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Preface and Disclaimer

This document results from a workshop conducted with a selection of experts in Las
Vegas, NV, on July 15-17, 1998. The challenge presented to these experts was to explain, to
the extent possible with existing information, discrepancies between relative amounts of
fugitive dust in PM, and PM, 5 emissions inventories and in source apportionment studies of
ambient air samples. These experts formulated various hypotheses and supplied information
from their previous research and experience that supported or refuted these hypotheses. They
also identified areas where information is lacking and identified ways to fill those
information gaps.

The contributions from these experts have been assembled, edited, and presented in
this document by the authors. The conclusions drawn and recommendations made do not
necessarily represent the views of every contributor or of the U.S. Environmental Protection
Agency (EPA). The primary authors have attempted to faithfully integrate and explain the
issues concerning reconciliation of emissions inventory and ambient source apportionment
measurements. They have drawn primarily on their own experience in presenting examples
and do not represent this document as a comprehensive review of any topic. A
comprehensive bibliography has been assembled and included that could serve as a starting
point for several in-depth reviews of the topics presented here.

On May 14, 1999, the U.S. Circuit Court of Appeals for the District of Columbia
issued a ruling that remanded the ozone and particulate matter standards. The Court also
called into question what actions, if any, may be taken to implement the new standards. The
development of Statewide emissions inventories for ozone and particulate matter and their
precursors is necessary to address regional issues, irrespective of the final determination on
the actual National Ambient Air Quality Standards. Since these are criteria pollutants and are
key components of regional haze, development of emissions inventories is still deemed to be
appropriate including the statewide periodic emissions inventories for calendar year 1999.
Thus, it is appropriate for the Regions and State/local agencies to: 1) discuss plans for
developing emissions inventories for 1999; 2) identify appropriate future actions, programs
and associated milestones regarding emissions inventories; and 3) identify specific issues that
need resolution prior to making progress on emissions inventories.
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EXECUTIVE SUMMARY

Source apportionment studies show that geological material contributes an average of
~40% to more than 60% of PM (particles with aerodynamic diameters less than 10 um) and
~5% to ~20% of PM; s (particles with aerodynamic diameters less than 2.5 pm) in urban
areas where National Ambient Air Quality Standards (NAAQS) have been or might be
exceeded. Urban emissions inventories show dust emissions contributing ~70% to ~90% of
primary PM;y and ~50% to ~80% of PM,s. Geological contributions to ambient
measurements are often, but not always, overestimated by dispersion models that simulate
contributions to receptor concentrations.

A workshop of experts was convened to identify differences between emission
estimates and ambient geological contributions, estimate the magnitudes of these differences
that could be caused for different reasons, evaluate the technical bases for currently applied
emission estimation procedures and recommend activities that can be conducted
immediately, in the short term (1 to 2 years), and over a longer term (2 to 5 years) to improve
scientific understanding of and quantitative estimation of fugitive dust emissions.

One of the methods used to identify potential discrepancies was to compare emissions
estimated for a single state, California, with national inventory estimates for that state. The
methodology is essentially the same for these inventories, but the emission factors, activity
databases, and control measures applied are substantially different. This results in
California’s urban dust emissions from unpaved roads, paved roads, and construction being
only 60% of those estimated for the state in the national inventory. Much larger
discrepancies were found for specific areas and source types.

Conclusions

e National inventories do not accurately estimate emissions from fugitive dust
sources that affect ambient PM,s and PMj, concentrations for a variety of
reasons. Both negative and positive biases in emissions result, but the net effect is
to overestimate emissions from fugitive dust sources relative to those from other
sources in the inventory.

e Suspendable particles are not transportable particles. Available data shows that
~75% (ranging from ~60% to ~90%) of suspended PM;, remains within 1 to 2 m
above ground level. These particles deposit to the surface or impact on nearby
vertical structures within a few minutes after suspension. Although horizontal
fluxes commonly used in empirically-derived emission factors represent the mass
of dust particles suspended from a surface, they do not represent the mass
entrained into the atmosphere and transported over distances of more than a few
kilometers.

e Source and receptor models do not represent the same spatial and temporal scales

and emissions inventories. Better integration with and interaction among
emissions, meteorological, chemical/transport, and receptor models is needed.
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This interaction should help to identify and reconcile deficiencies in all of the
modeling components.

State and local values for emission factors and activities yield lower emission
estimates, at least for California. Several of these emission factors and activities
should be used in national inventories.

Emissions inventories treat fugitive dust emissions as continuous processes,
whereas they are intermittent processes that depend on many meteorological and
activity variables. This causes a positive bias in dust emission estimates.

Few empirical tests are available for the PM, s fraction of fugitive dust emission
factors. The extent to which total suspended particles (TSP) and PM;, emission
factors can be scaled to PM,; 5 is uncertain.

Paved and unpaved road dust emission factors have been found to be of similar
form and magnitude for many independent tests for TSP and PM;,. Silt loadings,
silt fractions, and activity levels used in national inventories appear to
overestimate emissions from these sources, at least with respect to California.

Existing tests for emission factors are biased toward the highest emitters, yet they
are applied to a population of activities that encompasses a wide range of
emission magnitudes. Low to moderate emitters are poorly characterized. This is
especially true for construction emission factors that characterize the earth
moving portion of a project and not the other phases of a construction project.

Immediate Recommendations for National Emissions Inventory Improvement

Review construction emission factors and compare to those used in California.

Use measurements from previous fugitive dust emission tests to estimate
horizontal dust fluxes above elevations of 2 m. Create separate estimates for
emissions above these heights that can be used for different modeling and
planning purposes. Urban- and regional-scale source or receptor modeling could
use the >2 m above ground level horizontal fluxes. Preliminary estimates given
in this report indicate that >2 m horizontal fluxes are ~25% of total horizontal
fluxes.

Conduct countywide comparisons between national inventory and independently
compiled statewide inventories. Use the results of these comparisons to identify
the availability of or need for local information that affect suspendable dust
surface loadings and dust-generating activities.
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Short-Term Recommendations for National Emissions Inventory Improvement

Create and apply methods to estimate vertical flux, as well as horizontal flux,
from fugitive dust sources and add vertical flux estimates to modeling inventories.
Revise the current emission measurement methodology such that vertical fluxes
and horizontal fluxes above selected elevations are reported in inventories.

Conduct additional emission tests of unpaved roads, paved roads, construction,
and other earth-moving emissions that apply a vertical and horizontal flux method
and are specific to PM, s and PM particle sizes. These tests should be planned
to represent a variety of areas in the eastern and western United States.

Conduct detailed studies of temporal variability for underlying activities
(including control measure effectiveness) that create dust. Determine
representative temporal profiles for diurnal, weekly, monthly, and annual
emissions. Determine the extent to which reservoirs of dust are depleted and
incorporate these into emission models.

Create a modeling framework that integrates emissions, meteorological,
chemical/transport, and receptor models. This framework would use the
meteorological model to estimate meteorological effects such as wind speed and
moisture that affect fugitive dust emission rates. Receptor models applied to
ambient data would be used to estimate source contributions at receptors and to
reconcile emissions with these contributions on an area-specific basis.

Long-Term Recommendations

Modify existing air quality modeling software to better represent the vertical flux,
deposition, and transport for several spatial scales. Develop, test, and apply more
realistic middle- and neighborhood-scale mathematical models to represent dust
concentrations at receptors near a variety of dust emitters.

Develop a complete, GIS-based, emission model that can be applied to
neighborhood, urban, and regional scales. This model would include and update
commonly available activity databases such as land uses, roadways, and soil
surveys. It would provide for the use of temporal profiles that allow for daily,
weekly, monthly, and annual emission estimation. The model would also contain
fugitive dust source profiles suitable for receptor model source apportionment and
for creating speciated inventories that can be used for rollback modeling,
propagate input uncertainties, project emissions under different development
scenarios, and allow for alternative emission factors and activity databases to
estimate the same emission rates.

Compile dust characteristics, including surface loadings, chemical compositions

(source profiles), and suspendable particle content (silt or other) for representative
locations throughout the U.S. Include these in a documented database and apply
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them to development of emission estimates. Priorities should be given to airsheds
that operate PM, s chemical speciation monitors.

Calculate source contributions with receptor models applied to data from the
national PM; s speciation network. Reconcile these contributions with fugitive
dust emission estimates from these areas and with background concentrations
from nearby IMPROVE monitoring sites. Use the results of this reconciliation to
further identify and ameliorate emission modeling deficiencies.

Identify and characterize chemical or physical components in different fugitive
dust sources that allow fugitive dust sub-types to be distinguished from each other
in receptor samples. Apply these characterization methods to receptor samples,
quantify contributions at representative distances from sub-type emitters, and use
the results to improve fugitive dust emission estimation methods.

Define and conduct experiments that increase understanding of vertical flux,
deposition, and removal by surrounding barriers. Such experiments might include
eddy-correlation micrometeorological measurements of positive and negative
vertical fluxes, balances of airflow through and over tree stands downwind of dust
emitters, and measures of particle rebound and filtration over short vegetation,
such as grass.

Develop and apply novel methods to estimate fugitive dust emissions using real-
time and remote sensing methods. These methods would be used to verify
emissions from the more established and commonly applied methods as well as to
better understand the physical interactions between emissions and the atmosphere.



1. INTRODUCTION

1.1 Statement of Problem and Objectives

Source apportionment studies show that geological material contributes an average of
~40% to more than 60% of PM (particles with aerodynamic diameters less than 10 um) and
~5% to ~20% of PMys (particles with aerodynamic diameters less than 2.5 pm) in urban
areas where National Ambient Air Quality Standards (NAAQS) have been or might be
exceeded. Urban emissions inventories show dust emissions contributing ~70% to ~90% of
primary PMjy and ~50% to ~80% of PM,s. Geological contributions to ambient
measurements are often, but not always, overestimated by dispersion models that simulate
contributions to receptor concentrations. (Note: See the preface and disclaimer page for
information on recent court decisions involving the PM NAAQS.)

