and other operating parameters, the
conclusion is drawn that the afterburner was not routinely used. Operating
records also showed that the pressure drop across the scrubber varied
widely, with frequent periods in which the scrubber was ineffective.
Although the scrubber is designed to achieve pressure drops on the order of
40 in. W.G., the operating records indicate that the system was operated at
a significantly lower pressure drop about 80 percent of the time. Table 5-6
summarizes the percentage of time in which the scrubber system was operated
in each of four pressure drop ranges.

On-site inspections of the scrubber system revealed apparent reasons
for difficulties in maintaining sufficient pressure drop. First, the degree
of convergence of the scrubber throat area was limited. Dimensions for the
venturi section were not available, but visual inspection indicated that the
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area ratio between the inlet and the throat was much smaller (less conver-
gent) than a typical venturi scrubber (ratio of ~ 4:1). Further, a manually
operated damper was the primary mechanism by which scrubber pressure drop
was maintained. These two design Timitations, combined with the lack of
remote pressure drop monitoring capabilities, are judged to be significant
obstacles to maintaining continuous emission reduction. Emission factors,
developed and presented in Section 3.0 of this document, consider and
reflect these operational and design factors.

The following are specific recommendations for minimizing emissions at
the Fields Point facility.

] Replace the existing scrubber system. Inspection of the system
and review of the operating records together confirm that the
scrubber system is inadequate to provide optimal emission control.
The scrubber pressure drop should be continuously monitored and
the damper and liquid injection rate automatically controlled.
Such a system will eliminate periods of inadequate emission
reductien as evidenced by previous operating practices (see
Table 5-6).

] Maintain "hot" furnace c8nditions so that combustion zone
temperatures exceed 1400°F. Continue to use auxiliary fuel to
maintain appropriate temperatures.

0 Operate the external afterburner at designed temperatures and flow
rates to optimize organic reduction.

(] Improve the dewatering presses and sludge conveying system to
minimize sludge feed interruptions.

° Implement a routine maintenance schedule including incinerator
controls, burners, dampers, and monitoring devices, etc.
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TABLE 5-6. FIELDS POINT SCRUBBER SYSTEM OPERATING SUMMARY: HOURS
PER DAY THE SCRUBBER SYSTEM WAS OPERATED IN EACH OF FOUR
PRESSURE DROP RANGES, JULY 1982

AP in. H,0 Gauge

Date 0 -5 5-19 19.1 - 31 31.1 - 49
7-2-82 1 11 3
7-3-82 3 17 4
7-4-82 13 6
7-5-82 12 6 6
7-9-82 . 1 1
7-10-82 3 3 11 6
7-13-82 2 2 14 6
7-15-82 1 12 5
7-16-82 4 20
7-17-82 3 4 11 3
7-19-82 3 2 11 4
7-20-82 - 9 14
7-21-82 1 15 4 4
7-22-82 3 8 9
7-23-82 1 22 1
7-24-82 24
7-25-82 13 1
7-26-82 24
7-27-82 1 15 2
7-28-82 21 3
7-29-82 9 4
7-30-82 1 8 2
7-31-82 6

26 hrs 44 hrs 279 hrs 90 hrs
Percent of
Operating
Time in
Each Range 5.9% 10.0% 63.6% 20.5%
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December 8, 1987

Dr. Harry Bostian

Water Engineering Research Laboratory
U.S. Environmental Protection Agency
26 West St. Clair Street

Cincinnati, Ohio 45268

Dear Harry:

Enclosed are the preliminary volatile results from the fourth Sewage Sludge
Test at Cranston, R.I. A total of 15 VOST runs were conducted during the test
(9 at the control device inlet and 6 at the control device outlet). Three
different process operating conditions were evaluated for volatile emissions.
Runs 01-03 were conducted under normal operating conditions. Sludge
incineration was psimarily autogenous and combustion hearth temperatures were
approximately 1400°F. DuringoRuns 04-09 the combustion hearth temperature was
maintained near or above 1600°F using auxiliary burners in the furnace. An
auxiliary afterburner located at the furnace exit was also used during Runs
04-06. Simultaneous VOST sampling at the control device inlet and outlet was
conducted during the first 6 runs (01-06). During the last three runs (07-09)
VOST sampling was only conducted at the control device inlet.

The results are presented in the attached tables. It should be noted that
many of the target volatile compounds were saturated, therefore the results
presented in the tables represent a minimum estimate of actual concentrations
present. The VOST results from the control device inlet are shown in Tables 1
through 3 while the outlet VOST results are presented in Tables 4 through 6.
The raw analytical results for each individual pair of traps (ng per trap) are
shown as well as the flue gas concentration (ug/dscm) and the mass flow rate
(mg/hr). In addition, the results of the process sample analyses are
presented in Tables 7 through 10. The sludge feed volatile concentration
(ug/kg) and target volatile feed rate (mg/hr) are shown in Tables 7 and 8,
respectively. The results of the scrubber influent water analyses are shown
in Tables 9 and 10.

Some of the major conclusions from these results include:

1) The mass flow rates of the target volatile organic compounds at the
control device inlet and outlet were drastically reduced during the
runs where the combustion hearth was kept at an elevated temperature
and the afterburner was used.

2) Acetonitrile, acrylonitrile, 2-butanone, benzene and toluene were
the most prominent emissions when the incinerator was operated under
normal operating conditions. When the incinerator was operated at
the elevated temperature, trichloroethene and 1,1,1-trichloroethane
were the prominent volatile organic emissions.

Progress Center/3200 E. Chapel Hill Rd./Neison Hwy./P.O. Box 13000/Research Triangie Park, N.C. 27709/(919)541-9100
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3) Nine of the target volatile organic compounds were detected in the
sludge feed samples. The major constituents were; toluene, tetra-
chloroethane, trichloroethene, and methylene chloride.

4) Six of the target volatile organic compounds were detected in the
scrubber influent water. The major constituents were methylene
chloride, tetrachloroethene, trichloroethene, and
1,1,1-trichloroethane.

If you have any gquestions or comments concerning the VOST results please
contact me at (919).481-0212.

Sincerely,

Dennis R. Knisley
Chemical Engineer

DRK/1s

cc: Gene Crumpler, EPA
Bob Dykes, Radian
Keith B;rnett, Radian

Attachments
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TABLE 5 - VDOLATILE ORBANIC CONCENTRATION IN THE OUTLET FLUE GAS FOR SITE 4

FLUE BAS CONCENTRATION (ug/dsca)

AVERAGE AVERABE

COMPOUND RUN 0! RUN 02 RUN 03 RUN 04 RUN 05 RUN 04 RUNS 01-03 RUNS 04-0b
ACETONITRILE NA 189 1145 34,4 36.6 4.3 867 9.1
ACRYLONITRILE 2642 407 3325 28.4 23.7 45.4 2124 32.5
BENZENE -, 647 123 498 19.7 6.13 8.02 430 11.3
2-BUTANONE {MEK) 1025 6.70 NA 3.79 2.16 4.03 516 3.33
CARBON TETRACHLORIDE 0.29% 0.97 1.56 1,10 0.37¢ 0,301 0.944 0.591
CHLOROBENIENE 81.2 14.5 81.3 NA 0.43 33.5 52.4 17.0
CHLOROFORA 17.3 27.4 31.9 34.4 21.2 37.1 23,5 32.9
1,2-DICHLOROETHANE NA M N .19 .12 1.87 NA 2.06
TRANS-1,2-DICHLORGETHENE 3.00 NA 0,598 N 0,125 NA 2.80 NA
ETHYLBENZENE 255 22.1 25.3 1,85 0.433 1.60 101 1.29
METHYLENE CHLORIDE 149 185 1o 45.1 12.9 26.9 148 28.3
PYRIDINE NA NA NA NA NA NA NA NA
TETRACHLOROE THENE 102 65.0 100 3.8 4.4 0.2 ge.8 60.8
TOLUENE 351 197 478 9.4 19.9 62,5 409 4.0
t41,1-TRICHLOROE THANE 63.7 162 13 18.0 3.0 125 13 9l.4
TRICHLORDE THENE 176 154 123 103 74.2 129 151 102
VINYL CHLORIDE 67.9 10.2 226 NA L] N 10t NA
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TABLE & -

VOLATILE ORGANIC MASS EMISSION RATES AT THE OUTLET FOR SITE 4

NASS EMISSION RATES (ag/hr)

AVERAGE AVERAGE

CONPOUND RUN 01 RUN 02 RUN O3 RUNO4 RUN OS5 RUN 06 RUNS 01-03 RUNS 04-06
ACETONITRILE N 1764 11235 330 346 769 6499 482
RCRYLONITRILE 28326 3795 32626 258 224 469 21382 317
BENZENE . 3l 1152 4891 179 38.0 83.0 4398 107
2-BUTANONE (MEK} - — 10987 62,6 ND 344 20.4 4.7 5825 32.2
CARBON TETRACHLORIDE 3.21 9.08 15.3 10.0 3.33 3.1 9.20 5.4
CHLORDBENZENE 870 133 603 N 3.98 346 33 176
CRLORGFORM 185 254 313 312 287 384 251 318
1,2-DICHLOROETHANE ND ND N 29.0 10,41 19.3 N& 19.6
TRANS-1,2-DICHLOROETHENE 33.6 ND 3.87 ND 1,180 ND 9.7 NA
ETHYLBENZENE 2735 207 yil] 16.8 4.10 16,5 1063 12.5
METHYLENE CHLORIDE 1602 1730 1079 09 122 278 1470 270
PYRIDINE ND ND ND N ND L] N NA
TETRACHLOROE THENE 1091 604 978 452 392 933 892 3%
TOLUENE 3906 1834 4694 451 188 647 LILH] 429
1,1,1-TRICHLORDETHANE 683 1517 1339 708 691 1289 1104 89
TRICHLOROE THENE 1887 1442 1206 933 702 1333 1512 990
VINYL CHLORIDE 128 3.2 219 N ND ND 1014 NA
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A.2 PRELIMINARY HEXAVALENT CHROMIUM, DIOXIN/FURAN, SEMI-VOLATILES,
AND METALS RESULTS; DECEMBER 22, 1987
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CORPORATION

December 22, 1987

Dr. Harry Bostian

Water Engineering Research Laboratory
U.S. Environmental Protection Agency
26 W. St. Clair Street

Cincinnati, Ohio 45268

Dear Harry:

Enclosed are additional preliminary results for the fourth Sewage Sludge Test
at Cranston, R.I. Included in this letter are the hexavalent chromium

results, dioxin/furan results, semi-volatile organic results, and the metals
results for the sludge feed, scrubber water influent, scrubber water effluent,
and bottom ash samples. Since three different operating modes were used during
this test, Table 1 is included to specify the operating conditions for each

run which is included in this preliminary data letter. The preliminary

results are presented as follows:

Attachmenf'Aj Hexavalent Chromium Results

Attachment B: Dioxin/Furan Results
No sludge feed results are available at this time. These
samples are being reanalyzed by Triangle Laboratories.
They will be available on January 13, 1988.

Attachment C: Semi-volatile Results

Attachment D: Metals Results
The metals results for the flue gas samples are not
available at this time. They will be forwarded to you as
soon as we receive them from the Sacramento Laboratory.
The metals results for the sludge feed, scrubber water
influent, scrubber water effluent and bottom ash samples
are included.

If you héve any questions concerning these results or need any additional
information, please contact Keith Barnett at (919) 541-9100 or me at
(919) 481-0212. .