This report summarizes and evaluates existing knowledge of urban fugitive dust
emissions, their interaction with the atmosphere, and ambient dust concentrations. It intends
to determine the most probable causes of these discrepancies and to estimate the degree to
which urban dust emissions are overestimated relative to other source emissions. Emissions
due to wind erosion of non-urban surfaces are not included in this assessment. Objectives are
to:

e State and test hypotheses, based on existing information, for differences between
emission estimates and ambient geological contributions.

e Estimate the magnitudes of differences between emissions inventories and
fugitive dust contributions to ambient air that are consistent with hypotheses.

e [Evaluate the technical bases for currently applied emission estimation procedures
and their consistency with the hypotheses.

e Identify scientifically valid changes to urban fugitive dust emission methodology
to support modeling and source assessment.

e Specify research projects for the short term (1 to 2 years) and long-term (2 to 5
years) that will improve scientific understanding of fugitive dust emissions and
their estimates in emissions inventories.

1.2 Hypotheses for Discrepancies
The following hypotheses have been advanced as potential causes of discrepancies.

1. Lack of accounting for secondary aerosol contributions in estimating fraction of
fugitive dust contributions to ambient PMy and PM, 5. Twenty percent of PM,y,
and more than half of PM, 5, may be composed of secondary sulfates or nitrates
that are not part of the primary particle emissions inventories. These
contributions need to be quantified and subtracted from ambient concentrations
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prior to estimating the proportion of primary fugitive dust particles that are
compared with emissions inventories.

Lack of accounting for global and regional crustal contributions to urban
concentrations. Some of the concentrations of geological material measured in
ambient air may result from long-range transport of sources outside of the United
States or multi-day carry-over of very small dust particles. Lack of accounting for
these emissions could result in higher dust concentrations measured in ambient air
than would be estimated by modeling of a fugitive dust emissions inventory. If
this hypothesis were true, the discrepancies between emissions inventories and
ambient concentrations would be larger.

Incompatible temporal and spatial averaging of fugitive dust emissions relative to
ambient PM measurements. Fugitive dust emission rates are often averaged over
citywide or countywide areas and over a season or a year. Ambient urban dust
contributions are often dominated by the presence of, or lack of, emissions from
nearby sources.

Inaccurate formulation of emission factors. Emission factors for all fugitive dust
emission source types are determined empirically from tests of a relatively small
number of representative sources. The number and nature of these tests is small
compared to the variability to be found in many different emission types and
different geographical settings. Many of the current emission factors for PMj
and PM,s were derived from measures of total suspended particulate (TSP),
rather than from direct measurement of these size fractions. If the sources tested
and the particle size modifiers applied in current emission factors do not represent
the sources in an inventory, then estimates of particle emissions may be higher or
lower than their actual values.

Insufficient and uncertain activity levels, specifically with respect to the reservoir
of suspendable particles, particle size distributions in the reservoir, meteorological
variables, and human intervention. Most emissions inventories assume
replenishment of particle reservoirs between emission events and a minimal
effectiveness of emission reduction strategies. These assumptions would result in
estimated emissions being higher than actual values. Emissions inventories also
apply land use and traffic data sets that may have changed for the year of record.
These changes could result in positive or negative biases in emission estimates.
Specific activity data that correspond to PMy or PM, 5 samples on a specific day
are seldom available. Only long-term averages or statistical distributions of dust-
generating activities are technically practical.

Insufficient accounting for injection heights, deposition losses, and horizontal
impaction losses in dispersion models. Most fugitive dust particles are larger than
2 um in aerodynamic diameter and deposit rapidly to the ground after suspension.
If the majority of particles do not attain injection heights above a few meters
above ground level they probably settle to the surface within a few minutes after
release. Particles entrained in airflows that encounter vertical-standing trees,
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shrubs, and buildings may impact on these surfaces, thereby removing them from
the atmosphere. Under these conditions, suspended dust may cause
neighborhood-scale “hot spots,” but much of it will be removed before
contributing to wurban- or regional-scale PM;y, or PM,s concentrations.
“Effective” emission rates from fugitive dust sources would be lower than current
estimates if this hypothesis were true.

1.3 Structure of Report

Section 1 has stated the objectives of this study and defined the hypotheses to be
tested. Section 2 summarizes national emission estimates and compares the fractions from
fugitive dust with those determined from source apportionment studies of chemically
characterized ambient samples. Geological contributions at background sites are identified
and reasons are advanced for their sources. This information allows the first three
hypotheses to be examined.

Section 3 summarizes the mechanisms that create emissions from unpaved roads,
paved roads, soil disturbance and removal, and urban wind erosion. These are the major
sources of fugitive dust in emissions inventories. Emission estimation methods applied to
national inventories and to the state of California are contrasted and examined with respect to
their representation of the physical processes. This information allows hypotheses three,
four, and five to be examined.

Section 4 describes the emissions, chemical/transport, and receptor models that are
applied, or that can be applied, to estimate fugitive dust contributions. This information
allows the fifth and sixth hypotheses to be examined from the standpoint of dynamically
modeling dust emissions for specific episodes.

Section 5 summarizes the conclusions from this review and recommends short-term
and long-term research projects. This report is not a comprehensive review of fugitive dust
emissions and ambient concentrations. It provides examples of current knowledge rather
than an exhaustive or critical review of that knowledge. Such reviews are necessary and are
defined as projects for future research. Citations are documented in Section 6. To facilitate
this research, a comprehensive bibliography of reports and publications related to fugitive
dust has been assembled in Section 7.
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2. FUGITIVE DUST AND AIR POLLUTION

This section describes the nature of the discrepancies between emissions inventories
and ambient particles. It examines the size distribution of particles that are usually found in
the atmosphere and the portions of size distributions that are occupied by fugitive dust
contributions. Annual emission estimates of PM;y, PM; s, and particle precursor gases are
summarized from the U.S. National Trends Inventory. Chemical and physical characteristics
of source emissions are examined to demonstrate how fugitive dust contributions can be
distinguished from other sources by chemical analysis of ambient samples. Fugitive dust
source contributions and fractions of primary PM;, from several receptor model source
apportionment studies are compared with emissions inventory estimates. Background
concentrations and fractions of PM;, and PM, s are described and their potential U.S. and
global sources are identified. This information is evaluated with respect to hypotheses about
accounting for secondary aerosol in ambient samples, contributions from uninventoried
background concentrations, and comparability of temporal and spatial scales.

2.1 Particle Sizes

Whitby et al. (1972) described the major features of particle size mass distributions,
illustrated in Figure 2-1; these features have been confirmed by many other investigators in
many areas.

Most of the particles larger than ~2 or 3 um are called “coarse particles” that result
from grinding activities and are dominated by material of geological origin. Fugitive dust
dominates this size range. Pollen and spores also inhabit the coarse particle size range, as do
ground up trash, leaves, and tires. Figure 2-1 shows that this size range has a tail that
overlaps with other size ranges, extending down to below 1 um. Particles at the low end of
the coarse size range also occur when cloud and fog droplets form in a polluted environment,
then dry out after having scavenged other particles and gases (Jacob et al., 1986). Particles
larger than 30 um deposit to the surface within less than an hour after suspension unless they
are injected to high altitudes. This deposition effectively limits atmospheric concentrations
for very large particles. The peak of the coarse mode may shift between ~6 and 25 pum
(Lundgren and Burton, 1995). This peak shifts toward larger particle sizes when fugitive
dust emissions are close to the measurement location, and it shifts toward smaller particles at
non-urban locations far from freshly generated dust emissions.

The “ultrafine particles” (Oberdorster et al., 1995; Kotzick et al., 1997) or “nucleation
mode” in Figure 2-1, consists of particles with diameters less than ~0.08 pum that are emitted
directly from combustion sources or that condense from cooled gases soon after emission.
Ultrafine particle lifetimes are usually less than one hour because they rapidly coagulate with
themselves or larger particles or serve as nuclei for cloud or fog droplets. The nucleation
range is detected only when fresh emissions are close to a measurement site or when new
particles have been recently formed in the atmosphere (Lundgren and Burton, 1995).
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Figure 2-1. Typical distribution of particle sizes found in the atmosphere. Fugitive dust
dominates the coarse mode of this distribution.
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The “accumulation” range consists of particles with diameters between 0.08 and
~2 um. These particles result from the coagulation of smaller particles emitted from
combustion sources, from gas-to-particle conversion, from condensation of volatile species,
and from finely ground dust particles. Chemical-specific size distributions show that these
sub-modes exist in several different environments (Hering and Friedlander, 1982; Hoppel et
al., 1990; Sloane et al., 1991). John et al. (1990) interpreted the peak centered at ~0.2 um as
a “condensation” mode containing gas-phase reaction products, and the ~0.7 um peak as a
“droplet” mode resulting from growth by nucleation of particles in the smaller size ranges
and by reactions that take place in water droplets. The liquid water content of ammonium
nitrate, ammonium sulfate, sodium chloride, and other soluble species increases with relative
humidity, and this is especially important when relative humidity exceeds 70%. When these
modes contain soluble particles, their peaks shift toward larger diameters as humidity
increases (Tang, 1976, 1980, 1993; Tang et al., 1977; McMurry et al., 1987). The ultrafine
and accumulation ranges constitute the “fine” particle size fraction; the majority of sulfuric
acid, ammonium bisulfate, ammonium sulfate, ammonium nitrate, organic carbon, and
elemental carbon is found in this size range.

The PM,, PM,,, and TSP size fractions commonly measured by air quality monitors
are identified in Figure 2-1 by the portion of the size spectrum that they occupy. The mass
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collected is proportional to the area under the distribution within each size range. The TSP
size fraction ranges from 0 to ~30 um, the PM,, fraction ranges from 0 to 10 um, and the
PM, 5 size fraction ranges from 0 to 2.5 um in aerodynamic diameter. No sampling device
operates as a step function, passing 100% of all particles below a certain size and excluding
100% of the particles larger than that size. When sampled, each of these size ranges contains
a certain abundance of particles above the upper size designation of each range (Watson et
al., 1983; Wedding and Carney, 1983). A small shift in the 50% cut-point of a PM;y sampler
has a large influence on the mass collected because the coarse mode usually peaks near 10 pum.
On the other hand, a similar shift in cut-point near 2.5 um results in a small effect on the

mass collected owing to the low quantities of particles in the 1 to 3 um size range (Chow,
1995; Watson et al., 1995).

Figure 2-2 shows the size distribution of suspended particles measured from common
emission sources. Construction dusts, road dusts, and soil dusts formed from pulverization of
larger soil particles are predominantly in the coarse particle size range, with minor to
moderate quantities in the PM, 5 fraction. Combustion particles, on the other hand, dominate
the PM, s size fraction. Chemical components that distinguish between geological dusts,
combustion products, and secondary aerosols can be used to effectively classify TSP or PM;
mass concentrations into accumulation or coarse fractions of the particle size distribution.