Sincerely,

Dennis R. Knisley

Chemical Engineer
Attachments A,B,C and D

cc: Gene Crumpler, U.S. EPA
Robert M. Dykes,
Keith Barnett, Radian
Mike Pa]azzolo, Radian
Mike Lewis, Technical Consultant A-19



TABLE 1. SUMMARY OF THE INCINERATOR OPERATIQG CONDITIONS FOR
THE FOURTH SEWAGE SLUDGE TEST

Cr:g - 01 Outlet Stack Hot Furnace, Afterburner On
Cr+6 - 02 Cool Furnace, Afterburner Off
Cr+6 - 03 Cool Furnace, Afterburner Off
Cr' ™ - 04 Cool Furnace, Afterburner Off
Dioxin/Furan - 01 Outlet Stack Cool Furnace, Afterburner Off
Dioxin/Furan - 02 Cool Furnace, Afterburner Off
Dioxin/Furan - 03 Cool Furnace, Afterburner Off
Dioxin/Furan - 04 . Hot Furnace, Afterburner Off
Dioxin/Furan - 05 Hot Furnace, Afterburner Off
Dioxin/Furan - 06 Hot Furnace, Afterburner Off
Semi-Volatile - 01 Control Device Inlet Cool Furnace, Afterburner Off
Semi-Volatile -. 02 Hot Furnace, Afterburner Off
Semi-Volatile - 03 Cool Furnace, Afterburner Off
M12 - 02 Control Device Inlet Cool Furnace, Afterburner Off
M12 - 04b Hot Furnace, Afterburner On
M12 - 06b Cool Furnace, Afterburner Off
M12 - 07b Cool Furnace, Afterburner Off
M12 - 08 Cool Furnace, Afterburner Off
Mi2 - 01 Outlet Stack Cool Furnace, Afterburner Off}
M12 - 02 Cool Furnace, Afterburner Off
Mi2 - 03 Cool Furnace, Afterburner Off
M12 - 04 o Hot Furnace, Afterburner On
M12 - 05 Cool Furnace, Afterburner Off
M12 - 06 Hot Furnace, Afterburner Off
M12 - 07b Hot Furnace, Afterburner Off
M12 - 08b , Cool Furnace, Afterburner Off
M12 - 09b Cool Furnace, Afterburner Off
M12 - 10 Cool Furnace, Afterburner Off
Ml12 - 11 . * Hot Furnace, Afterburner Off

3The "Cool Furnace" operating conditign is characterized by a combustion
hearth temperature approximately 400 F less than when the incinerator is
operating under the "Hot Furnace" conditions. The higher temperatures are
maintained under the "Hot Furnace" operating conditions by burning auxiliary
fuel. '

bThese runs were conducted concurrently at the control device inlet and
outlet.
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HEXAVALET CHROMIUM RESULTS
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TABLE A-1. RESULTS OF THE HEXAVALENT CHROMIUM ANALYSES
FOR THE FLUE GAS SAMPLES

Chromium III Chromium VI
Sample Flue Gas
Amount Flue Gas Detection Detection
Run Detected Concentration Limit Limit
Number (ug) (ug/dscm) (ug) (ug/dscm)
Front Half
01 5.6 1.6 < 100 < 28.3
02 5.3 1.0 < 100 < 18.9
03 5;; 1.3 < 100 < 22.3
04 5.7 0.94 < 100 < 18.7
Back Half
01 5.8 1.6 < 100 < 28.3
02 3.2 0.61 < 100 < 18.9
03 3.6 0.80 <100 < 22.3
04 3.8 0.71 < 100 < 18.7
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TABLE A-2. RESULTS OF THE HEXAVALENT CHROMIUM ANALYSES
FOR THE SLUDGE FEED SAMPLES
Chromium III Chromium IV
Sample
Amount Detection

Run Detected Limit
Number (ug/g) (ug/q)
01 166 <13.2
02 .. 174 <13.8
03 205 <15.1
04 157 <12.7
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TABLE B-1.

HODIFIED METHOD 5 TRAIN DIOKIN/FURAN RESULTS

AMOUNT DETECTED (ng)

ISOMER RUN 01 RUN 02 RUNOI RUN 04 RUN 05 RUN 06 AVERAGE
DIOXIN _

Mona-CDD [1.1443 [0.470] [1.50) [0.003) (0.003) [0.9581  0.00
Di-CDD 51,72 1.25 (1016021 30.18 279 L4 1459
Tri-CDD $5.59 6601 3970 5.9 43.25  43.27 423
2378 760D 0.61 0,65 0.45  0.07 [0.0031  0.40  0.40
Other TCDD 2.9 3.4 28.25  B.00 5248 5402 37.01
12378 PCOD 0.60  0.89  0.45  0.15  0.97  0.9%  0.70
Other PCOD 14.40 1442 948  3.B6 2785 20.88 16,40
123478 HxCDD 0.31 038 0.3 0.1 0.69 0.6 0,40
123478 HxCDD 0.62 070 0.5 0.2 142 L4 0.82
123789 HeCDD  [0.780] 1,32 LO0¢ 037 206  1L.97  1.12
Other HxCDD 9.33 B34 7.5 L322 1947 1831 11.00
1234678 HDEDD 2,36 259 2,60  1.01 404 374 272
Other WCDD ~ 2.5 280  2.66 112 523 41b  3.09
OctaCOD 6.187 692 431 L3 533 L3 44
TOTAL €D 187.19 142,77  99.77  S5.66 165.25 16274 135.%.
FURAN

Nono-COF 1281 876 931 126 2304 1073 1100
Di-CDF 5.25 138.65 6539  B.99 149.79 7512 74,03
Tri-COF 120.97 387.69 176.84  62.95 233.26 21439 196.18
2378 TCOF 20.91 20,09 23,38 570 2051 18,29  18.15
Other TCOF {13.95 155.41 145.55 26.77 110,70 106,07 110.07
12378 PCOF (.53 3.4 128 048 L5+ 148 1.63
23478 PLDF $05 592 449 110 519 513 448
Other PCOF 32.68  49.62 38,53 114 384 307 NS
123478 HeCDF 46 417 A48T LM 69 530 A4
123678 HxCOF L2 L78 LS 051 232 217 L
234678 HeCOF L2 270 L9 0.9 401 412 259
123789 MaCOF  L.140) 0.2t 0.6 0.06 023 0.21 0.4
Other HxCDF .83 13.00 1344 342 126 1455 1175
1234678 WCOF 3,92 469 433 2.06 124 1053 8.2
1234789 WoCOF  [0.414) [0.6871  0.49 0,25 L10 100 0.4
Other HoCOF 217 306 226 1.4 5% 4% 33
Octa-COF .38 227 L322 0% 292 250  1.89
TOTAL PCDF 336.26  781.46 497,20 13143 833,70 S520.71 483.79
TATAL CDO/COF 920,22 596.96 187.09 B800.95 6B3.47 419.36

523.44
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TABLE B-2.

DIONIN/FURAN FLUE GAS CONCENTRATIONS AT THE QUTLET

DIOXIN
Hono-CDD
01-CDD
Tri-CDD

2378 TCDD
Other TCDD
12378 PCDD
Other PCDD
123478 HxCDD
123478 HxCDD
123789 HxCDD
Other Hx(CDD
1234678 HpCDD
Other HpCDD
Octa-CD0 . -

TOTAL CDD

FURAN
Mono-CDF
Di-CDF
Tr1-CDF

2378 TCOF
Other TCOF
12378 PCDF
23478 PCDF
Other PCOF
123478 HxCDF
123678 HxCODF
234678 HxCDF
123789 HxCOF
Other HxCODF
1234478 HoCOF
1234789 HpCOF
Other HpCDF
Octa-COF

T0TAL COF

TOTAL CDOD/COF

CONCENTRATION (ng/dsca)

RUN 01 RUN 02 RUN 03 RUN 04 RUN 05 RUN 0& AVERAGE
ND ND L} ND ND ND NA
10,24 0.27 ND 6.33 0.37 0.33 .13
11,00 14,33 7.39 1.29 8.87 8.68 8.66
0.12 0.14 0.12 0.02 ND 0.08 0.18
8.4% B.00 3.40 173 10,76 10.83 7.54
0.12 0.20 0.12 0.03 0.20 0.19 0.14
.85 LU 1.81 0.84 5.1 3.79 3.36
0.06 0.08 0.06 0.02 0.14 0.13 0.08
0.12 0.15 0.11 0.05 0.29 0.28 0.17
ND 0.29 0.20 0.08 0.42 0.40 0.28
1.85 1.83 1.44 0.72 3.93 3.67 2.24
0.47 0.57 0.90 0.22 0.83 0.75 0.36
0.31 0.462 0.51 0.24 1.07 0.83 0.63
.22 1,52 L2 0.29 1.09 0.68 1.00
37,05 31,38 19.06  12.05 33.88 32.44  27.48
2,54 1.93 1.78 0.27 4.74 2,15 2.24
.26 30.48 12,49 L9 3071 15,07  16.32
26,14 80.B2 3379 13.63 47.82 43.00 40,54
4.14 4,42 447 1.23 420 3.67 3.49
22,56 3416 27.81 6,23 2.70 21,27 22.45
0.30 0.78 0.25 0.10 0.32 0.30 0.34
0.80 1.30 1.24 0.24 1.06 1.03 0.95
o647  10.91 1.38 2.4 1.87 B.66 7.28
0.43 0.92 0.93 0.29 1.42 1.26 0.91
0.24 0.39 0.32 0.11 0.48 0.4 0.33
0.36 0.59 0.37 0.21 0.82 0.83 0.33
] 0.05 0.03 0.01 0.05 0.04 0.0¢4
1.73 2.8% .57 0.74 3.54 .M 2.40
0.70 1.03 0.83 - 0.45 2.35 .1 1.28
ND ND 0.09 0.05 0.23 0.20 0.14
0.483 0.67 0.43 0.32 1.22 1.00 0.48
0.27 0.30 0.25 0.21 0.40 0.50 0.39
66,36 171.78  95.01  2B.46 130.33 104,44 99,43
103.61 203.16 114,07  40.51 164,21 137.08 127.11
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TABLE B-3.

OIOXIN/FURAN MASS EMISSION RATES

DIGXIN
Mona-C0D
bi-CDD
Tri-CDD

2378 100D
Other TCDD
12378 PCDD
Other PCDD
123478 HxLDD
123478 HxCDD
123789 HxCDD
Other HxCDD
1234678 HpCDD
Other HpCBD
Octa-CDD -

TOTAL CDD

FURAN
Mono-CDF
Di-COF
Tri-COF

2378 TCDF
Other TEDF
12378 PCDF
23478 PCOF
Other PCDF
123478 HxCOF
123678 HxCDF
234678 HzCDF
123789 HxCDF
Other HxCDF
1234678 HpCDF
1234789 WplOF
Other HpCODF
Octa-COF

TOTAL COF

TOTAL CDD/COF

MASS ERISSIDN RATE (ug/hr)

RUN 01 RUN 02 RUN O3 RUN 04 RUN 05 RUN 06 AVERAGE
ND K0 ND ND ND ND NA
115,25 .9 N  66.00 6.02 3.67  84.3%
123.88 133.88  90.04 12,99  93.39 981  95.17
1.36 1,30 1.48 0.16 ND 0.90 2.03
95.62 B&74  6A07 17,50 113.33 120.86  82.49
1.35 2.07 1.48 0.33 2.09 2,16 1.58
3208 33.35  21.49 8.4 60.18 o462  36.72
0.69 0.88 0.69 0.25 1.48 1.43 0.50
137 1.2 1.31 0.9 3.07 3.13 1.83
ND 3.07 2.35 0.81 4.40 LN )] 3.0t
20.80 19.41 17.12 1.21 4140 40,97 .89
3.26 6.03 3.9 2.2 8.73 8.36 6.08
5.89 6.52 b.04 245 11.28 9.30 b.88
13,79 16,12 14,30 2.9 1L3 1.5¢ 1103
47.14 332,30 226,28 121.80 356.8¢ 3e4.17  303.09
28.5¢ 2039 21,12 .76 #.97 .01 .4
13,93 322,73 148.31  19.67 323.46 148,07  166.03
271.80 835.83 401,10 137.76 503.72 479.69 441.45
4.39 46,75 S3.04  12.48 44,29 40.93  40.48
253.92 36173 330.12 62,95 239.05 237,33 247.52
3.2 8.05 2.9 1.06 3.33 3.38 3.48
.03 1377 W 2.41 1120 11,47 10.43
72.81 115,50 87.40  24.38  B2.94 96.59 79.%4
1.04 9.70 11,04 2.9¢ 1498 1409 9.97
.13 414 3.74 .11 3.01 .86 - 3.40
4.05 6.28 4.38 2.15 .86 %.21 3.79
ND 0.49 0.36 0.12 0.49 0.47 0.39
19.67 30.24 30.47 .49 37,271 3253 2%.29
7.8 10.%0 9.81 430 26,85 23.88 13.9t
L} L1 1.10 0.54 2.38 2.2 1.36
4.08¢4 7.13 3.12 3.9 12,86 1113 1.38
3.08 3.21 2.99 .11 .31 5.60 23
749.32 1B1B.93 1127.71 287.64 1372.76 1145.06 1086.90
1166.43 2151.23 1333.99 409.45 1729.80 1529.23 1389.99
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ATTACHMENT C
SEMI-VOLATILE RESULTS