Figure 2-2. Size distributions of several particulate source emissions (Ahuja et al. 1989;
Houck et al., 1989, 1990).
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Based on average daily emissions in California’s South Coast Air Basin (SoCAB),
Countess (1999) reported PM, s/PM, emission ratios greater than 0.90 for most stationary
sources and unplanned fires (with the exception of industrial process sources where
PM,s/PMjy = 0.56). PM,s/PM;o emission ratios exceeded 0.98 for mobile sources and
commercial charbroiling. PM, s/PMj, ratios were in the range of 0.15 to 0.25 for fugitive
dust sources (Cowherd and Kuykendal, 1997). Fugitive dust accounted for 80% of primary
PM,, emissions, and for 48% of primary PM, s emissions in the SOCAB. Estimated PM; s
contributions from secondary aerosols were twice those of primary particles in the SoCAB.

2.2 Emission Rate Estimates

Table 2-1 summarizes emission rate estimates for the United States during 1997. The
PM,, and PM; s fugitive dust portions of this national inventory consists of “Natural” wind
erosion, “Miscellaneous” sources in “Agriculture and Forestry” and a general category called
“Fugitive Dust,” and the “Other Industrial Processes” of “Mineral Products”. Also listed in
Table 2-1 are emission rates for sulfur dioxide (SO5), oxides of nitrogen (NOy), and ammonia
(NHs) that are precursors to secondary sulfates (SO4") and nitrates (NO3).

The PM;y and PM; s columns represent “primary” particles that are directly emitted
from the identified sources. Of these primary emissions, fugitive dust emissions constitute
89% of the 33,574 thousand short tons per year (tpy) of PM;( and 66% of the 8,288 thousand
tpy of PM,s. In contrast, on-road and off-road transportation account for 2.4%, open and
residential vegetative burning accounts for 1.8%, and the other emitters (mostly industrial
and residential coal, oil, and natural gas combustion) account for ~7% of total PMj
emissions. For PM; s emissions, 7.5% derive from on-road and off-road vehicle exhaust,
6.9% come from open and residential vegetative burning, with the rest (~19%) deriving from
the other emitters. By itself, Table 2-1 gives the impression that fugitive dust should be the
major focus of control strategies to achieve PM( and PM, s air quality standards.

Sulfur dioxide (SO,), oxides of nitrogen (NOy), and ammonia (NHj3) are emitted as
gases, but they transform into “secondary” particles in the atmosphere that add to the primary
particle portions of PM;y and PM, 5. The resulting particulate sulfates and nitrates are almost
exclusively in the accumulation size range illustrated in Figure 2-1; their concentrations in
PM,; 5 are only slightly less than their PM, concentrations. Table 2-1 shows that national
SO,, and NOy emissions are approximately three times primary PM, s emissions. Even
though only a fraction of these emissions (5% to 50%, depending on atmospheric conditions)
changes to particles in the atmosphere, the equivalent particle emissions are equivalent to or
higher than primary emissions from many of the listed sources.

Volatile Organic Compounds (VOC) also participate in the formation of secondary
sulfates, nitrates, and organic particles. U.S. EPA (1998a) reports nearly 20,000 thousand
tpy of VOCs emitted in 1997, many of them originating from the same sources listed in
Table 2-1. Light hydrocarbons (containing fewer than 8 carbon atoms) constitute the
majority of VOC emissions. These do not convert into particles, but they do participate in
the photochemical reactions that oxidize SO, and NOy to sulfates and nitrates. A portion of



Table 2-1. U.S. national emissions for 1997 (U.S. EPA, 1998a).

Thousands of tons per year (tpy)

Category Type PM,, | PM;5 | NO, SO, NH,
NATURAL SOURCES Biogenic 18.4
Geogenic - wind erosion 5315.8| 7974
NATURAL SOURCES Total 5315.8| 7974 18.4
MISCELLANEOUS Agriculture & Forestry 4707.2| 927.4 2498.0
Cooling Towers 14 1.4 0.0
Fugitive Dust 19429.5| 3460.5 1.4 0.3 0.0
Health Services 0.1
Other Combustion 1015.4] 884.9| 344.3 12.9
MISCELLANEOUS Total 25153.5| 5274.2| 345.7 13.2| 2498.0
FUEL COMB. ELEC. UTIL. Coal 264.5| 133.5| 5598.6|12531.1 0.3
Gas 0.5 0.5| 288.5 4.3 3.8
Internal Combustion 19.4 194 159.2 61.0 0.1
Oil 5.7 5.01 1322 485.6 1.9
FUEL COMB. ELEC. UTIL. Total 290.1| 158.3| 6178.4|13081.9 6.1
FUEL COMB. INDUSTRIAL Coal 72.0 254 613.8| 1768.6 0.0
Gas 472 459| 1384.5| 571.7| 13.7
Internal Combustion 68.2 50.9| 901.9 24.0 0.0
Oil 48.2 28.3| 240.1| 847.2 4.0
Other 78.0 62.2| 129.9| 1534 0.0
FUEL COMB. INDUSTRIAL Total 313.5| 212.6| 3270.2| 3364.8| 17.7
FUEL COMB. OTHER Commercial/Inst Coal 15.6 6.1 39.8 205.9 0.0
Commercial/Inst Gas 6.7 6.3| 241.2 8.1 0.8
Commercial/Inst Oil 13.3 5.6/ 106.7| 414.1 2.2
Misc. Fuel Comb. (Except 74.0 73.5 29.8 5.6
Residential)
Residential Other 19.5 16.2| 824.5| 174.0 5.2
Residential Wood 368.3| 3683 33.7 4.8
FUEL COMB. OTHER Total 4974 476.0| 1275.7) 8125 8.2
ON-ROAD VEHICLES Diesels 156.4| 143.9| 19324 83.9 4.4
Heavy-Duty Gas Vehicles 8.6 5.7 326.2 11.3 2.6
Light-Duty Gas Trucks 40.3 25.1] 1901.3 96.0 72.6
Light-Duty Gas Vehicles 55.6 32.3| 2875.2| 128.6| 160.7
& Motorcycles
ON-ROAD VEHICLES Total 261.0 207.0| 7035.2| 319.7| 240.3
NON-ROAD ENGINES AND Aircraft 40.9 289 177.5 11.9
VEHICLES
Marine Vessels 30.9 21.9| 2347 244.6 1.2
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Table 2-1. (continued)

Thousands of tons per year (tpy)

Category Type PM,, | PM;5 | NO, SO, NH,
Non-Road Diesel 315.7| 290.4| 2986.7| 682.2
Non-Road Gasoline 51.0 43.0 2114 7.1
Railroads 27.3 25.1| 949.5| 114.1 1.7
NON-ROAD ENGINES AND VEHICLES Total 465.8| 409.3| 4559.8| 1059.9 2.9
OTHER INDUSTRIAL PROCESSES |Agriculture, Food, & 834 42.5 6.2 3.1 2.1
Kindred Products
Construction 0.0 0.0
Electronic Equipment 0.0 0.0 0.1 0.0
Machinery Products 7.3 3.0 6.9 0.6
Mineral Products 326.0| 138.0] 302.9| 2973 0.0
Miscellaneous Industrial 23.7 10.3 4.1 40.9
Processes
Rubber & Miscellaneous 33 0.2 0.1
Plastic Products
Textiles, Leather, & 0.3 0.2 0.1 0.1
Apparel Products
Transportation Equipment 04 0.2 0.2
Wood, Pulp & Paper, & 85.5 66.7 93.9| 121.7
Publishing Products
OTHER INDUSTRIAL PROCESSES Total 529.9| 250.7| 4209 426.8) 43.1
METALS PROCESSING Ferrous Metals Processing 154.8 96.0 85.7| 156.1 6.1
Metals Processing NEC 22.7 16.8 3.8 18.6 0.0
Nonferrous Metals 423 26.4 12.6| 377.6 0.0
Processing
METALS PROCESSING Total 219.9| 139.2| 102.1| 552.2 6.1
PETROLEUM & RELATED Asphalt Manufacturing 18.5 5.1 9.3
INDUSTRIES
Oil & Gas Production 1.8 1.5 59.9 92.7 0.0
Petroleum Refineries & 21.0 13.7 49.7| 282.6| 44.7
Related Industries
PETROLEUM & RELATED INDUSTRIES Total 414 152 114.6| 384.6| 44.7
SOLVENT UTILIZATION Degreasing 0.1 0.1 0.3 0.0
Dry Cleaning 0.0 0.0 0.0 0.0
Graphic Arts 0.4 0.3 0.7 0.1
Nonindustrial 0.0
Other Industrial 1.1 0.9 0.2 0.1
Solvent Utilization NEC 0.0
Surface Coating 4.8 4.2 1.8 0.5
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Table 2-1. (continued)

Thousands of tons per year (tpy)

Category Type PM,, | PM;5 | NO, SO, NH,
SOLVENT UTILIZATION Total 6.3 5.6 3.0 0.7
STORAGE & TRANSPORT Bulk Materials Storage 111.5 42.8 0.9 1.0 0.0
Bulk Materials Transport 0.5 0.0
Bulk Terminals & Plants 0.0 0.0 0.6 0.2
Inorganic Chemical 0.6 0.4 0.3 0.3
Storage
Organic Chemical Storage 0.6 0.5 3.8 0.1
Petroleum & Petroleum 0.3 0.3 0.4 0.5
Product Storage
Petroleum & Petroleum 0.0 0.0 0.3 0.1
Product Transport
Service Stations: Stage 11 0.0 0.0 0.0 0.0
STORAGE & TRANSPORT Total 113.6 441 6.4 2.1 0.0

CHEMICAL & ALLIED PRODUCT  |Agricultural Chemical Mfg 10.6 8.0 78.4 4.7 192.8
MFG

Inorganic Chemical Mfg 4.8 3.6 7.3] 208.0

Organic Chemical Mfg 30.6 11.9 20.8 8.9

Other Chemical Mfg 19.2 16.7 56.2 78.1

Paint, Varnish, Lacquer, 1.0 0.5 0.0 0.0

Enamel Mfg

Pharmaceutical Mfg 0.2 0.1 0.0 0.3

Polymer & Resin Mfg 4.0 33 4.0 0.5
CHEMICAL & ALLIED PRODUCT MFG Total 70.2 44,11 166.7| 300.5| 192.8
WASTE DISPOSAL & RECYCLING |Incineration 74.4 53.1 56.4 37.0

Industrial Waste Water 0.0 0.0 0.0 0.5

Landfills 0.5 0.5 0.7 0.1

Open Burning 220.3| 200.3 45.5 114

Other 0.5 0.5 0.8 0.5

POTW 0.0 0.0 0.1 0.1  99.7
WASTE DISPOSAL & RECYCLING Total 295.7| 254.4| 103.5 49.7  99.7
Grand Total 33574.1| 8288.2|23582.2|120368.7| 3178.0
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the heavy hydrocarbons (containing >8 carbon atoms) can change to secondary organic
carbon particles under some conditions, but this is believed to constitute a small fraction of
annual average organic carbon concentrations in most urban settings (Pandis et al., 1992,
1993).

Although fugitive dust is predominantly a primary pollutant, it can play a minor role in
secondary particle formation. Some components of dust, such as ammonium nitrate fertilizer,
may volatilize into ammonia and nitric acid gases, thereby contributing to secondary ammonium
nitrate aerosol (Mozurkewich, 1993; Watson et al., 1994a). Alkaline particles, such as calcium
carbonate, may react with nitric and hydrochloric acid gases while on the ground, in the
atmosphere, or on filter samples to form coarse particle nitrates and chlorides (Zhuang et al.,
1999; Song and Carmichael, 1999). Ammonium sulfate and ammonium nitrate fertilizers and
minerals such as gypsum (calcium sulfate) may be mistaken for secondary sulfates and nitrates.

Figure 2-3 shows the emissions from different fugitive dust sub-types (U.S. EPA,
1998a). Industrial emissions from cement production, quarrying, mining, and other emitters
are a small fraction of the total. Unpaved roads, paved roads, construction, and wind erosion
together constitute more than 80% of PM;, dust emissions and 75% of PM, s emissions.
These categories are from both urban and non-urban areas. Nearly all of the crop and
livestock emissions are from non-urban areas. Most of the paved road dust and construction
emissions are from urban areas. Unpaved road dust emissions are from both urban and non-
urban sources, with a higher proportion from non-urban surroundings. Wind erosion is
primarily non-urban. These breakdowns give the further impression that unpaved road dust
is the most important urban fugitive dust contributor on a nationwide basis.

Emission rates in Table 2-1 are calculated by multiplying an emission factor for each
source type by an activity level. Emission factors, described in Section 3, quantify the
weight of emissions within a size range per unit of activity (U.S. EPA, 1998b). These factors
sometimes include modifiers for the appropriate particle size fraction (TSP, PM;y, or PM;s),
the size of the dust reservoir (i.e., surface loadings), and effects of pollution controls (e.g.,
dust suppressants or dust removal). Activity databases include statewide estimates of paved
and unpaved roadway miles, vehicle miles traveled, dollars spent on construction, acres
under cultivation, vegetation coverage, annual precipitation, and other meteorological
conditions. Emissions are further allocated to counties based on population, land area, or
other available indicators.

Each of the components necessary to compile an inventory contains random and
systematic uncertainties. Random errors are associated with the inherent variability in the
process or processes that cause emissions. These errors are typically referred to as variability
and are normally described by ranges or confidence intervals. Even if all other sources of
uncertainty are removed, the variability remains. Some processes are inherently more
variable than others, resulting in larger uncertainties. Systematic errors cause a positive or
negative bias that exceeds the random variability. These biases were described in the Section
1 hyptotheses.
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Figure 2-3. Fraction of PM,(, and PM; 5 fugitive emissions for unpaved roads, paved roads,
construction, wind erosion, crops, livestock, and industrial sources. Fugitive dust constitutes
88% of total PM;y and 66% of PM, 5 emissions.

Construction

Wind Erosion 13.5%

17.9%

Paved Road

Cement 8.4%

0.5%
\ Quarries,
~ | Mining, Other
147% >F 5
Na( /

Livestock
1.1%

Unpaved Road
41.3%

PM,o Fugitive Dust=29,778 of 33,574 thousand tpy

Wind Erosion Construction
14.5% 15.6%

Cement
2.6%

Paved Road
11.4%
Crops >
o Miﬁit:‘zr,r:)ej;e,
Livestock §

0.9%

Unpaved Road
33.7%

PM, s Fugitive Dust=5,511 of 8,288 thousand tpy

2-9




Fugitive dust emission estimates contain a high amount of variability owing to the
meteorological, physical, and chemical factors on which emissions are based. These factors
can vary widely on a national or smaller regional basis. While researchers rarely consider
activity levels to be one to two orders of magnitude too high or low, they can be biased in
either direction by factors of two to five. Averaging over an entire year and all of the United
States probably eliminates much of the random error. Systematic errors probably dominate
over random errors for spatially and temporally aggregated emission rates. Random error is
much more important for smaller areas and shorter time intervals, such as those used for
modeling pollution episodes.

State and local inventories often have access to more precise activity levels, and they
may have developed area specific emission factors. For this reason there may be
discrepancies between the national U.S. inventory and state or local emission estimates. The
basic features are the same, however. Fugitive dust sources dominate the primary PM;y and
PM, 5 emission rates for all types of primary particle emissions inventories.

2.3  Chemical Composition of Fugitive Dust and Other Sources

Geological contributions to PMjy and PM; 5 concentrations in ambient air are easily
distinguished from other source contributions by their chemical profiles. Chemical source
profiles are the fractional mass abundances of measured chemical species relative to primary
particulate matter (PM) mass in source emissions. Hundreds of fugitive dust source profiles
from many different areas have been measured (Chow and Watson, 1994a).

Source profile compilations (e.g., Watson, 1979; Sheffield and Gordon, 1986; Core
and Houck, 1987; Cooper et al., 1987; Chow et al., 1989; Houck et al., 1989a, 1989b, 1989c,
1989d; Shareef et al., 1989; Watson et al., 1990a; Chow and Watson, 1994a, Watson et al.,
1994c¢, 1996a, Chow and Watson, 1997a, 1997b) include chemical abundances of elements,
ions, and carbon for geological material (e.g., paved and unpaved road dust, soil dust, storage
pile), motor vehicle exhaust (e.g., diesel-, leaded-gasoline-, and unleaded-gasoline-fueled
vehicles), vegetative burning (e.g., wood stoves, fireplaces, forest fires, and prescribed
burning), industrial boiler emissions, and other aerosol sources. = More modern,
research-oriented profiles include specific organic compounds or functional groups,
elemental isotopes, and microscopic characteristics of single particles (Schauer et al., 1996;
Zielinska et al., 1998). Table 2-2 summarizes the chemical components that are found in
most source emissions.

Geological profiles typically show large abundances of aluminum (Al), silicon (Si),
potassium (K), calcium (Ca), and iron (Fe). The abundance of total potassium (K) is six to
ten times the abundance of soluble potassium (K*). Al, Si, K, and Fe abundances are similar
among geolotical profiles. Lead (Pb) is often enriched in paved road dust, even though
leaded fuels are no longer used in the United States. Carbon constitutes 5% to 15% of road
dust and some agricultural soils. Soluble ions such as sulfate, nitrate, and ammonium are
generally low, in the range of 0.1% to 0.2%. Sodium (Na") and chloride (CI") are also low,
except for situations when salt is used as a de-icing agent.

2-10



11-¢

Table 2-2. Chemical abundances in different source types.

Dominant Chemical Abundances in Percent Mass
Source Type Particle <0.1% 0.1 to 1% 1to 10% >10%
Size®
Paved Road Dust Coarse Cr, Sr, Pb, Zr SO, ., Na', K', P, S, Cl, Mn, Zn, Elemental Carbon (EC), Organic Carbon (OC),
Ba, Ti Al K, Ca, Fe Si
Unpaved Road Dust Coarse NOj, NHy, P, Zn, Sr, Ba SO, ., Na', K', P, S, Cl, Mn, Ba, 0C, AL, K, Ca, Fe Si
Ti
Construction Coarse Cr, Mn, Zn, Sr, Ba SOy, K, S, Ti, OC, Al, K, Ca, Fe Si
Agricultural Soil Coarse NOj3, NHy, Cr, Zn, Sr SOy, Na', K', S, Cl, Mn, Ba, Ti 0C, AL, K, Ca, Fe Si
Natural Soil Coarse Cr, Mn, Sr, Zn, Ba ClI,Na", EC, P, S, Cl, Ti 0C, Al, Mg, K, Ca, Fe Si
Lake Bed Coarse Mn, Sr, Ba K*, Ti SO, , Na', OC, Al S, Cl, Si
K, Ca, Fe
Motor Vehicle Fine Cr,Ni, Y NH,", Si, CL, Al Si, P, Ca, Mn, Cl, NO;, SO;, NH;, S OC,EC
Fe, Zn, Br, Pb
Vegetative Burning Fine Ca, Mn, Fe, Zn, Br, Rb, Pb NO3, SOz, NH;, Na', S Cl,K', CLK 0C, EC
Residual Oil Combustion | Fine K", OC, Cl, Ti, Cr, Co, Ga, Se | NHy, Na', Zn, Fe, Si V, OC, EC, Ni S, SO,
Incinerator Fine V, Mn, Cu, Ag, Sn K, Al, Ti, Zn, Hg NO;, Na', EC, Si, S, Ca, SO;, NH;, OC, Cl
Fe, Br, La, Pb
Coal-Fired Boiler Fine Cl, Cr, Mn, Ga, As, Se, Br, NH,", P, K, Ti, V, Ni, Zn, Sr, Ba, | SO, , OC, EC, Al S, Ca, Si
Rb, Zr Pb Fe
Oil-Fired Power Plant Fine V, Ni, Se, As, Br, Ba Al Si, P, K, Zn NH,", OC, EC,Na, Ca,Pb | S, SO,
Steel Blast Furnace Fine V, Ni, Se, Al Si, P, K, Zn Mn, OC, EC Fe
Smelter Fire Fine V, Mn, Sb, Cr, Ti Cd, Zn, Mg, Na, Ca, K, Se Fe, Cu, As, Pb S
Antimony Roaster Fine V, Cl, Ni, Mn SO4, Sb, Pb S None reported
Marine Fine Ti, V, Ni, Sr, Zr, Pd, Ag, Sn, Al Si, K, Ca, Fe, Cu, Zn, Ba, La NO;3, SOy, OC, EC Cl,Na', Na, Cl
and Coarse Sb, Pb

? Coarse particles are between 2.5 and 10 um in diameter; fine particles are less than 2.5 um in diameter.