A-28



TABLE C-1. RAM ANALYTICAL DATA FOR SEMI-VOLATILE ORBANICS

AT THE CONTROL DEVICE INLET

SEMI-VOLATILES DETECTED (ng)

COMPOUND RUN 01 RUN 02 RUN 03 AVERAGE
AC1D COMPOUNDS
2~CHLOROPHENOL ND ND ND NA
2, 4-DICHLORDOPHENOL ND ND ND NA
2, 4-DINETHYLPHENOL ND XD ND NA
Z,b-DINLTRO-0-CRESOL ND ND ND NA
2,4-DINITROPHENOL ND ND ND NA
2-NI TROPHENOL ND ND ND NA
4-NI TROPHENOL ND ND KD NA
p-CHLORO-8-CRESOL ND ND ND NA
PENTACHLOROPHENOL NO ND ND NA
PHENDL ~ - 3.5 1.7 9.8 7.0
2,4, 6-TRICHEOROPHENOL ND ND ND NA
BASE COMPOUNDS
ACENAPTHENE ND ND ND NA
BENZO(a}PYRENE ND ND ND NA
BIS(2-ETHYLHEXYL)PHTHALATE N ND ND NA
1,2-DICHLORGBENZENE ND ND ND NA
1,3-DICHLOROBENZENE ND ND ND NA
1,4-DICHLOROBENZENE ND ND ND NA
NAPHTHALENE 1.3 3.8 4.0 3.0
PERCHLOROEHTYLENE ND ND N NA
1,2, 4-TRICHLOROBENZENE N ND ND NA
PCBs and PESTICIDES
ALDRIN ND ND N2 NA
CHLORGDANE ND ND ND NA
DIELDRIN ND (1) ND NA
PCB-1242 ND ND ND NA»
PCB-1254 ND D ND NA
PCB-1221 ND ND N2 NA
PCB-1232 ND ND ND NA
PCB-1248 ND ND ND NA
PCB-1260 ND ND ND NA
PCE-1016 ND ND ND NA
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TABLE C-2. CONCENTRATION THE OF SEMI-YOLATILE ORGANICS IN THE
CONTROL DEVICE INLET FLUE BAS

COMPOUND RUN 01  RUN 02 RUN 03 AVERAGE
ACI0 COMPOUNDS
2-CHLOROPHENOL ND ND ND NA
2,4-DICHLORDPHENOL ND ND ND NA
2,4-DIMETHYLFHENOL ND ND ND NA
2,6-DINITRO-0-CRESOL ND ND ND NA
2,4-DINITROPHENOL ND ND ND NA
2-NITROPHENOL ND ND N NA
4-NITROPHENOL ND ND ND NA
p-CHLORO-a-CRESOL ND ND ND NA
PENTACHL OROPHENOL ND ND ND NA
PHENOL 2.3 4.3 5.7 4,2
2,4,6-TRICALDROPHENGL ND N ND NA
BASE COMPOUNDS
ACENAPTHENE ND ND ND NA
BENZD(a) PYRENE ND ND ND NA
BIS (2-ETHYLHEXYL)PHTHALATE ND 1] ND NA
1,2-DICHLOROBENZENE ND ND ND NA
1,3-DICHLOROBENZENE ND ND ND NA
1,4-DICHLOROBENZENE ND ND ND NA
NAPHTHALENE 0.8 .2 2.3 1.8
PERCHLOROEHTYLENE ND ND ND NA
1,2, 4-TRICHLOROBENZENE ND ND ND NR
PCBs and PESTICIDES
ALDRIN ND ND ND NA
CHLORODANE ND ND L1 NA
DIELDRIN ND ND ND NA
PCB-1242 ND ND ND NA
PCB-1234 ND ND ND NA
PCB-1221 ND ND ND NA
PCB-1232 ND N ND M
PCB-1248 ND ND ND NA
PCB-1260 ND ND ND NA
PCB-1016 ND nD ND NR
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TABLE (-3. SEMI-VOLATILE ORGANIC MASS FLOW RATE AT THE
CONTROL DEVICE INLET

NASS FLOW RATES tug/hr)

COMPOUND RUN 01

ACID COMPOUNDS

2-CHLOROPHENOL ND
2,4-DICHLOROPHENOL ND
2,4-DINETHYLPHENOL ND
2,6-DINITRO-0-CRESOL ND
2, 4-DINITROPHENOL N
2-NITROPHENOL ND
4-NITROPHENOL ND
p-CHLORO-8-CRESOL ND
PENTACHLOROPHENGL ND
PHENOL 15.2
2,4,6-TRICHLOROPHENOL ND

BASE COMPOUNDS

ACENAPTHENE ND
BENZO{a}PYRENE ND
BIS(2-ETHYLHEXYL) PHTHALATE ND
1,2-DICHLOROBENZENE ND
1,3-DICHLOROBENZENE ND
1,4-DICHLORGBENIENE ND
NAPHTHALENE 3.4
PERCHLORGENTYLENE ND
1,2,4-TRICHLOROBENZENE ND

PCBs and PESTICIDES

ALDRIN ND
CHLORODANE ND
DIELDRIN ND
PCB-1242 ND
PCB-1234 ND
PCB-1221 ND
PCB~1232 ND
PCB-1248 ND
PCB-1260 NO
PCB-1014 ND

RUN 02 RUN 03 AVERASE
N D NA
ND ND NA
ND ND NA
ND ND NA
ND ND NA
ND NO NA
ND ND NA
ND ND NA
N ND NA

33.6 41.3 30.1
ND ND NA
KD ND NA
ND ND NA
ND ND NA
ND N NA
N ‘ND NA
ND \D NA

16.6 17.0 13.1
ND ND NA
N L)} NA
ND ND NA
ND ND NA
ND WD NA*
ND N NA
ND KD NA
ND ND NA
N ND NA
ND ND NA
ND ND NA
ND ND NA
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TABLE C-4, . RAW ANALYTICAL DATA FOR SEMI-VOLATILE ORGANICS

IN THE SLUDGE FEED

SENI-VOLATILES DETECTED {ng/kg)

COMPOUND RUN 01  RUN 02 RUN 03 AVERAGE
ACID COMPJUNDS
2-CHLORCPHENOL ND ND ~ND NA
2,4-DICHLOROFHENGL ND ND ND NA
2,4-DIMETHYLPHENOL ND ND ND NA
2,6-DINITRO-0-CRESOL ND ND ND NA
2,4-DINITROPHENOL ND ND D NA
2-NITROPHENOL ND KD ND NA
4-NITROPHENOL L1) ND ND NA
p-CHLORO-a~-CRESOL ND ND N NA
PENTACHLOROPHENDL ND ND ND NA
PHENOL - - 0.7 ND ND N
2,4,6-TRICHLOROPHENDL ND ND ND NA
BASE COMPOUNDS
ACENAPHTHENE ND ND ND NA
BENZO(a)PYRENE ND ND ND NA
BIS(2-ETHYLHEXYL) PHTHALATE 19 23 2 2
1,2-DICHLOROBENIENE ND ND ND NA
1,3-DICHLOROBENIENE ND ND L1} NA
1,4-DICHLOROBENZENE ND ND ND NA
NAPHTHALENE 1.4 1.6 1.4 1.3
PERCHLORDEHTYLENE ND ND ND NA
1,2,4-TRICHLOROBENZENE N N ND NA
PCBs and PESTICIDES
ALDRIN ND ND ND NA
CHLORODANE ND ND ND NA
DIELDRIN ND ND ND NA*
PCB-1242 ND ND ND NA
PCB-1254 ND ND ND NA
PCB-1221 ND ND 1] NA
PCB-1232 ND ND 1] NA
PCB-1248 ND ND ND NA
PCB-1260 ND ND ND NA
PCB-1014 ND ND ND NA
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TABLE D-{. RAW ANALYTICAL DATA FOR THE SLUDBE FEED SAMPLES
COLLECTED DURING THE M12 INLET RUNS

METAL RUN 02 RUN 04 RUN Ob RUN 97 RUN 08 AVERAGE
ARSENIC (As: 3.2 3.1 2.4 2.9 2.6 2.8
BERYLIUN Be) 0.3 0.3 0.3 0.3 0.3 0.3
CADMIUNLCY) 11 11 13 13 15 13
CHROMIUM(Cr ) ab 70 / 71 68 70
COPPER(Cu) 740 120 840 840 770 782
LEAD(Pb) 290 270 380 360 310 334
NICKEL {N1) 210 17 340 370 290 275
SELLENIUM(Se) 0.9 1.1 1.4 1.4 4.3 1.2
LINC(In} 630 610 690 660 620 642

- g -

TABLE D-2. RAW ANALYTICAL DATA FOR TME SCRUBBER WATER INFLUENT
SAMPLES COLLECTED DURINE THE M12 INLET RUNS

AMGUNT DETECTED (ug/1»

PETAL RUN 02 RUN 04 RUN 06 RUN 07 RUN 08 AVERAGE
ARSENIC (As) ND ND ND N ND NA
BERYLIUM(Be) ND ND ND ND ND NR
CADmIUM(Cd} 4 ND ND N ND NA
CHROMIUN(Cr) NO ND ND ND ND NA
LEAD (P! 3 4 ] A 3 4
NICKEL {Ni) 130 100 240 220 250 188
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fABLE D-I. RAN ANALYTICAL DATA FOR THE SCHUBBER WATER EFFLUENT
SAMPLES COLLECTED DURING THE 12 INLET RUNS

. g = e =

METAL RUN 02 RUN 04 RUN 06 RUN 07 RUN 06 AVERAGE
ARSENIC(As) 9 5 30 ND ND 15
BERYLIUM(Be) ND L1 250 3 190 148
CADMIUM(Cd) 110 1190 1o 80 20 98
CHROMIUMSCr) 120 10 30 20 20 36
LEAD(PD) 1600 2000 1100 950 800 1290
NICKEL (Ni) 330 250 350 29 310 34

TABLE D-4. RAN ANALYTICAL DATA FOR METALS FOR THE BOTTOM ASH
SAMPLES COLLECTED DURING THE W12 INLET RUNS

AMOUNT DETECTED (ug/g)

METAL RUN 02 RUN 04 RUN Ob RUN 07 RUN 0B AVERABE
ARSENIC (As) 9.5 9.3 i 24 23 15
BERYLIUM{Be) 0.4 0.3 0.3 0.8 0.6 0.6
CADNIUN(Cd) 0.8 1.4 ND ND 1] NA
CHROMIUM(Cr) 160 19¢ z10 200 180 188
COPPER(Cu) 1700 1600 22000 2000 2000 1900
LEAD(PD) 280 120 170 130 230 190
NICKEL (Ni) 500 420 940 8% 760 702
SELLENIUM(Se) 0.8 0.8 0.7 1.3 f.1 0.9
LINC{In) 1100 1100 750 780 1000 342
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CORPORATION

January 11, 1988

Dr. Harry Bostian

Water Engineering Research Laboratory
U.S. Environmental Protection Agency
26 W. St. Clair Street

Cincinnati, Ohio 45268

Dear Harry:

Enclosed are the last of the preliminary results for the fourth Sewage Sludge
Test at Cranston, Rhode Island. Included in this letter are the flue gas metal
results for the runs conducted at the inlet and outlet of the control device.
The metals results for the scrubber water influent, scrubber water effluent, and
bottom ash were included in the letter dated December 22, 1987.

Table 1 is a summary of the number of runs conducted and the incinerator
operating conditions during each run. The control device inlet metals results
are presented in-Tables 2, 3, and 4 while the control device outlet flue gas
results are shown in Tables 5, 6 and 7. The results of the field blank trains
are shown in Table 8. It should be noted that the chromium results in the field
blank were very high for both the inlet and outlet samples. The chromium
results for the Method 12 runs are presented for comparison only. We are
awaiting the internal audit results before we can determine the source of the
chromium contamination.

If you have any questions concerning these results or need any additional
information, please contact me at (919) 481-0212.

Sincerely,

DR fniley  -

Dennis R. Knisley,
Chemical Engineer

DRK/1s

cc: Gene Crumpler, U.S. EPA
Robert Dykes, Radian
Keith Barnett, Radian
Mike Palazzolo, Radian
Mike Lewis, Technical Consultant
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TABLE 1. SUMMARY OF THE INCINERATOR OPERATING CONDITIONS FOR THE METHOD 12
TESTS CONDUCTED OURING THE FOURTH SEWAGE SLUDGE TEST

Run No. Sampling Location Incinerator Operating Conditions
M12 - 02b Control Device Inlet Cool Furnace, Afterburner Off
MI2 - 04b Hot Furnace, Afterburner On
Ml12 - 06b ' Cool Furnace, Afterburner Off
M12 - 07b Cool Furnace, Afterburner Off
M12 - 08 Cool Furnace, Afterburner Off
M12 - 01 Control Device Outlet Cool Furnace, Afterburner Off
M12 - 02 Cool Furnace, Afterburner Off
Mi12 - 03b Hot Furnace, Afterburner On
M12 - 04 Hot Furance, Afterburner On
M12 - 05 Cool Furnace, Afterburner Off
M12 - 06 Hot Furnace, Afterburner Off
M12 - 07b Hot Furnace, Afterburner Off
M12 - 08/ - Cool Furnace, Afterburner Off
M12 -,09b . Cool Furnace, Afterburner Off
Mi12 - 10 , Cool Furance, Afterburner Off
MI2 - 11 Hot Furnace, Afterburner Off

qThe "Cool Furnace" operating c8ndition is characterized by a combustion
hearth temperature of 1100-1400"F while the "Hot Furnace" operatang condition
is characterized by a combustion hearth temperature of 1400-1700°F.

bIn]et Runs 04, 06, 07, and 08 were run concurrently with outlet Runs 04, 08,
09, and 10, respectively. The inlet run numbers will be changed to correspond

to the out]et run numbers in the Site 04 Test Report to simplify the
presentation of results. -

ees/004
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TABLE 2. /AW ANALYTICAL QATA FGR THE INLET METAL TRAINS

METAL AUN (2 AUN O AUN 07 RUN (B AVERASE
3

ARSENIC (As! 4 12 3 32 9 37
BERYLIUM(Be: ND ND N ND ND NA
CADNIUN(Cd) 760 538 720 743 584 2
CHROMIUNICr: i920 a7 775 429 93 732
LEAD(PD} 2080 12395 112% 7440 7070 8587
NICKEL (NI} 1840 £02 48 082 §00 500

4 The average only inciudes Aun (8-UB. Run 02 4id not aeet
isokinetic sgecifications and Run G4 was conducted under
different sgerating conditicas.

TABLE I. METAL CONCENTRATICN IN THE CONTROL DEVICE INLET FLUE
FLUE GRS SAMPLES
SONCENTRATION tug/dscal

NETAL RUN 02 SUN U8 RUN 06 RUN 07 RUN 0B AVERRGE

— 3
ARSENIC (As) {1 1.8 30 FAS 21 23
BERYLIUM(Be) ND ND ND ND ND N&
CAOMIUM(C4} 382 407 47 355 417 483
CHROMIUM(Cr) 890 234 6435 32 484 480
LEAD{Pb) 965 914 . 7440 3409 4313 Yy
NICKEL{(Ni) 853 257 382 745 488 338

4 The average only includes Run 06-08. Run 02 did not aeet
isokinetic specifications and Run 04 was conducted under
different operating canditions,
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TABLE 3. METAL ¥4SS “LCM FATES AT TrE CONTROL DEVICE -INLET

P

MASS FLOW RATE :ag/nr)

-METAL RUN U2 5N 04 LRUN 96 AU 07 RN 08 AVERAGE
- a

ARSENIC (As) 88 56 192 145 146 161
BERYLIUM(Be: ND ND ND ND ND NA
CADMIUM(Cd) 2789 2928 71 3466 2888 3142
CHROMIUM(Cr! 7047 1684 4139 1949 I248 3152
LEAD(PD) 7634 6891 47988 3798 29849 31212
HICKEL (N1 6753 1843 33 8779 3378 3498

3 7he average only includes Run 04-0B. Aun

02 did not seet

lsokinetiz specifizations and Rua 04 was conducted under

different aperating conditicns. -
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METAL CONCEINTRATONS IN YHE CONTROL LEVICE OUTLET FLUE GAS SAMPLES

1ABLE 6.

CONCENTRATION (ug/dsce!

AVERAGE AVERASE AVERAGE
b

RUN 02 RUN 03 RUN 04 RUN 05 RUN 06 RUN 07 RUN 0B  RUN 09 RUN 10 RUN 11

RUN 01

METAL

A-46

.48

-

P

2.6!

1.96

1.5

AKSENIC (Rs)

NA HA N&

ND

140

ND

18
Y
3

ND

N
126

ND
160
257
a6?

4473

ND
HM
141
377

178

ND

ND
103
269
194

ND
145

]
98
248
203

BERYL1UM{Be)
CADNIUN(EG)

~y
w3

{

k4
o

9

4

-

-
~
[}

30

278

266

(T}
~

CHROMIUN(Lr)
COPPER(Cu}
LEAD(PB)

or
~

MIT!

415
2022

N
2890

248
1419

ey

()
1549

286
1488
23.5

826

2]

441

Vi
4

Ly
=
—

1609

i
-*

2180

913
24.1

149
39.1

-

r~)

o~

17,4

NICKEL (N1}

NA

NG ND ND NG

c

ND

ND

ND

KD
1212

ND ND
1680

1433

SELLENIUM(Se)
LINC(2n)

a Cool furnace, atterburner off (kuns 01,02,05,08,99,10)

b Hot turnace, atterburner on{Runs 03,04)

€ Hot furnace, aftterburner off{Runs 04,07,11)
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TABLE =. RANW ANALYTICAL JATA FIR THE
METAL FIELD BLANKS

AMOUNT TETECTED (ug)

WETAL INLET QUTLET

FIELD FIELD

BLANK BLANK
ARSENIC (As) D b
BERYLIUM(Be) N ND
~ CADNIUM(CE) 7 4
*_. CHROMIUM(Cr 704 524
COPPER(Cu) 24
LEAD(Pb) 54 40
NICKEL (Ni) 24 i)
SELENIUM(Se) ND
1INCtIn) .- 48
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AUDIT REPORT 239-009=71~=12
11 January 1988 303-404~04~01
TO: Distribution
FROM: K.W. Rozacky

PROJECT: Sewage Sludge Incineration (SSI) Progrem
Chemistry Division Internal Audit Program
SUBJECT: October 1987 Performance Audit Sample Results

1.0 INTRODUCTION

On October 7, 1987 performance audit samples wete prepared and
submitted to the analytical task leader, Keith Bammaett, for distriduticn to
laboratories conducting analyses for the Sewage Sludge Incineration (SSI)
Program. Samples simulating flue gas impinger catches and scrubber
effluents wvere submitted to Radian's Sscramento Production Chemistry (SPC)
Laboratory and Perimeter Park (PPR) Laboratory, Due to budget constraints,
not all samples were submitted for analysis. This audit qualifies for
consideration as part of the the Chemistry Division Internal Audit Program,
Regulte for the audit samples are assumed to be representative of the
quality of the data for eimilar camples anslyzed during the same time
period. Anslytical performance was agsessed for the following methods:

° Purgeable Organics in water samples by EPA Method 8240
analysed at SPC;

0 Semi~Volatile Acid & Base Neutral Extzactable Orgenics in
vater by EPA Method 8270 analyzed at PIK;

) Pesticides and PCB's in water ssmples by EPA Method 8080
analyzed at PFK; '

A-49
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. Chromium +6 in water samples by EPA Method 7196 analyzed at
PFR;

. Metals in water by EPA Methods 6010, 7060, 7421, and 7740
analyzed at SPC; and

. Metals on gless fiber filter media by ZPA Methods 6010, 7060,
7421, and 7740 analyzed at SPC.

2.0 RECOMMENDATIONS FOR CORRECTIVE ACTION

No formal recammendations for corrective action are required at

this time,

ROZ150, M¥D A-S0
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3.0 DISCUSSION

The audit or performance evaluation (PE) samples used for the
October 1587 laboratory performance audits were submitted as sets of three
eamples except for the glaga fiber filter sample. Each get of three samples
consisted of a matrix blank and two samples spiked at levels raepresentative
of expected SSI field samples. Audit samples were prepared by spiking U, 8.
EPA Quality Control Check Materials, NBS SRMs or standarde prepared from
neat materials into laboratory pure matrices.

A sunmary of mejor problems revealed by these audit samples
included:

° Perimecer Park (PFK) Laboratory:

--"-Fllsc positive results reported for 1,4-dichlorobenszene,
bis (2-ethyl hexyl) phthlate and benzo(a)pyrane in the
vater matrix blank sample B/N extract analysed by EPA
Method 8270. Analytical deta for field samples may
indicate the sama compounds as present. There is s
possibility that the results are due to contribution

from an outside source.

== No recovery of B/N target snalytes where analytes
present in sample at >2 times the expected detection
limits. This occurred in only one of the vater matrix
samples analysed by Method 8270. Possibility exists for
analytes to be present in field samples but not be
detacted,

~~ False positive results reported for 2~-nitrophenol,
2,4,6~trichlorophenocl and 4-nitrophenol in the water
matrix blank ACID extract analysed by EPA Method 8270.

A-51
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Analytical data for field samples may indicate the same
compounde as present, There 1s a possibility that the
results are due to contribution from an outside source.

No recovery of ACID target anslytes where analytes are
present in sample at >2 times the expected detection
limits, Phenol is the only target analyte that did not
geenm to be impacted. This occurred in only one of the
water matrix samples analyzed by Method 8270. The
possibility exists for analytes to be present in field
samples but not be detectad,

Sacramento Production Chemistry:

=~ ~High recovery, approximately 2 times (161% to 275%), for

metals on glass fiber filter media analysed by Mathods
6010, 7060, 7421, and 7740, DPossibility exists that the

digestate volume vas incorrectly reportedo®t TaAT TNEC
AR meoid Ras § Blsviionwo LEYER OF THY

AL T &€ (ATHEST,

A-52
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3.1 Purgeable Orgenics in Water Samples by EPA Method 8240

Performance evaluation samples of water matrices waere prepared and
submitted to SPC for analysis by EPA Method 8240. Semples containing five
of the SSI analytes of interest, spiked at concentrations from 4 to 28 times
the expected mathod detection limit, and a matrix blank sample were gub~
mitted, At the direction of the analytical task leader, Sample 3, one of
the spiked ssmples, was not analyzed. The matrix was purified water that
had been boiled and purged with URP helium. No problems were indicated by
the reported regults which are presented in Table 1.