Vehicle exhaust and burning, other major emitters in Table 2-1, are constituted
mostly by carbonaceous material with elemental levels much less than 1% of mass emissions.
Soluble potassium to total potassium (K'/K) ratios (Calloway et al., 1989) are typically 0.80
to 0.90 in vegetative burning profiles, in contrast to the low ratios found in geological
material.

Ducted industrial source emissions often contain many different elements, as shown
in Table 2-2. Primary particles emitted by coal-fired power generators have the largest
overlap in composition with fugitive dust sources. Crustal elements such as Si, Ca, and Fe in
coal-fired boiler profiles are present at 30% to 50% of the corresponding levels in geological
material; Al abundances are equal to or higher than those found in geological material. Other
elements such as phosphorus (P), K, titanium (Ti), chromium (Cr), manganese (Mn),
strontium (Sr), zirconium (Zr), and barium (Ba) are present at less than 1% levels. Selenium
(Se) is usually found in coal-fired boiler emissions that do not pass through dry sulfur
dioxide scrubbers. Watson et al. (2000) found that limestone scrubbers processing hot
exhaust gases removed selenium vapor before it could condense on fly ash particles.

As a group, fugitive sources are distinguishable from other types of sources on the
basis of their crustal element abundances. Urban fugitive dust source profiles are often too
similar to permit source resolution based on elemental abundances, but there are some
distinct global and regional profiles. Gatz and Prospero (1998) applied Si/Al, Ca/Al ratios to
separate transported North African dust from other sources. Gatz (1984) and Gatz et al.
(1985) separated agricultural soil and unpaved roads based on their Ca/K ratios. Bruns et al.
(1998) identify different microbial species in different types of agricultural soils. Houck et
al. (1989c) showed clear distinctions in Na, Cl, SO4", and carbonate (CO3") abundances for
alkaline lake beds relative to other sources. Davis and Chen (1993) identified clay and other
specific minerals in a variety of soils. Freeman et al. (1991) used the gold (Au) abundance to
separate crushed mining ore contributions from those of the overburden. Finding additional
markers that further distinguish among fugitive dust emitters would improve emission
estimation methods substantially.

24 Ambient PM;y and PM; s Chemical Composition and Source Contributions

The relative abundances of chemical components in the atmosphere reflect the
characteristics of emission sources. Major chemical components of PM; s or PMj; mass in
urban and non-urban areas consist of geological material, carbon, nitrate, sulfate, ammonium,
carbon, sodium chloride, and liquid water:

e Geological Material: Suspended dust consists mainly of oxides of Al, Si, Ca, Ti,
Fe, and other metals oxides (Taylor, 1964; Mason, 1966). The precise
combination of these minerals depends on the geology of the area and industrial
processes. Geological material typically constitutes ~50% of PM;y while only
contributing 5 to 15% of PM, s.

¢ Organic Carbon: Particulate organic carbon consists of hundreds, possibly
thousands, of separate compounds. The mass concentration of organic carbon can
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be measured, as can carbonate carbon, but only about 10% of specific organic
compounds that it contains have been measured. Vehicle exhaust (Rogge et al.,
1993a; Zielinska et al., 1998), residential and agricultural burning (Rogge et al.,
1998; Zielinska et al., 1998), meat cooking (Rogge et al., 1991; Zielinska et al.,
1998), fuel combustion (Rogge et al., 1993b, 1997), road dust (Rogge et al.,
1993c¢), and particle formation from heavy hydrocarbon (Cg to Cyp) gases (Pandis
et al., 1992) are the major sources of organic carbon in PM,s. Because of this
lack of molecular specificity, and owing to the semi-volatile nature of many
carbon compounds, particulate “organic carbon” is operationally defined by the
sampling and analysis method (Hering et al., 1984; Chow et al., 1993a, 2000).

Elemental Carbon: Elemental carbon is black, often called “soot.” Elemental
carbon contains pure, graphitic carbon, but it also contains high molecular weight,
dark-colored, non-volatile organic materials such as tar, biogenics, and coke.
Elemental carbon usually accompanies organic carbon in combustion emissions
with diesel exhaust (Watson et al., 1994c¢) being the largest contributor.

Nitrate: Ammonium nitrate (NH4NOs3) is the most abundant nitrate compound,
resulting from a reversible gas/particle equilibrium between ammonia gas (NHj3),
nitric acid gas (HNO;), and particulate ammonium nitrate. Because this
equilibrium is reversible, ammonium nitrate particles can easily evaporate in the
atmosphere, or after they have been collected on a filter, owing to changes in
temperature and relative humidity (Stelson and Seinfeld, 1982a, 1982b; Allen et
al., 1989). Sodium nitrate (NaNO3) is found in the PM, s and coarse fractions
near sea coasts and salt playas (Pilinus et al. 1987; Watson et al., 1994a) where
nitric acid vapor irreversibly reacts with sea salt (NaCl).

Sulfate: Ammonium sulfate ((NH4),SO4), ammonium bisulfate (NH4HSO,), and
sulfuric acid (H,SO,) are the most common forms of sulfate found in atmospheric
particles, resulting from conversion of gases to particles. These compounds are
water-soluble and reside almost exclusively in the PM; s size fraction. Sodium
sulfate (Na,SO4) may be found in coastal areas where sulfuric acid has been
neutralized by sodium chloride (NaCl) in sea salt. Though gypsum (CaSO,) and
some other geological compounds contain sulfate, these are not easily dissolved in
water for chemical analysis. They are more abundant in the coarse fraction than
in PM; 5 and are usually classified in the geological fraction.

Ammonium: Ammonium sulfate, ammonium bisulfate, and ammonium nitrate
(NH4NO3) are the most common compounds. The sulfate compounds result from
irreversible reactions between sulfuric acid and ammonia gas, while the
ammonium nitrate can migrate between gases and particle phases (Watson et al.,
1994a). Ammonium ions may coexist with sulfate, nitrate, and hydrogen ions in
small water droplets. While most of the sulfur dioxide and oxides of nitrogen
precursors of these compounds originate from fuel combustion in stationary and
mobile sources, most of the ammonia derives from living beings, especially
animal husbandry practiced in dairies and feedlots.
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e Sodium Chloride: Salt is found in suspended particles near sea coasts, open
playas, and after de-icing materials are applied. Bulk sea water contains 57£7%
chloride, 324+4% sodium, 8%1% sulfate, 1.1+£0.1% soluble potassium, and
1.24+0.2% calcium (Pytkowicz and Kester, 1971). In its raw form (e.g., deicing
sand), salt is usually in the coarse particle fraction and classified as a geological
material (Chow et al., 1996a). After evaporating from a suspended water droplet
(as in sea salt or when resuspended from melting snow), it is abundant in the
PM,; s fraction. Sodium chloride is often neutralized by nitric or sulfuric acid in

urban air where it is encountered as sodium nitrate or sodium sulfate (Pilinis et al.,
1987).

e Liquid Water: Soluble nitrates, sulfates, ammonium, sodium, other inorganic
ions, and some organic material absorb water vapor from the atmosphere,
especially when relative humidity exceeds 70% (Tang and Munkelwitz, 1993;
Saxena and Hildemann, 1997). Sulfuric acid absorbs some water at all
humidities. Particles containing these compounds grow into the droplet mode as
they take on liquid water. Some of this water is retained when particles are
sampled and weighed for mass concentration. The precise amount of water
quantified in a PM;s depends on its ionic composition and the equilibration
relative humidity applied prior to laboratory weighing.

Receptor models such as the Chemical Mass Balance (Watson et al., 1984, 1990b,
1990c, 1991, 1997a, 1998a) use the chemical compositions of particulate source emissions
and of particles in ambient air to estimate the contributions of different sources to PM;y and
PM, 5 concentrations. Table 2-3 reanalyzes the summary of source contribution estimates in
Watson et al. (1998a) by estimating the mass fraction of primary PM;, contributed by
fugitive dust, motor vehicle exhaust, vegetative burning, and other source types. Source
contributions from secondary ammonium sulfate and ammonium nitrate contributions have
been subtracted from measured PM;y to estimate the concentration attributable only to
primary emissions. Total and primary PM;, concentrations in the cited studies are tabulated
in the third and fourth columns of Table 2-3.

Fugitive dust source contributions range from 12% to 99% of primary PM;, with
most of the fractions being in the range of 40% to 60%. The tabulated studies are dominated
by western sites where the PM; standard was often exceeded, and fugitive dust was nearly
always a major contributor. Geological contributions at the Ohio sites ranged from 20% to
45% of primary PM;y. Although source apportionment studies are not as extensive in the
midwestern, southern, and eastern United States, it is expected that fugitive dust source
contributions are lower owing to higher levels of vegetation on exposed surfaces.