Results for Sample 1 indicate correct identification of all five
of the target snalytes. Of the target analytes, benzene and toluene were
quantitated outside the accuracy objectives as specified in Method 8240, and
adopted as the accuracy objectives for the SSI Prdg:an. This performance is
not considered problemstic to the utility of the data since ého recoveries
were just outside the objectives. Only one additionel compound, methylene
chloride (4 ug/L), was reported as & false ﬁo-itivo in this szample. No
target analytes were reported as present in the matrix blank sample. If the
other field sample results indicate low levels of methylene chloride to be
present, contribution from an ocutside source should be considered when
interpreting the data,

ROZ150. MMD A-53
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3.2 Semi-Volatile Organics in Water Semples by EPA Method 8270

Performance evsluation samples of water matrices were prepared and
submitted to PPR for analysis by EPA Method 8270. A matrix blank and two
spiked samplél vare aubmitted. Two major problems were identified that
impact both acid and bage neutral extract analyses. One problem was that
seversl unexpacted compounds were reported as present in the matrix blapk
samples and the other problem was that target compounds present at repre-
sentative levels were not detected.

Results for the base neutral (B/N) extractable organics are
presented in Table 2, False positive results were reported for
1,4-dichlorobenzene (4 ug/L), bis (2-ethyl hexyl) phthlete (5 ug/L) and
bonzo(a_)pyrehe (7. ug/L)in the water matrix blank sample B/N extract analyzed
by EPA Method 8270..- Analytical data for field samples may indicate the same
compounds as present. There is a possibility that the results are due to
contribution from an outside source. This should be considered when
interpreting the analytical date for similar samples,

B/N target analytes wers not detected where analytes present in
sample at >2 times the expacted detection limits. This cccurred inm only one
of the water matrix samples analyzed by Method 8270. Only one, bis (2-ethyl
hexyl) phthalate, of the five target anslytes contained in Sample 3 was
identified. This compound was also raported as present in the matrix blank
sazple. Of the five target analytes contained in Sample 1 all five were
correctly identified and only ona vas quentitsted cutside the expected range
of recovery. The concentrations of snalytes in Sample 1 vere half of the
concentrations of the same analytes present in Semple 3. The possibility
existe for analytes to be present in field samples but not be detected.

Results for the acid extractsble semi~volatile organics are
presented in Tsble 3. PFalse positive results reported for 2-nitrophenol
(14 ug/L)s 2,4.6~trichlorophenol (12 ug/L) and 4-nitrophenol (6 ug/L) in the
water matrix blank ACID extrsct analyzed by EPA Method 8270. Analytical

ROZ150.MW0 _ A-54
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dats for field samplaes may indicate the same compounds as present, There is
2 poseibility that the results are due to contribution from an outside
source. This should be considered when interprating the anelytical data for
similar samples,
P Wyee 1K 0L

Vo zacoyery.of ACID target nnllytalﬁvhore analytes are pregent in
sample at >2 tines the expected datection limits. This problem occurred in
only one of the water metrix samples analyzed by Method 8270. Phenol is the
only target analyte that did not seem to be impacted. Sample 1 contained
ten of the semi-volatile target analytes, including phenol. The only target
analyte contained in Sample 3 was phanol. Fhenol was the only target
analyte reported as pregent in either of the spiked sudit samples. The
Posaibility exists for analytes tc be prasent in field samples but not be
detected. -

ROZ150.MMO . A-55
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3.3 Pesticides and PCBs in Water by EPA 8080

Tables 4 and 10 of this report pregent the audit values for
samples submitted for assessment of Method 8080 performance. At the
direction of the analytical task leader_no Method 8080 analyses werg con-
ducted for liquid ssmples ssaociated with thisg phase of the SSI testing,
The tables are provided for additional information in the avent that the
semi-volatile organic sample extracts are analyzed for PCBs or pesticides.

3.4 Chromgium + 6 in Water by Method 7196

Three sample containing chromium in the +6 valence state vere
submitted to PR for analysis. The results for these anglyses are presented
in Table 5. No problems were indicated. :

3.5 Metals in Water by EPA Methods 6010l 7060, 7421 and 7740

Three asudit samples consisting of & matrix blank and two apiked
gamples vere gent to SPC for metals determination by inductively coupled
plasma emission spectroscopy (ICPES) analysis and atomic absorption (AA).
Cadnium and chromium concentrations were determined by ICPES and the results
are presenced in Table §. Lead,arsenic and selenium concentrations were
determined by AA and the results are presented in Table 7. No analytes were
reported at concentrations above the expected detection limits in the matrix
blank ssmple. Quantitation for each target analyte was within +10% for
ICPES snalyses and +20T for AA analyses. No problems are indicated.

ROZ150.MMO - A-56
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3.6 Metals on Glass Plber Filter Media by EPA Methods 6010, 7060.

7421 and 7740

One audit sample consisting of a spiked glasgs fiber filter was
gent to SPC for metals determination by inductively coupled plasma amission
spactrogcopy (ICPES) snalysis and atomic sbsorption (AA). Beryllium,
cadmium, chramium, coppor; nickel and zinc concentrations were determined by
ICFEZS and the results are presented in Table 8, Lead,arsenic and selenium
concentrations ware determined by AA and the rasults are presented in
Table 9.

Two problems were identified by these results. An unexpected
value for copper (70 ug/L) was reported. Copper was not one of the spiked
anslytes. The other problem was that analyte recoveries were all high,
ranging from 161X to 275%. There are two possible explanations for this
high recovery. One explanation would be that an imcorrect digestate volume
was reported by the laboratory. The other explanation might be that the
filter media had background concentrations of the target analytes. Media
blank analytical results should be reviewed to see if a background is
present that would influence Interpretation of the analytical data.

4,0 STATUS OF PR!ViOUS RECOMMENDATIONS

The following tables present the status of prcvibul-rucomnondn-
tions for corrective action made to these lsboratories.

ROZ150,.MMO . A-57
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A.4 RESULTS OF SLUDGE ANALYSES, PERCENT SOLIDS AND PERCENT VOLATILE SOLIDS;
OCTOBER 15, 1987
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MICHAEL TRAFICANTE
MAYOR

A. JOSEPH MATTERA
SUPERINTENDENT
RAYMOND AZAR
DIRECTOR

DEPARTMENT OF PUBLIC WORKS
WATER CONTROL FACILITIES

140 PETTACONSETT AVENUE
CRANSTON. RHODE 1SLAND 02920

October 15, 1987

Mr. Michael Palazzolo

Senior Engineer/Group Leader
Radian Corporation

Progress Center

3200 E.Chapel Hill Road/Nelson Hwy.
P. 0. Box 13000

Research Triangle Park, NC 27709

Dear Sir: -

Enclosed is a copy of the laboratory results for your submitted samples.

If you have any questions or if I can be of any further help, please feel

free to contact me.
?re IZQ )//Z‘—

Paul E, Fitzgibbons
Chemist
PF/jl

cc:A.Joseph Mattera/W.C.F.
enclosure
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Water Control Facility - 10/15/87

Date Sample o/o TS " ofo VS
9/30 CRA-0930-SF-MC-01 28.0 53.6
9/30 CRA-9 34.0 51.5
10/1 CRA-292 29.6 51.0
10/2 CRA-296 29.9 53.2
10/3 CRA-301 29.5 57.3
10/4 CRA-327 27.9 59.3
10/5 CRA-334 25.9 52.5
10/6 CRA-344. 29.9 56.9
10/6 CRA-352 29.6 55.1
10/8 CRA-354 28.8 58.7
10/8 CRA-357 28.1 56.6
10/8 CRA-369 26.9 57.6
10/9 : CRA-445 28.5 58.9
10/9 CRA-446 29.4 57.8
10/9 CRA-447 29.5 56.9
10/10 CRA-448 29.5 57.6
10/10 CRA-450 30.9 57.9
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A.5 RESULTS OF SLUDGE HIGHER HEATING VALUE AND ULTIMATE ANALYSES,
NOVEMBER 6, 1987

JES/025 A-71



»

: I COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8. LOMBARD. ILLINOIS 60148 ¢ (312) 953-9300

SINCE 1908 Member of the SGS Group (Sociéte’ Generale de Surveillance)

PLEASE ADDRESS ALL CORRESPONDENCE TO:
16130 VAN DRUNEN RD., P.O. BOX 127

SOUTH HOLLAND, 1L 60473

TELEPHONE: (312) 264-1173

’ RADIAN CORPORATION TELEX: 285950 COMTECO SH UR

3200 Progress Center/Hwy 54 November 6, 1987
P.O. Box 13000
Research Triangle Park, NC 27709 Sample identification

by Radian Corp.
ATTN: J.F. McGaughey

Kind of sample
reported tous Sludge Sample I.D.: See Below

Sample taken at —=——-

Sample takenby Radian Corp.

Date sampled @ —=====
Date received 11/2/87 P.0. No. 60190
Analysis reportno. 71-47083, 47084, 47086, 47088-47092
Radian Corporation
Identification Btu/lb., As Received
CRA-7 1764
243 2050
245 1827
247 1517
248 2041
249 , 1919
250 1898
444 ) 1957
R lly submitted,
cgglcm TESTING & ENGINEERING CO.
X J L
Original Copy Watermarked A-72 x

Manager, South Holland Laboratory

OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING AREAS,

F484 TIDEWATER AND GREAT LAKES PORTS, AND RIVER LOADING FACILITIES
DWC/ds :

For Your Protection



Fla68

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 60148 ¢ (312) 953-9300

PLEASE ADDRESS ALL CORRESPONDENCE To.
. I To.
A, TAYLOR ! 16130 VAN DRUNEN RD.. P.0. 80X 195
MIDWEST DIVISION SOUTH HOLLAND, IL 60473
OFFICE TEL. (312) 264.1173

sinCe 1908 TELEX: 283527

’ RADIAN CORPORATION

3200 Progress Center/Hwy 54 November 6,>1987
P.O. Box 13000
Research Triangle Park, NC 27709 Sample identification

by Radian Corp.
ATTN: J.F. McGaughey

Kind of sample
reported tous  Sludge Sample I.D.: 246

Sample taken at ———e=-

Sample taken by Radian Corp.

Date sampled —=—===
Date received 11/2/87 P.O. No. 60190
Analysis report no. 71-47087
EBQ;_[MATE _ANALYSIS_ ' ULTIMATE ANALYSIS

As Received  Dry Basis As Received  Dry Basis

% Moisture 71.77 XXXXX % Moisture 71.77 XXXXX

% Ash 9.11 32.26 % Carbon 10.19 = 36.09
% Volatile 17.70 62.70 % Hydrogen 1l.46 - 5.17 .

% Fixed Carbon 1.42 5.04 % Nitrogen 0.93 3.29

100.00 100.00 % Chiorine -_— ———

% Sulfur 0.16 0.56

Btu/Ib. 1887 6686 % Ash 9,11 32.26

% Sulfur 0.16 0.56 % Oxygen (diff) 6,38 22.63

100.00 100.00

SULFUR FORMS FUSION TEMPERATURE OF ASH
As Received Dry Basis _ - Reducing Oxidizing

% Pyritic Sulfur —_——— ———— Initial Deformation —-———- °F ———- °F

% Sulfate Sulfur ———— ——— Softening (H=W) === °F === °F

% Organic Sulfur ———- ———— Softening (H=1%W) -———- °F ~=== °F

(Diff) Fluid ———— °F -—w—= °F

% Total Sulfur ———— ———
HARDGROVE GRINDABILITY INDEX =  ———- &t ——___ % Moisture
% EQUILIBRIUM MOISTURE = ————

Respectfully submitted,
CO RCIAL TESTING & ENGINEERING CO.

FREE SWELLING INDEX = — - w e
- Ovvs.'& ()L

Original Copy Watermarked .
For Your Protection A-73 David W. Cox, Manager, South Holland Laboratory

N Charter Member
OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING AREAS,
DWC/ds TIDEWATER AND GREAT LAKES PORTS, AND RIVER LOADING FACILITIES



F-468 e ® .