Comparing total PMj to primary PM; in columns three and four of Table 2-3 shows
that secondary sulfates and nitrates are often a large fraction of PMjy and an even larger
component of PM, 5. This is especially noticeable at the Rubidoux, Bakersfield, and Fresno,
CA monitors. Subtracting these secondary components prior to estimating the fugitive dust
fraction decreases, but does not eliminate, the discrepancy between ambient source
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Table 2-3. Fractions of fugitive dust and other source contributions in primary PM;, from receptor model source apportionment

studies.
ng/m’ Percent of Primary PMy,
Location Time Period PM,, Pgﬁ?:y Fl;)gllltsltve Exhaust Burning Other

Central Phoenix, AZ (Chow et al., 1991) Winter 1989-90 64.0 61.0 54.1 41.0 3.8 1.1
Corona de Tucson, AZ (Chow et al., 1992b) Winter 1989-90 19.1 17.2 98.8 9.3 0.0 0.0
Craycroft, AZ (Chow et al., 1992b) Winter 1989-90 23.4 221 58.8 37.6 0.0 3.6
Downtown Tucson, AZ (Chow et al., 1992b) Winter 1989-90 48.0 46.8 66.5 29.9 0.0 3.6
Orange Grove, AZ (Chow et al., 1992b) Winter 1989-90 34.2 334 59.9 44.9 0.0 0.0
Phoenix, AZ (Estrella Park) (Chow et al., 1991) Winter 1989-90 55.0 53.4 69.3 18.7 1.7 10.3
Phoenix, AZ (Gunnery Rg.) (Chow et al., 1991) Winter 1989-90 27.0 26.0 76.9 21.2 0.0 1.9
Phoenix, AX (Pinnacle Pk.) (Chow et al., 1991a) Winter 1989-90 12.0 11.1 63.1 26.1 9.0 1.8
Rillito, AZ (Thanukos et al., 1992) 1988 79.5 79.5 71.1 1.5 0.0 27.4
Scottsdale, AZ (Chow et al., 1991) Winter 1989-90 55.0 50.8 49.2 374 14.6 0.0
West Phoenix, AZ (Chow et al., 1991) Winter 1989-90 69.0 65.5 45.8 38.2 15.3 0.8
Anacapa Island (Channel Islands) marine site (Chow et |1989 26.0 21.0 12.9 7.1 0.0 58.9°
al., 1996b)

Anaheim, CA (Gray et al., 1988) 1986 52.1 353 60.1 11.6 0.0 28.3
Anaheim, CA (Summer) (Watson et al., 1994b) Summer 1987 51.3 39.4 28.9 21.6 0.0 49.5
Anaheim, CA (Fall) (Watson et al., 1994b) Fall 1987 104.0 61.8 21.4 60.2 0.0 18.4
Azusa, CA (Summer) (Watson et al., 1994b) Summer 1987 92.1 74.6 46.8 21.3 0.0 31.9
Bakersfield, CA (Magliano, 1988) 1986 67.6 62.0 49.0 8.9 15.5 26.6
Bakerfield, CA (Chow et al., 1992¢) 1988-89 79.6 61.4 72.5 12.5 10.6 44
Burbank, CA (Gray et al., 1988) 1986 56.6 39.2 54.3 15.6 0.0 30.1
Burbank, CA (Summer) (Watson et al., 1994b) Summer 1987 72.3 53.4 26.2 31.8 0.0 41.9
Burbank, CA (Fall) (Watson et al., 1994b) Fall 1987 94.8 66.6 16.5 58.7 0.0 24.8
Chula Vista 1, CA (Bayside) (Cooper et al., 1988) 1986 28.8 21.3 31.5 3.8 0.0 64.8
Chula Vista 2, CA (Del Ray) (Cooper et al., 1988) 1986 31.1 222 38.3 6.8 0.0 55.0
Chula Vista 3, CA (Cooper et al., 1988) 1986 29.6 21.4 46.7 6.5 0.0 46.7
Claremont, CA (Summer) (Watson et al., 1994b) Summer 1987 70.0 54.2 35.8 26.6 0.0 37.6
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Table 2-3. (continued)

ng/m’ Percent of Primary PM,,
Location Time Period PM,, P;ﬁ?;y Fl]l)glitsltve Exhaust Burning Other

Crows Landing, CA (Chow et al., 1992¢) 1988-89 52.5 43.2 74.5 5.1 7.9 12.5
Downtown Los Angeles, CA (Gray et al., 1988) 1986 60.2 414 57.5 15.5 0.0 27.1
Downtown Los Angeles, CA (Summer) (Watson et al., |Summer 1987 67.6 50.2 253 32.3 0.0 424
1994b

Downt)own Los Angeles, CA (Fall) (Watson et al., Fall 1987 98.6 67.2 14.0 612 0.0 24.9
1994b)

Fellows, CA (Chow et al., 1992¢) 1988-89 54.6 42.0 72.4 5.0 8.1 14.5
Fresno, CA (Magliano, 1988) 1986 48.1 46.3 38.4 8.6 19.9 33.0
Fresno, CA (Chow et al., 1992¢) 1988-89 71.5 57.5 55.3 11.8 8.9 24.0
Hawthorne, CA (Summer) (Watson et al., 1994b) Summer 1987 45.9 30.3 24.8 18.5 0.0 56.8
Hawthorne, CA (Fall) (Watson et al., 1994b) Fall 1987 85.1 59.6 14.9 58.9 0.0 26.2
Indio, CA (Kim et al., 1992) 1988-89 58.0 50.3 71.6 8.7 14.1 5.6
Kern Wildlife Refuge, CA (Chow et al., 1992¢) 1988-89 47.8 43.0 39.8 5.1 9.3 45.8
Lennox, CA (Gray et al., 1988) 1986 46.9 314 51.3 14.3 0.0 34.4
Long Beach, CA (Gray et al., 1988) 1986 51.9 34.7 59.7 14.7 0.0 25.6
Long Beach, CA (Summer) (Watson et al., 1994b) Summer 1987 46.1 344 32.3 18.3 0.0 49.4
Long Beach, CA (Fall) (Watson et al., 1994b) Fall 1987 96.1 69.1 16.4 61.9 0.0 21.7
Magnolia, CA (Chow et al., 1992a) 1988 66.0 41.4 76.6 27.1 0.0 0.0
Palm Springs, CA (Kim et al., 1992) 1988-89 351 27.2 65.4 8.5 18.8 7.4
Riverside, CA (Chow et al., 1992a) 1988 64.0 37.8 86.2 18.5 0.0 0.0
Rubidoux, CA (Gray et al., 1988) 1986 87.4 59.7 78.9 9.4 0.0 11.7
Rubidoux, CA (Summer) (Watson et al., 1994b) Summer 1987 114.8 77.9 50.6 22.2 0.0 27.2
Rubidoux, CA (Fall) (Watson et al., 1994b) Fall 1987 112.0 78.3 451 38.7 0.0 16.2
Rubidoux, CA (Chow et al., 1992a) 1988 87.0 60.0 80.0 17.0 0.0 3.0
San Jose, CA (4th St.) (Chow et al., 1995) Winter 1991/92 68.4 52.8 24.8 17.4 59.3 0.0
San Jose, CA (San Carlos St.) (Chow et al., 1995) Winter 1991/92 64.9 50.0 23.6 17.8 62.6 0.0
San Nicolas Island, CA (Summer) (Watson et al., 1994b) |Summer 1987 17.4 13.2 12.1 6.8 0.0 81.1
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Table 2-3. (continued)

ng/m’ Percent of Primary PM,,
Location Time Period PM,, P;ﬁ?;y Fl]l)glitsltve Exhaust Burning Other

Santa Barbara, CA (Chow et al., 1996b) 1989 34.0 29.8 31.9 493 0.0 18.8
Santa Barbara, CA (Gaviota Terminal) (Chow et al., 1989 20.5 17.2 18.6 29.7 0.0 51.7
1996b

Santa l)\/[aria, CA (Chow et al., 1996b) 1989 27.0 22.5 329 33.8 0.0 333
Santa Ynez, CA (Chow et al., 1996b) 1989 19.0 16.2 28.4 42.0 0.0 29.6
Stockton, CA (Chow et al., 1992a) 1988-89 62.4 52.3 66.7 9.9 9.2 14.1
Upland, CA (Gray et al., 1988) 1986 58.0 37.1 69.5 11.1 0.0 19.4
Vandenberg AFB, CA (Watt Road) (Chow et al., 1996b) |1989 20.6 17.7 25.4 18.1 0.0 56.5
Telluride 1, CO (Central) (Dresser and Baird, 1988) Winter 1986 208.0 208.0 15.4 0.0 47.5 37.2
Telluride 2, CO (Society Turn) (Dresser and Baird, Winter 1986 27.0 27.0 44.8 0.0 27.0 28.1
1988

Poca‘?ello, ID (Houck et al., 1992) 1990 100.0 100.0 15.8 0.1 0.0 84.1
S. Chicago, IL (Hopke et al., 1988) 1986 80.1 64.7 45.7 43 0.0 499
S.E. Chicago, IL (Vermette et al., 1992) 1988 41.0 333 441 2.7 0.0 53.2
Reno, NV (Non-sweeping) (Chow et al., 1990) Winter 1987 20.4 19.6 49.5 44.4 0.5 5.6
Reno, NV (Sweeping) (Chow et al., 1990) Winter 1987 24.9 23.9 494 46.0 5.0 0.0
Reno, (Chow et al., 1988) 1986-87 30.0 28.1 53.0 35.6 6.8 4.6
Sparks, NV (Chow et al., 1988) 1986-87 41.0 374 40.4 31.0 35.8 0.0
Verdi, NV (Chow et al., 1988) 1986-87 15.0 14.0 55.7 28.6 7.9 7.9
Follansbee, OH (Skidmore and Chow, 1992) 1991 66.0 50.0 20.0 70.0 0.0 10.0
Mingo, OH (Skidmore and Chow, 1992) 1991 60.0 45.0 26.7 31.1 9.1 33.1
Sewage Plant, OH (Skidmore and Chow, 1992) 1991 62.0 49.0 44.9 24.5 0.0 30.6
Steubenville, OH (Skidmore and Chow, 1992) 1991 46.0 32.0 25.9 43.8 2.5 27.8
WTOV Tower, OH (Skidmore and Chow, 1992) 1991 49.0 34.0 21.8 47.1 0.6 30.6

* 55% was marine aerosol contributions.



contributions and emissions inventory estimates of source importance. Other emitters,
especially vehicle exhaust, contribute proportionately more to measured PM;o than is
indicated by inventories, even when these inventories are specific to the areas being studied.

Receptor source contributions and emission estimates are not entirely comparable.
The source contributions in Table 2-3 are specific to the sampling sites listed and can only be
extrapolated to the larger areas represented by emissions inventories when those sites are
shown to represent these large areas. Chow et al. (1992a) estimated fugitive dust
contributions at Rubidoux, CA, to be twice those at sites that were only 5 km from this site,
indicating substantial nearby fugitive dust emissions. More systematic, long-term source
apportionment studies are needed for comparison with local emissions inventories. More
chemically speciated PM; s measurements in urban areas are also needed. The planned EPA
PM; s national speciation network will provide some of these measurements needed to
generalize the source contributions in Table 2-3 to longer measurement periods and a larger
number of locations.