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 60148 « (312) 953-9300

PLEASE ADDRESS ALL CORRESPON :
h;%\;‘%\ghmvl_on . 16130 VAN s?oRuUT":-uEuoHD" P.%.Eggi %
LLAND, 1
MIDWEST DIVISION OFFICE TEL. (312) 2‘631)?;3
smct 1908 TELEX: 283527
> RADIAN CORPORATION
3200 Progress Center/Hwy 54 November 6, 1987
P.0O. Box 13000
Research Triangle Park, NC 27709 Sample identification

by Radian Corp.
ATTN: J.F. McGaughey

Kind of sample :
reported to us  Sludge Sample I.D.: 244

Sample taken at ————-

Sample taken by Radian Corp.

Date sampled ——=—==-
Date received 11/2/87 P.0. No. 60190
Analysis report no. 71-47085S
PROXIMATE ANALYSIS ULTIMATE ANALYSIS

As Received Dry Basis As Received Dry Basis

% Moisture 67.96 XXXXX % Moisture 67.96 XXXXX

% Ash 11.94 37.28 % Carbon 10.74 33.51
% Volatile 19.36 60.44 % Hydrogen 1.65 - 5.14 .

% Fixed Carbon 0.74 2.28 % Nitrogen 1.01 3.16

100.00 100.00 % Chlorine ———— ———

% Sulfur 0.19 0.60

Btu/Ib. 1973 6158 % Ash 11.94 37.28

% Sulfur 0.19 0.60 % Oxygen (ditf) 6.51 20.31

100.00 100.00

SULFUR FORMS _ FUSION TEMPERATURE OF ASH
As Received Dry Basis Reducing Oxidizing

% Pyritic Sulfur - -———— Initial Deformation === °F —=== °F

% Sulfate Sulfur ——— ———— Softening (H=W) —e—m— °F ——== °F

% Organic Sulfur ———— ———— Softening (H=%:W) -=== °F ===~ °F

(Diff) Fluid. === °F === °F

% Total Sulfur - ————
HARDGROVE GRINDABILITY INDEX = === 8t ~———- % Moisture
% EQUILIBRIUM MOISTURE = ————

R ully submitted,
co RCIAL TESTING & ENGINEERING CO.

FREE SWELLING INDEX = _— - w e _
- : wa& l%.

Original Copy Watevmarke& -
inal Copy Watermar A-74  David W. Cox, Manager, South Holland Laboratory

OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING AREAS,
DWC/ds TIDEWATER AND GREAT LAKES PORTS, AND RIVER LOADING FACILITIES



F-4680 - g

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 60148 » (312) 953-9300

PLEASE ADDRESS ALL CORRESPONDENCE TO:
h‘;%‘;%‘g;“*'—on n 16130 VAN gonut#meuonodﬁg. 8OX 127
L ,IL 60473
MIDWEST DIVISION OFFICE TEL. (312) 264-1173
- TELEX: 283527
’ RADIAN CORPORATION
3200 Progress Center/Hwy 54 November 6, 1987
P.O. Box 13000 }
Research Triangle Park, NC 27709 Sample identification

by Radian Corp.
ATTN: J.F. McGaughey

Kind of sample
reported tous  Sludge - Sample I.D.: 370

Sample taken at  —-—==—-

Sample taken by Radian Corp.

Date sampled —————
Date received 11/2/87 P.O. No. 60190
Analysis report no. 71-47093
PROXIMATE ANALYSIS ULTIMATE ANALYSIS

As Received  Dry Basis As Received  Dry Basis

% Moisture 72.89 XXXXX % Moisture 72.89 XXXXX

% Ash 9.11 33.60 % Carbon 9.58 35.34
% Volatile 16.91 62.36 % Hydrogen 1.41 5.20

% Fixed Carbon 1.09 4.04 % Nitrogen 0.92 3.38

100.00 100.00 % Chlorine ——— ————

: % Sulfur 0.14 0.50

Btu/Ib. 1790 6603 % Ash 9.11 33.60

% Sulfur 0.14 0.50 % Oxygen (diff) 5.95 21.98

100.00 100.00

SULFUR_FORMS FUSION TEMPERATURE OF ASH
As Received Dry Basis Reducing Oxidizing

% Pyritic Sulfur ———— ———— initial Deformation ——== °F ———= °F

% Sulfate Sulfur ———— ———— Softening (H=W) -———- °F ——== °F

% Organic Sulfur ———— ———— Softening (H=¥2W) ———-F --=w= °F

(Diff) Fluid ———— F -—== °F

% Total Sulfur ———— ————
HARDGROVE GRINDABILITY INDEX = wm—e— 8t  —=a- % Moisture
% EQUILIBRIUM MOISTURE = ————

Respectfuily submitted,
COM CIAL TESTING & ENGINEERING CO.

FREE SWELLING INDEX = ————
QOriginal C W ked — t
riginai .
g;éo, y::,v pr:::;‘i‘:,: e A-75 David W. Cox, Manager, South Holland Labloratory
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A.6 SUMMARY OF PROCESS OPERATING AND SAMPLING PARAMETERS FOR THE METAL
EMISSION TEST RUNS
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A.7 PARTICLE SIZE DISTRIBUTION RESULTS, INLET AND OUTLET
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EMISSION FACTOR DEVELOPMENT
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APPENDIX B
EMISSION FACTOR DEVELOPMENT

B.1 INTRODUCTION

Emission factor estimates for each of the two Rhode Island incinerators
are developed for purposes of conducting emission modeling. These emission
factors are key inputs into the dispersion modeling calculations. Tests
recently performed at the Cranston facility are the basis for emission
factors for that incinerator. No plant specific emission factors were
available for Fields Point. As a means of developing reasonable emission
estimates based on the information known about the plant, Radian developed a
model. The model utilizes site specific information to the extent that such
data are availabl®. In the absence of site specific data, the model relies
on data reported in the literature for similar incineration facilities.

In general, this approach utilizes existing data to predict uncontrolled
emission rates for each metal. Existing data are also used to predict how
these uncontrolled emissions are distributed as a function of mean particle
diameter. From this information controlled emission rates are determined on
the basis of known relationships between control device design, operating
conditions and removal efficiency.

B.2 DESCRIPTION OF EMISSION FACTOR MODEL

Several variables are known to affect emissions from sludge
incinerators. Among these factors are furnace design, operating conditions,
sludge characteristics, control device design and operation. As an attempt
to address as many of these factors as possible. The Radian model considers
five variables. When possible these variables were defined using data
specific to the Fields Point facility, where such data were unavailable,
variables were defined using existing data combined with engineering
judgment. The key variables are: (1) sludge feed rate, (2) average metal
content of incoming sludge, (3) proportion of the incoming sludge metal
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content released in the uncontrolled offgases, (4) percent of total
uncontrolled metal emission in each size fraction, and (5) particulate
removal efficiency of the scrubber for each particle size.

Figure B-1 contains an example calculation illustrating the emission
factor development approach. As shown in the example, Elements "A" and "B"
of the equation are defined based on the sludge feed rate to the incinerator
and the average sludge metal concentration. Sludge feed rate (Element A) for
Fields Point is defined as the incinerator design capacity and the sludge
metal concentration (Element B) is based on the average sludge metal
concentration supplied by Fields Point for the period between January 1985
and September 1986. Element "C" of the equation shown in Figure B-1 is
derived from the existing uncontrolled emissions data for those tests where
sludge metal concentrations were monitored (literature sources), and
Element "D" is based on those test runs where uncontrolled metal emissions
were fractionated by particle size (literature sources). The percent of
sludge metal contént released in the incinerator offgases (Element C) and the
percent of the uncontrolled metal emission in each particle size fraction
(Element D) is judged to be very dependent upon incinerator operating
conditions. Therefore, these values were derived based on existing emissions
data, incinerator operating records and engineering judgement. Element "E"
is estimated based on control device design data and average scrubber
pressure drop recorded at Fields Point during previous operating records. An
example, showing the relationship between scrubber efficiency, particle size,
and pressure drop is included as Figure B-2.

Emission factor estimates for arsenic, beryllium, and selenium cannot be
made for Fields Point using the approach described in Figure B-1 since these
metals were not included in the Fields Point sludge monitoring program.

B.3 EMISSION FACTOR CALCULATIONS

The Radian model was used to calculate four emission factor estimates
for each of the target metals. These include a "lower bound" estimate, an
"average," an "average based on plant specific scrubber operation records,"
and an "upper bound" estimate. Modeling results presented in this document
are based on the emission estimates derived from the average case using

JES/025 B-3



yoeoisddy juswdojanaq 10310e4 uoissiwg

(o}
©
[+] .
o Buimoyg uonenoje) sjdwexy --g ainbiy
&
D
(nyB) e1es vosSALS (ayB) ez eped Aq ‘O'M W GZ JO 4V B 18 seqqnoe
WNUPEd pegenuoo 910 UDISSUD UNMLIPED SUNOG UPIELY O 10} 08 Spoed } o718 9NIBd YORE LN SUON

w10} polewns3

9€0 “N

ve'o o>
200 "et- 1
000 "oL-S¢€

000 noL<

Aq uonanpas weosed perewne3

(9%00'¥6 —00LI MO'L>

(%0Z'86—-00L] "G°€E - L

(9%08'66—-00L] "0l - S'E

%6666 —00L] MoL<*

L

WINWPED POONLIcOUN §O WE0Ia]

%085

%8

%L1

%S¢

1o._vﬂ—

ng'e- L
noL - S

rol<

662 L9100
s2s80 JJo JO1LOUN
poyonuUooUN
oy U peseeR) {8y Axp/B)
9Bpys Jo weasmy oBpors ofaeny

0Lz'e

(ayBx Asp)
oW1 poo)
obprys eBeseay

B-4

JES/025



COLLECTION EFFICIENCY % BY WEIGHT

COLLECTION EFFICIENCY VS. PARTICLE SIZE

/ 29.9¢

///// -
pd

99.30

29.50

99.00

28.co

v — »:‘; . —— 1 95.00

)/ 90.00

80.00
05 1.0 20 5.0 10.0

PARTICLE DIAMETER IN MICRONS

Figure B-2. Example, showing the relationship between scrubber efficiency,
particle size, and pressure drop.
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plant specific scrubber operation records (B.3.3). Table B-1 contains this
range of emission factor estimates for the metals targeted in this study.
Table B-2 contains the inputs and results for the emission factor
calculations. The following subsections briefly explain each estimate.

B.3.1 Lower Bound Estimate

This emission estiméte is derived to bound the range on the low end that
is, the lower bound estimate describes emissions under the absolute best case
or lowest emitting scenario. This estimate is derived by setting the metal
content of incoming sludge (Element B in the model) at the lowest level of
any of the reported samples. Next, the percent of sludge metal content
released into the uncontrolled incinerator offgases is assumed to be the
smallest value reported in all literature sources.

Size distribution of metals in the uncontrolled offgases is assumed to
be distributed primarily in the larger particle sizes, again based on the
"best case" of all literature sources. Scrubber operation is assumed to
remain constant at best case conditions of 40 in. pressure drop, which
results in the largest emission reduction.

B.3.2 Average Case Estimates

These emission estimates represent results that are derived using
average values for each of the model variables. Under this scenario, the
scrubber is assumed to be operated continuously at a pressure drop of 25
inches of water.

B.3.3 Average Case Based On Actual Scrubber Operation Records

These emission estimates represents factors that are derived using
average values for each of the model Elements A, B, C, and D. Actual
scrubber operation records are used to estimate a time weighted scrubber
system pressure differential. Available operational records from July 1982
were reviewed and the data were reduced to determined the amount of time the
scrubber was operated in each of four pressure drop ranges. Table B-3 shows
a summary of these data.
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TABLE B-1.

EMISSION RATE ESTIMATES FOR FIELDS POINT (g/hr)

Average Case

Lower Average v Based on Upper
: Bound Case Actual Scrubber Bound
Metal Estimate Estimate Records Estimate
Arsenic NA NA NA NA
Beryllium NA NA NA NA
Cadmium 0.025 0.7 1.9 11.8
Copper 0.109 24.8 139.9 1574
Chromium 0.005 4.4 22.4 271.6
Lead 0.127 7.6 24.8 275.9
Nickel 0;652 4.3 21.9 268.3
Selenium NA NA NA NA
Zinc 0.084 44.3 201.3 1892

NA = Not available since Fields Point and sludge data analysis do not include
these metals.

JES/025

B-7



6°0 7°8¢t ¢'8 0L6L°T 00¢T"8 oLLL e 0L2e uz

20 0°8% 12t 01L2’0 021" 1 02es 0 0Lee N o0
'
2]
0'n €' Th 6°9 oeeT’ o 0219°0 08LE°0 0Lee ad
80 0° L8 LA A 096s°1 0611°8 009%° € 0L22 ny
80 0 LS 1e°et 0022°0 058¢°1 0tT9s°0 0L2e 10
6°91 c9L 8 vy L7007 0 £620°0 £910°0 0LTe )
se3330 se3330 ‘ se3370 « (BB (34/3) (3%/3) (1y/%y) TeI9l
pai10a3jucOUn paT1oI3U0dUf paT1ox1u00Un . 1uajuo) 1uajuo) uajuo) eI 93wy pIag agpnis
uy Juajuo) ut juajuo) uy JuUaIU0H 4 Telal a8pnts Te1sy a8pnis a8pnis afeiaay  afpnig a8eiaay
1e31a) adpnis 1e3ay adpnis 1e19y 28pnis punog Iamo] punog zaddp
FO 3usd1ayg Jo 1uadIad JO JuadIag
punog 1amo] punog aaddn agel1aAy
wDu 2UsWa 1Y wd, Juowsiy WV, JUsWoTd
. w0
N
o
~
(D HONOWHI V SINIWITI YOI SANTYA ANNOE WAMOT ANV ‘GNNOY YIddN ‘IOVEIAV) 5
™

SNOTILVINDTVD ¥OLOVA NOISSIWI U0Jd SINANI TAAOW ~"2-9 TTEVL



" 9 61 € £y L 114 "z Lz L 42 Ty uz
1 9 8¢ s Le 8 61 9¢ v2 L €2 9% ™
L S (4 99 "6 1 0 S 7y 8 61 62 a4
L £ 9y 7y 7y 1 T g oz L 62 Yy np
1 v 61 9t 8¢ 6 81 SE T4 L 61 oS 19
!
91 141 Y 62 L6 1 RS | 1 0 8 I3 ST PO
1
no't ngg-1 nor-g'¢ N 01 not ngg-1 n 0T-¢'¢ n o1 not nogg-1 n 01-5°¢ n o1 < Te39l
%) Uo1Inq13351G Wd 1€359W punog IsA0] (%) UOTINGTI3510 WA T(EION SBEIPAV agpnig

(Q- INFWITI ¥Od SINTVA ANNOE WIMOT ANV

(ponutiuo))

'¢-9 J19vL

‘aNNOE ¥3ddn ‘IOVHAAVY)

B-9

JES/025



z0°0 $000°0 %000°0 100000 1270 10 9100 $T00°0 90°0 810°0 8100°0 $1000°0 uz

z0°0 $000°0 7000°0  10000°0 12°0 10 910°0 $T00°0 90°0 810°0 8100°0 $T000°0 1IN

200 $000°0 7000°0  10000°0 120 0 9100 $100°0 90°0 810°0 8100°0 $1000°0 qd

70°0 $000°0 7000°0  10000°0 12°0 10 9100 $100°0 90°0 810°0 8100°0 §1000°0 ny

z0°0 $000°0 7000°0 ' T0000°0 1270 1o 9100 $100°0 90°'0 810°0 8100°0 $1000°0 19

Z0°0 $000°0 7000°0  10000°0 12°0 o 9100 $T00°0 90°0 810°0 8100°0 $T000°0 PO

M

noy n g g-1 noI-¢¢ N ot < not ngg-T MoOT-S°E n o1 < nog1 n g g-1 n 01-§°¢ n o1 < TeI9l

a8pn(s
‘o'm Ut ov=4d d ‘O'M UT T =d D ‘o' ‘Ut EZT=d D

uoTINQTIISTQ 2215 Aq UOTIeLIIdUIJ
punog Iam0T

uoTiINqII3IsTg 3215 Aq uUoTIeII2Udd

punog xaddp

:OAw:n“uundn 327S 4Aq uojlellauag a3eraay

(3 INSWITE ¥0d SINTVA NNOE ¥IMOT ANV ‘ANNOE ¥dddn ‘TOVEIAV)

(panutauod)

‘¢-9 IT4VL

B-10

JES/025



TABLE B-3. FIELD’S POINT SCRUBBER SYSTEM OPERATING SUMMARY: HOURS
PER DAY THE SCRUBBER SYSTEM WAS OPERATED IN EACH OF FOUR
PRESSURE DROP RANGES, JULY 1982

AP in. HZO Gauge

Date 0 -5 5-19 19.1 - 31 31.1 - 49
7-2-82 1 11 3
7-3-82 3 17 4
7-4-82 13 6
7-5-82 .12 6 6
7-9-82 1 1
7-10-82 3 3 11 6
7-13-82 2 14 )
7-15-82 1 12 5
7-16-82 4 20
7-17-82 3 4 11 3
7-19-82 3 2 11 4
7-20-82 - 9 14
7-21-82 1 15 4 4
7-22-82 3 8 9
7-23-82 1 22 1
7-24-82 24
7-25-82 13 1
7-26-82 24
7-27-82 1 15 2
7-28-82 21 3
7-29-82 9 4
7-30-82 1 8 2
7-31-82 6

26 hrs 44 hrs 279 hrs 90 hrs
Percent of
Operating
Time in '
Each Range 5.9% 10.0% 63.6% 20.5%
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B.3.4 Upper Bound Estimate

This emission estimate is derived to bound the emission factor range on
the upper end. That is, this estimate describes emissions under the worst
case or highest emitting scenario. Directly the opposite of the lower bound
estimate. This estimate is derived by assuming the highest values for each
of the model inputs. Scrubber operating conditions are assumed to be
constant at a pressure drop of 12 inches of water.

B.4 SUPPORTING DATA

Data used to formulate the Radian model are presented in summary form in
this section. Table B-4 contains monthly averages of trace metal
concentrations measured in Fields Point sludge cake between January 1988 and
November 1986. ~.

Table B-5 contains the metal content of the Fields Point sludge as
reported between April and November 1986. These data were used to develop
the upper, lower and average values for Element B of the model.

Table B-6 contains a summary of metal concentrations in uncontrolled
incinerator offgases expressed as a percentage of the metal feed rate. These
data were used to develop the upper, lower and average values for Element C
of the model. '

Tables B-7 through B-14 contain summaries of metal content in
uncontrolled incinerator offgases by particle size. These data were used to
develop upper, lower and average values for Element D of the model .

Table B-15 contains a summary of operation parameters at the Fields
Point plant during the most recent period of continuous operation, July 1982.
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TABLE B-7. PERCENT ARSENIC (BY WEIGHT) IN UNCONTROLLED
INCINERATOR EXHAUST GASES BY PARTICLE SIZE

Name/
Location Reference > 10 um 3.5-10um 1 - 3.5 um < 1.0 um
MERL A . 24 76.2 3.7 6.5 13.6
MERL B 24 .- --- --- -
MERL C 24 41.9 20.5 21.0 16.6
MERL D 24 14.0 8.9 74.6 2.5
MERL E " 24 56. 3 0.9 0.7 42.1
MERL F 24 33.5 39.5 17.2 9.8
MERL K 24 16.8 39.0 19.3 24.9
WERL A 30 61.5 30.5 2.2 5.8
WERL B 30 57.8 29.2 4.3 8.7
Average Z;Tg EITE IETE IETE
Standard Deviation 20.8 15.5 24.2 12.8
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TABLE B-8. PERCENT CADMIUM (BY WEIGHT) IN UNCONTROLLED
INCINERATOR EXHAUST GASES BY PARTICLE SIZE

Name/
Location Reference > 10 um 3.5-10um 1 - 3.5um < 1.0 um
MERL A 24 46.1 3.3 15.9 34.7
MERL B 24
MERL C 24 7.6 3.2 4.3 84.9
MERL D 24 55.1 23.1 4.7 17.0
MERL E - 24 18.2 0.4 0.7 80.7
MERL F 24 1.4 : 0.9 | 0.7 97.0
MERL K 24 24.0 36.2 18.0 21.8
WERL A 30 28.2 44.4 11.4 - 16.0
WERL B 30 17.5 25.8 7.0 49.7
Average EZTE I;TE _;Tg EETE
Standard Deviation 18.2 17.5 6.6 33.0
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TABLE B-9. PERCENT COPPER (BY WEIGHT) IN UNCONTROLLED
INCINERATOR EXHAUST GASES BY PARTICLE SIZE

Name/
Location Reference > 10 um 3.5-10um 1 - 3.5um < 1.0 um
MERL A 24 63.0 4.1 14.1 18.5
MERL B 24
MERL C 24 11.6 67.5 3.2 17.7
MERL D ) 24 74.1 12.4 4.4 9.1
MERL E .24 53.8 1.2 0.7 44.3
MERL F 24 34.8 23.9 8.2 33.1
MERL K 24 24.3 50.5 18.2° 7.0
WERL A 30 43.8 45.8 3.1 7.3
WERL B 30 48.5 28.9 4.8 17.8
Average Z;TE E;T; —;_I IET;
Standard Deviation 20.4 23.7 6.1 13.2
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TABLE B-10. PERCENT CHROMIUM (BY WEIGHT) IN UNCONTROLLED
INCINERATOR EXHAUST GASES BY PARTICLE SIZE

Name/
Location Reference > 10 um 3.5-10um 1 - 3.5um < 1.0 um
MERL A 24 66.2 3.7 12.1 18.0
MERL B 24
MERL C 24 34.8 18.3 8.6 38.3
MERL D - 24 76.7 19.2 3.6 0.5
MERL E 24 84.1 3.0 1.5 11.4
MERL F 24 54.0 28.6 12.7 4.7
MERL K 24 36.2 38.4 17.4 8.0
WERL A 30 39.5 36.1 1.8 22.6
WERL B 30 9.3 5.2 0.9 84.6
Average EETI I;TI _;T; Egtg
Standard_Deviation 24.9 14.4 6.3 27.4
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TABLE B-11. PERCENT LEAD (BY WEIGHT) IN UNCONTROLLED
INCINERATOR EXHAUST GASES BY PARTICLE SIZE

Name/
Location Reference > 10 um 3.5 -10um 1 - 3.5 um < 1.0 um
MERL A 24 58.7 3.6 14.6 23.1
MERL B 24
MERL C 24 ' 20.3 27.2 7.3 45.2
MERL D ) 24 66.3 12.2 4.5 17.0
MERL E .24 5.3 0.0 0.3 94.4
MERL F | 24 11.9 10.1 11.3 66.7
MERL K 24 15.8 32.8 17.0 34.4
WERL A 30 29.1 47.0 3.3 20.6
WERL B 30 20.1 21.3 5.9 52.7
Average _ EETZ I;T; —ETB ZZTE
5.9 5.8 26.6

Standard Deviation 22.2 15.
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TABLE B-12. PERCENT NICKEL (BY WEIGHT) IN UNCONTROLLED
INCINERATOR EXHAUST GASES BY PARTICLE SIZE

Name/
Location Reference > 10 um 3.5-10um 1 - 3.5 um < 1.0 um
MERL A 24 65.2 3.8 12.4 18.6
MERL B 24
MERL C 24 35.7 19.3 8.4 36.6
MERL D - 24 55.5 37.5 5 1.4
MERL E o 78.4 1.6 1.7 18.3
MERL F 24 59.4 29.3 9.6 1.7
MERL K 24 31.6 41.2 15.8 11.4
WERL A 30 33.4 45.3 2.9 18.4
WERL B 30 8.7 6.4 1.3 83.6
Average ZETE 5575 —;TE Egtg
Standard Deviation 22.5 17.7 5.3 26.6
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TABLE B-13. PERCENT SELENIUM (BY WEIGHT) IN UNCONTROLLED
INCINERATOR EXHAUST GASES BY PARTICLE SIZE
Name/
Location Reference > 10 um 3.5-10um 1 - 3.5 um < 1.0 um
WERL B 30 0.0 22.2 0.0 77.8
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TABLE B-14. PERCENT ZINC (BY WEIGHT) IN UNCONTROLLED
INCINERATOR EXHAUST GASES BY PARTICLE SIZE

Name/
Location Reference > 10 um 3.5-10um 1 - 3.5 um < 1.0 um
MERL A 24 62.8 3.7 14.5 19.0
MERL B 24
MERL C 24 24.5 25.9 6.6 43.0
MERL D - 24 73.2 19.0 3.8 4.0
MERL E 24 29.1 0.5 0.5 69.9
MERL F 24 31.6 29.5 9.7 29.2
MERL K 24 20.7 39.6 16.2 23.5
WERL A 30 44 .4 46.1 2.7 6.8
WERL B 30 50.0 30.0 4.6 15.4
Average ' ;ETE E;T; —;_g EETZ
Standard Deviation 19.0 - 16.0 5.7 21.5
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APPENDIX C
EMISSION AND EXPOSURE MODELING

This Appendix discusses the air dispersion and exposure/risk assessment
models and the modeling methodology used in the exposure/risk assessment
analysis discussed in Section 4.0. Section 1.0 of the Appendix discusses
the rationale for selecting the air dispersion and exposure/risk models used
in the analysis. Section 2.0 discusses the methodology used to determine
exposure/risk for carcinogenic pollutants. The methodology used to estimate
exposure to non-carcinogenic pollutant emissions is discussed in
Section 3.0.