2.5  Background and Global Dust Contributions

Geological material in the atmosphere is ubiquitous throughout the world, and a
portion of the source contributions in Table 2-3 should be attributed to this background.
Figure 2-4 from the Interagency Monitoring of PRotected Visual Environments (IMPROVE)
visibility network provides an estimate of the fraction of PM;y and PM; s constituted by dust.
The top panel of Figure 2-4 shows the fraction of coarse particles in PMjy. As explained
previously, geological material dominates the coarse particle fraction so coarse mass is a
reasonable surrogate for PM;, fugitive dust contributions. The bottom panel shows the
fraction of crustal material derived from elemental measurements on IMPROVE samples,
adjusted for unmeasured oxides. PM;o and PM, s mass concentrations in these plots also
include secondary aerosol contributions, mostly from ammonium sulfate. The fractions
therefore represent lower limits on the amounts of primary particles contributed by
suspended dust.

The top panel shows coarse mass constituting 28% to 65% of PM;,, with typical
fractions of 40% to 60% in western states and 30% to 40% in eastern states. The bottom
panel shows soil constituting 3% to 30% of PM, s, with typical fractions of 5% to 10%. Part
of the reason that the soil fraction in PM; 5 is lower in the eastern U.S. than in the west is that
secondary ammonium sulfate is a much larger fraction of PM,s in the east. These
background proportions are similar to those found at the mostly urban sites summarized in
Table 2-3. Continental background contributions result from a variety of source emissions,
some of which are not specified in Table 2-1 and several of which may originate outside the
boundaries of the United States.

The major global dust producing regions are located in a broad band of arid and semi-
arid lands centered on approximately 20° to 25° north latitude that extends from West Africa
to northern China (Middleton et al., 1986). These areas experience a high frequency of dust
storms that occur on 15 to more than 80 days per year. In the southern hemisphere, Australia
also contains a significant, but less influential global dust source (McTainsh, 1986).
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Figure 2-4. Fractions (percent) of PM;( and PM; s at United States background monitors
from the IMPROVE network (courtesy of J. Sisler, National Parks Service,
http://alta_vista.cira.colostate.edu/).
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The area in and around Africa’s Sahara Desert is a major source of global dust. The
Sahara Desert consists of: 1) broad alluvial plains within the Bodélé Depression in Niger and
Chad; 2) southern Mauritania, northern Mali, and south central Algeria; 3) southern Morocco
and western Algeria; 4) the southern fringe of the Mediterranean Sea in Libya and Egypt; and
5) the northern Sudan.

In the Middle East, the alluvial plains of southern Mesopotamia and the desert areas
of Syria, Jordan, and northern Saudia Arabia are major global dust sources (Middleton, 1986;
Pease et al., 1998) as are parts of Iran along the Makran coast and the Thar Desert and
alluvial plains of the Amu Darya in northern Afghanistan. Important dust sources are also
located in the Kara Kum Desert, parts of Kazakhstan, and in a zone extending from the
southern Caspian Sea through Turkmenistan, Uzbekistan, and into Tajikistanthe (>40 dust
storms/year, Pye, 1987). Major dust storms with very high sediment concentrations are also
frequent in northern China with the most common occurrences in the Ordos, Takla Makam,
and Gobi deserts, the Hexi and Gansu corridors, and the loess plateau region of Inner
Mongolia (Middleton, 1986; Derbyshire et al., 1998).

In the United States, dust storms are most frequent in the southern Great Plains area
of northwest Texas and eastern New Mexico, with secondary centers in the southwestern
deserts of California and Arizona (Orgill and Sehmel, 1976; Nickling and Brazel, 1984; Pye,
1987). Nickling and Brazel (1984) report that the frequency of dust storms in Arizona from
1965 to 1985 ranged from less than one per year at Tucson and Winslow to 1.6 per year at
Yuma and 2.7 per year at Phoenix.

Although the major global dust sources in Africa and Asia are a considerable distance
from the continental United States, they can contribute to background dust concentrations in
some regions on some occasions. During the northern hemisphere summer, dust storms are
frequent in the southern Sahara and the Sahel region of western Africa that extend over the
eastern Atlantic. This dust laden-air reaches the Caribbean (Prospero and Nees, 1986),
southern Florida (Prospero et al., 1989) and South America (Prospero et al., 1981; Swap et
al., 1992) on several occasions.

Long term measurements made at Miami (Prospero and Nees, 1986) indicate that
African dust is a detectable source of mineral aerosols in this region. Gatz and Prospero
(1998) show an influx of African dust to the southeastern and Gulf coasts of the U.S. that
traversed northeast from the Gulf of Mexico as far as central Illinois. This dust resulted in
higher concentrations of Si and Al that were not consistent with local or regional dust
sources. Shaw (1980) recorded transport of dust from desert sources in Asia to the Hawaiian
Islands.

The wind erosion category in Table 2-1 does not represent the emissions causing
these background levels. This category is dominated by windblown dust from disturbed
agricultural fields and does not include the potential effects of transport from outside the
United States. The fractions of fugitive dust in Table 2-3 are also positively biased because
they do not subtract background dust contributions from the urban dust contributions. Figure
2-5 shows that these soil levels range from 0.2 pg/m’ near the west coast to 1.0 pg/m® near
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Figure 2-5. Background concentrations of PM, 5 soil (ug/m’) at United States background
sites from the IMPROVE network (courtesy of J. Sisler, National Parks Service,
http://alta_vista.cira.colostate.edu/).
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the east coast and in southwest Texas. Soil concentrations in the inland western states are
~0.5 t0 0.7 pg/m>. The eastern values are based on a small number of monitoring sites, some
of which are closer to urban dust sources than those in the west.

2.6 Hypothesis Testing
This section provides information on the first three hypotheses advanced in Section 1.

1. Lack of accounting for secondary aerosol contributions in estimating fugitive
dust fractions. Subtracting secondary sulfate and nitrate contributions from
PM prior to estimating the fugitive dust fraction in source apportionment studies
results in a higher fractional geological contribution. There is still a large
discrepancy between the proportion in emissions inventories and the fraction in
ambient samples. Although PM; s source apportionment studies are limited, it is
likely that the discrepancy will be larger for this size fraction in which geological
contributions are much lower. A more systematic examination of the fugitive
dust proportion in ambient samples will be possible when data become available
from EPA’s PM, 5 speciation network at representative community exposure sites
throughout the United States.
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Lack of accounting for global and regional crustal contributions to urban
concentrations. Spatial distributions of background annual average PM, 5 soil
contributions range from 0.5 to 1 pg/m’ in the United States. These should be
subtracted from urban PM,s fugitive dust contributions prior to determining
proportions for comparison with local emissions inventories. Higher soil
contributions to some samples in Florida and other areas may be caused by long-
range transport of Sahara dust that are not accounted for in inventories. These
global-scale events are not common occurrences, however, and result in a minor
contribution to annual averages. More extensive IMPROVE monitoring in the
eastern United States coupled with data from the PM, 5 speciation network should
allow better estimates of background contributions to urban fugitive dust levels.
More specific chemical and physical markers need to be developed and measured
in source and receptor samples to distinguish background from other fugitive dust
sources, as well as different types of dust emitters from each other.

Incompatible temporal and spatial averaging of fugitive dust emissions
relative to ambient PM measurements. Data presented here are insufficient to
examine the incompatibilities between ambient and emission estimates of fugitive
dust contributions. Source apportionment examples are for specific time periods
and locations that do not correspond to or represent the locations and time periods
of national inventories. Comparisons with location-specific inventories as part of
these studies show dust emission fractions similar to those in the national
inventories. Neighborhood-scale studies show that there may be large differences
between dust contributions for monitors separated by no more than 5 km. A more
comprehensive review of spatially dense monitoring networks designed to assess
zones of influence around dust sources is needed, as are further studies that
minimize differences between spatial and temporal scales of ambient
measurements and inventories. Currently recognized incompatibilities do not
explain the large differences between local inventories and source contribution
estimates derived from receptor modeling.
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3. FUGITIVE DUST EMISSIONS AND RATES

This section describes the mechanisms that cause dust suspension from unpaved
roads, paved roads, construction, and wind erosion. It summarizes how these emissions are
measured and related to available activity data.

3.1 Fugitive Dust Emissions Inventory Methods

Fugitive dust emission rates such as those presented in Table 2-1 are determined by
the following relationship:

Ejkl = Rjkl X Kjkl X Ajkl X (1 - ijl) (3—1)
where
Eju = Emission rate from source type j over time period k and area 1.

Rju = Rate of emissions (emission factor) for a specific size fraction per unity of
activity for source type j over time period k and area 1.

Kju = Particle size reduction applied to Rj when Ejq is intended to represent a
particle size fraction different from that represented by Ry (e.g., when PM; 5
emissions are desired and emission factors are only available for PM( or TSP).
This factor is likely to be different for different source types j, time periods k,
and area 1.

Aj = Activity that causes dust emissions for source type j over time period 1.

Pj = Fractional reduction due to emission controls applied to source j over time
period k and area I.

Each of the components of Ejy is empirically derived from a limited number of tests.
These tests are intended to represent the entire population of emission factors, activity levels,
size distributions, and emission reduction effectiveness. Averaging periods are typically for
a year or season and averaging areas are typically the sizes of counties or states. As noted in
Section 2, each of these components of fugitive dust emission rate contains uncertainties
when applied to a specific situation.

3.2 Processes that Affect Dust Suspension

Fugitive dust emissions depend on particle sizes, surface loadings, surface conditions,
wind speeds, atmospheric and surface moisture, and dust-suspending activities. Emission
rates and control measures are also closely related to these properties.
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3.2.1 Particle Sizes

The “silt” fraction of surface dust is most often used as a surrogate for suspendable
particles. Silt consists of particles with a geometric diameter <75 pum as determined by
sieving dried soil samples acquired from surface loading tests. The 75 um geometric
diameter corresponds to an aerodynamic diameter of ~120 um because the aerodynamic
diameter varies inversely with the square root of the density (Hinds, 1999), which is ~2.65
g/em’® for minerals. Similarly, a 10 pm aerodynamic diameter dust particle has a ~6 pm
geometric diameter and a 2.5 um aerodynamic diameter dust particle has a geometric
diameter of ~1.5 pm. Little is known about the PMjy and PM, s in surface dust as these
fractions are too small to be determined by simple sieving methods.