C.1 MODEL SELECTION

The UNAMAP 6 version of the EPA approved Industrial Source Complex
(ISC) air dispersion model, and the EPA Human Exposure Model (HEM) were used
in the ana]ysis.l’2 The ISC model is recommended in the Guidelines on Air
Quality Models for estimating short-term and annual average concentrations
from a continuous emission release at a stationary point source and includes
an option to calculate the increase in ground level concentration caused by
building wake effects.3 These ISC model options are necessary to determine

ground level concentrations caused by emissions from the Cranston and Fields
Point sewage sludge incinerators.

EPA’s Human Exposure Model (HEM), which is used by EPA in setting all
national emission standards for hazardous air pollutants (NESHAP) under
Section 112 of the Clean Air Act, was used as the exposure/risk assessment
model. By using the HEM model, exposure/risk results are consistent with
the modeling protocols in official use by EPA in setting health-based
regulations. The HEM model results can be directly compared with risk
levels that EPA has previously determined to be unreasonable.
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C.2 EXPOSURE/RISK MODELING METHODOLOGY FOR CARCINOGENIC POLLUTANTS

Figure C-1 shows the components of the HEM as it is currently applied
in EPA exposure/risk studies. The model is comprised of two sub-models, one
performs atmospheric dispersion analyses and the other performs exposure/
risk analyses. Necessary inputs and computed outputs from the two sub-
models are shown in Figure C-1. Basically, the dispersion sub-model accepts
source and pollutant emiésion characteristics along with meteorological data
and produces estimates of ground level concentrations at 160 receptor sites
which are distributed within a radius of 50 km of the source. These ambient
air concentrations are then coupled with a population distribution within
the same area generated from data contained in US Census Bureau population
files. By matching the ambient concentration with numbers of people, the
HEM estimates both total or aggregate human exposure and the maximum human
exposure (defined as the maximum concentration to which an individual is
exposed).

The final computations performed by the HEM are the measures of risk.
Exposure estimates have generally been combined with unit risk factors
(URFs) derived from a linear, no threshold model to predict carcinogenic
risk. The most probable upper bound estimate of total risk (number of
cancer incidences expected in the population over a 70 year period), and
maximum individual risk (the probability of the most exposed individual
contracting cancer within a lifetime) are the risk measures calculated.

C.2.1 Atmospheric Dispersion Sub-model

The HEM is capable of utilizing an internal air dispersion model or
accepting input comprised of the output concentrations from other EPA
approved air dispersion models. ISCLT was used to predict the annual
average concentration input required by the HEM model for these analyses.
The ISCLT model is relatively sophisticated in terms of options associated
with source, site, and pollutant characterization. For purposes of this
study, default parameter values will be used for the majority of the
options. Table C-1 1lists the various options and the values used for each
of the incinerator sites.
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TABLE C-1.

ISCLT INPUT OPTIONS®

ISCLT OPTION

OPTION SELECTED

e Receptor grid system

e Terrain type
o Plume rise

o Correction for stack-tip
downwash

e Site type

¢ Ambient air iemperatures per
stability class

e Mixing layer heights

o Vertical potential temperature
gradients

e Height above ground at which
wind speed was measured

e Air entrainment coefficient
for adiabatic or unstable
atmosphere

o Air entrainment coefficient
for stable atmosphere

o Coefficient of time dependent
pollutant removal via
_ physical or chemical
processes

Polar grid extending to 50 km from the
source. Ring distance will be located
at .2, .3, .5, .7, 1.0, 2.0, 3.0, 4.0,
5.0, 7.5, 10.0, 20.0, 30.0, 40.0, and
50.0 kilometers.

Flat terrain.

Use the final plume rise option.

Yes.

Rural.

Stability Class A-C 2§8°K
Stability Class D 283 Ko
Stability Class E-F 278°K
Stability Class A 1500 meters
Stability Class B-D 1000 meters
Stability Class E-F No Limit

Default.
0 for stability Classes A-D
.02 for stability Class E
.035 for stability Class F

6.1 meters

Default (0.6).

Default (0.6).
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TABLE C-1.

(Continued)

ISCLT OPTION

OPTION SELECTED

e Median values of wind speed
per wind speed category

e Wind speed power law exponent
as function of wind speed
and stability class

e Building wake effects

o Meteorological data

Class (m/sec)
1 2 3 4 5 6
1.5 2.5 4.3 6.8 9.5 12.5

Wind Speed Class (Rural)
1 2 3 4 5 6
.07 .07 .10 .15 .35 .55

Perform a GEP stack height analysis
for each incinerator and model
building wake effects if the stack
height is below GEP. NOTE: building
wake effects are modeled.

STAR data for the Providence/
Francis/Green NWS site for the
years 1968 to 1972 will be used.
The STAR data will be supplied by
John Pollack.

qMode]l options will be the same for each site and are based on recommen-
dations discussed in the Guidelines on Air Quality Models (Revised, 1986),
the Second Edition of the Industrial Source Complex (ISC) User’s Guide,
and the User’s Manual for the Human Exposure Model (HEM).

JES/025

C-6



Meteorological data required for running the model include annual joint
frequency of occurrence values for wind speed, wind direction, and
atmospheric stability class, referred to as Stability Array (STAR) data.
National Climatic Data Center. STAR data developed from surface and upper
air data from the Providence/Francis/Green National Weather Service site for
the five year period from 1968 to 1972 were used in this analysis. This
data was supplied to Radian by the Rhode Island DEM.

Figure C-2 i]]ustrafes the typical polar grid system used by ISCLT to
communicate pollutant concentration to the exposure sub-model. Pollutant
concentrations were estimated at 160 receptor sites located along radial
lines extending from the source to 50 km in each of 16 directions. The
receptor sites are at the intersection of the 16 compass directions and
concentric circles representing 10 distances from the source. The ring
distances selected for this analysis are 0.2, 0.5, 1, 2, 5, 10, 20, 20, 40,
and 50 km from the source.

C.2.2 EXPOSURE/RISK SUB-MODEL

The exposure/risk sub-model consists of three functions: area
population characteristics, pollutant concentration/population matching
(estimation of exposure), and risk estimation. These three functions of the
HEM exposure/risk sub-model are described in the following subsections.

C.2.2.1 Population Characterization

The HEM accesses a modified version of the general population file
maintained by the Census Bureau referred to as the Master Area Reference
File (MARF). Contained in this data base are total population counts for
each block group/enumeration district (BG/ED) within the U.S. BG/EDs
represent geographic areas containing approximately 1,600 people. Each
BG/ED is located by a latitude and Tongitude representing its geographic
centroid. The HEM contains a series of algorithms to determine which BG/EDs
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are located within 50 km of the source. Figure C-2 illustrates an example
distribution of BG/EDs overlayed on the pollutant concentration grid. The
HEM assumes that all individuals are permanently located at the BG/ED
centroid.

C.2.2.2 Exposure Estimation

The exposure methodology matches pollutant concentrations with
populations to determine exposures. The HEM employs two concentration/
population matching schemes, one for population centroids relatively distant
from the source and a second for those centroids near the source. The basis
for these two schemes is the relationship between the geographic size of a
BG/ED and the area associated with a pollutant receptor site. Within 3.5 km
of the source, .the area covered by a BG/ED area is relatively large and
could cover more than one receptor site. Here, the HEM employs a scheme to
allocate the population of a BG/ED among nearby receptor sites. At
distances greater than 3.5 km from the source, concentrations are simply
interpolated from the dispersion model output receptors to the BG/ED
centroid. The result of each of these schemes is to match a single
concentration to each population grouping, thus allowing exposure to be
computed. .

The HEM computes three measures of exposure: maximum individual
exposure, cumulative exposures by concentration level and aggregate
exposure. Each of these measures of exposure is defined below:

1. Maximum individual exposure is defined as the highest
concentration to which a population has been matched.
2. Cumulative exposure by concentration level is the total number

of people exposed so concentrations greater than or equal to a
specified concentration. It is expressed as:

N
Total Exposure at Concentration Level L = X P.C;S:(C,,L)
(ug/m3 X persons) i=1
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where:

L = A particular concentration of interest
Pi = Total population aséigned to location i
Ci = Pollutant concentration computed for location i
Si = 0, if C; < L
1, if C; 2 L
N = Number of locations containing both a concentration

value and a population count

3. Aggregate exposure (ug/m3 X persons) is simply the sum of
exposures computed at each concentration Tevel L.

C.3 EXPOSURE MODELING METHODOLOGY FOR NONCARCINOGENIC POLLUTANTS

The ISCST and ISCLT air dispersion models were used to determine the
short-term and long-term exposure levels for noncarcinogenic pollutants.
Annual average concentrations were calculated using the ISCLT model and a
1 gram per second emission rate. The model options, receptor locations, and
meteorological data input to the ISCLT model were identical to those
discussed in Section C.2 of this Appendix. The annual average concentration
for a specific pollutant was calculated by multiplying the concentration
predicted using the 1 gram per second emission rate by the actual pollutant
emission rate.

The ISCST air dispersion model was used to determine 24-hour average
ground level concentrations from each incinerator. The building downwash
screening procedure used to discussed in Appendix C of the Regional
Workshops on Air Quality Modeling: A Summary Report was used to perform the
short-term mode]ing.4 A maximum l-hour average concentration was predicted
using a 1 gram per second emission rate. The 24-hour average concentration
was calculated by multiplying the 1-hour average concentration by a factor
of 0.4 as recommended in the Guidelines for Air Quality Maintenance Planning
and Analysis, Volume 10R.5 The 24-hour average concentration calculated
using a 1 gram per second emission rate was multiplied by the pollutant
specific emission rate to determine the actual 24-hour average pollutant

concentration.
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The building downwash screening procedure in the Workshop report
discusses the application of ISCST in the screening mode. Receptors were
Tocated every 100 meters along a single radial out to a distance of
2000 meters. Meteorological data input included combinations of wind speed
and stability class suggested in the Workshop report. An ambient
temperature of 294°K, a mixing height of 5000 meters, and a wind direction
along the line of receptors was used for each hour of representative
"worst-case" meteorological data. The building dimensions input for each
incinerator were those used in the ISCLT modeling analysis discussed in
Section 4.0 of the report.
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