Particle size distributions have been determined by sieving samples from different
types of soils and recording these in soil surveys. These surveys have been used for
agriculture and construction/engineering purposes since the early 1900s in many parts of the
United States and are commonly available at county agricultural extension offices. The
particle sizing procedure (American Society for Testing and Materials, 1997, 1998) most
commonly followed for soil surveys creates a soil/water suspension in which soil aggregates
are broken into their component parts prior to sieving. While the particle size distribution of
the disaggregated sediment is useful for agricultural, construction, and other land uses, it is
not entirely applicable for estimating air pollution emissions. This sieving method does not
estimate the size of the dust aggregates that are entrained and suspended by surface winds or
human activities. The silt fraction is determined by dividing the weight of material passing
through the 75 um sieve by the weight of material presented to a stack of sieves.

Gillette et al. (1980) applied two methods to determine the particle and aggregate
sizes in soil that might be entrained by winds. The first method (“gentle sieve”) consists of
drying a soil sample and sieving it gently with about twenty circular gyrations parallel to the
plane of the sieve. The second method (“hard sieve”) consists of up to one-half hour of
vigorous shaking (usually using a shaking machine). Cowherd et al. (1990) used a rotary
sieving procedure described by Chepil (1952) to estimate the modal aggregate size of
sediment samples removed from unpaved roads. The gentle sieve method is assumed,
without quantitative validation, to be a more suitable approach for determining potential
wind erosion properties of bare soil because it attempts to sample the sediment with its in situ
characteristics intact. Silt fractions and amounts determined by the hard sieve method
probably provide a reasonable indicator of small particles from roads where vehicle tires
abrade the surface. Threshold suspension velocities (Gillette et al., 1980) for windblown dust
apply to soil characteristics obtained by the gentle sieve method. Appendix C-2 of AP-42
(U.S. EPA, 1999) provides detailed procedures for the hard sieve method applicable to other
emissions.

The size distribution of dust particles affects the suspension process. A flat bed of
particles with diameters <20 um is difficult to suspend by wind. Bagnold (1937) showed that
fine Portland cement could not be entrained by wind velocities in excess of 1 m/s at the
surface. In this situation, there is no large cross section for wind to act on. In addition,
adhesive forces such as van der Waals, electrostatic, and surface tension of adsorbed liquid
films (Hinds, 1999) increase the force required to entrain the particles.
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Suspension of PM;y and PM, 5 is reduced by larger non-erodible particles. Particles
with diameters exceeding ~800 pum shelter smaller particles in their lee (Chepil, 1942).
Gillette and Stockton (1989) sprinkled glass spheres with diameters ranging from 2,400 to
11,200 um onto a bed of glass spheres with diameters of 107 to 575 um and found major
reductions in the horizontal flux of the smaller particles. However, Logie (1982) found that
erosion of a sand surface was enhanced when low concentrations of larger non-erodible
obstructions were present on the surface. Logie (1982) hypothesized that the increased
erosion was due to wind acceleration around the isolated obstructions that scoured the loose
sand. Bagnold (1941) estimated that 800 um particles can be separated from surfaces under
high winds, although their large masses cause them to rapidly settle to the surface. Rosbury
and Zimmer (1983) and Flocchini et al. (1994) observed higher dust emissions from unpaved
road surfaces with lower silt contents and higher gravel content. When acted on by vehicle
tires, larger gravel particles replenished the quantity of smaller suspendable particles by
enhancing surface abrasion.

Carvacho et al (1996) have developed a method that directly measures the reservoir
of PM,, available for suspension in a bulk soil sample. Pulses of air are run through a
fluidized bed containing the sample and the suspended dust is sampled through a size-
selective inlet onto a series of parallel filters. After a few pulses, one of the filters stops
sampling. After a few more pulses, another filter stops sampling and so on. Each filter is
separately weighed and the collected mass is plotted as a function of the aggregate agitation
(as determined by the number of pulses). A maximum mass loading is reached after many
pulses when the suspendable PMj, is depleted. This maximum varies between different
types of dusts much more than it varies for repeated samples of the same dust. Campbell and
Shimp (1998) have related this PM, suspension potential to the silt measurements in
California soil surveys to improve their PM;o emission estimates.

Silt fractions or quantities appear as explicit variables in many of the emission factors
cited below. The processes related to particle size indicate that actual emissions of PM;, and
PM, s are influenced by more detailed size distributions above and below the 75 um
geometric diameter that specifies silt content.

3.2.2 Surface Loading

Most soil surfaces are limited reservoirs; suspendable dust is depleted after a short
time in the absence of direct abrasion. This depletion is represented as a negative
exponential (Anspaugh et al., 1975; Linsley, 1978) or inverse (Garland, 1983; Reeks et al.,
1985; Nicholson, 1993) function of time.

As noted above, depletion of fine particles often results in the exposure of larger
non-erodible sediments that shield the suspendable particles from the wind. The larger
non-erodible elements also absorb momentum, thereby decreasing the wind’s ability to erode
the surface (Marshall, 1971; Raupach, 1992). When surfaces are continually disturbed by
very intense winds, by vehicular movement, or by other human activities, unlimited
reservoirs are created that emit dust whenever winds exceed threshold suspension velocities.
Suspendable dust loadings may vary substantially, even over periods of a few minutes, when
there are no mechanisms to replenish the reservoir.
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Surface loadings are determined by sweeping or vacuuming loose particles from
several specified areas within a fugitive dust source. These samples are dried and weighed,
then divided by the area sampled to determine the mass of dust per unit area. Appendix C-1
of AP-42 (U.S. EPA, 1999) provides detailed procedures. The same samples are usually
sieved to determine the silt fraction and the quantity of larger particle sizes. Surface loadings
vary substantially with space and time. Zimmer et al. (1992) measured silt loadings that
varied by a factor of twenty at different times for the same paved road in Denver, CO. South
Coast Air Quality Management District (1991) reported paved road silt loadings from 0.112
to 1.83 g/m’ for different areas with similar road and traffic conditions in the Los Angeles
area.

Kuhns and Etymezian (1999) mapped silt loadings on streets in Las Vegas, NV, using
light scattering photometers located in a vehicle wheel well to measure dust suspended by the
tires and on the hood to measure ambient levels. After adjusting for vehicle speed, they
found a consistent relationship between silt loadings determined by sieving and those
determined by one-second averages of light scattering near the road surface. Surface silt
loadings on highly traveled streets were much lower than those on less-heavily used
residential side streets. Visible trackout from construction sites yielded orders of magnitude
higher silt loadings than loadings on heavily traveled roads.

3.2.3 Surface Conditions

Surface conditions refer to the landform shape and cohesion of a potential dust
reservoir. The effects of landform shape on dust suspension are embodied in the concept of
“surface roughness.” Surface roughness is related to the heights of obstructions within and
around exposed dust areas. Agriculturists often orient their furrows perpendicular to
prevailing winds, or plant rows of trees upwind of their fields, to minimize soil losses from
wind erosion by increasing surface roughness. Larger surface roughness decreases the force
exerted by the wind on suspendable surface particles, thereby decreasing emissions.
However, larger surface roughness increases vertical turbulence that can mix suspended
particles higher into the atmosphere for longer transport distances.

The aerodynamic roughness length is the apparent distance above the surface at
which the average wind speed approaches zero. In reality, wind speed does not become zero
at this level, but it deviates from the logarithmic increase of wind speed with height that is
commonly found in the atmosphere. Aerodynamic surface roughness is ~3% to ~12% of the
height of obstructions in and around an exposed area (Greeley and Iversen, 1985); it is site-
specific and quantified with wind speed measurements taken at different elevations between
~1 m and ~10 m above ground level. The ratio of wind speeds at lower levels is plotted
against the logarithm of the measurement height and extrapolated to a wind velocity of zero.
The intersection with the elevation axis at wind speed equals zero is the surface roughness.
In practice, estimates from many hours of wind measurements are averaged to determine
typical surface roughness. The slope of this relationship is termed the “friction velocity” and
indicates the wind shear forces near an erodible surface (Pasquill and Smith, 1983). The
presence of large particles or obstructions that increase surface roughness attenuates wind
erosion by absorbing a significant fraction of the downward momentum flux from the air
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flow above (Wilson et al., 1998). While the principles are known, the effects of changes in
surface roughness on fugitive dust emissions are not well quantified.

Surface roughness may be associated with many degrees of surface cohesion. Natural
weathered soil in arid environments tends to develop a crust over time that is highly resistant
to suspension (Belnap and Gillette, 1997). This surface is easily broken by footsteps, let
alone by vehicular traffic and livestock grazing (Gillette et al., 1979; 1982). A large
reservoir of suspendable material is often available beneath this crust. Desert pavements
require many decades to reform, as evidenced by still-visible wagon tracks along emigrant
trails blazed during the 1840s and 1850s in the western U.S.

Gillies et al (1999) estimated the strength and resilience of unpaved road surfaces by
measuring the vertical force (kg/cm?) needed for penetration with a Proctor Penetrometer”.
This is similar in concept to the “rupture moduli” applied by Gillette et al. (1982). Force
measurements were taken across the road width every 0.25 m on different occasions and for
different dust suppression treatments. Hard surfaces, similar to but stronger than natural
desert crusts, experienced a brittle failure after application of a large force. The surface
shattered, creating small aggregates and holes. Loose particles were exposed, as were edges
of the surface that could be further ground down by tire wear. A flexible surface created by a
polymer emulsion was penetrated at a relatively low force, but the size of the penetration was
limited to the diameter of the Penetrometer and no aggregates were created. While surface
strength may be a good indicator of emission potential for brittle surfaces, the nature of
penetration is just as important. Vegetated and moist surfaces exhibit elastic characteristics
similar to those of the polymer emulsion.

3.2.4 Wind Speeds

High wind speeds provide the energy needed to suspend loose particles from a
surface; turbulence associated with these winds elevates particles to high altitudes where they
can transport over long distances (Prospero et al., 1970, 1981, 1989; Gillette and Blifford,
1971; Gillette et al., 1972; 1978a; 1978b; Prospero and Carlson, 1972; Duce et al. 1980;
Gillette, 1980a, 1980b, 1981). Wind erosion occurs in urban as well as non-urban areas.
Figure 3-1 compares PM;, concentrations averaged for different wind speeds near a
construction site in Las Vegas, NV and at a location in the nearby non-urban desert. The
urban site shows higher concentrations at wind speeds of 0 to 2 m/s owing to accumulation of
nearby emissions under stagnant conditions. PMg levels begin to increase at wind speeds of
4 to 5 m/s, attributable to windblown dust emissions from nearby land parcels denuded for
new construction (Chow et al., 1999; Chow and Watson, 1997b). Large increments in PM;,
are not seen, however, until wind speeds exceed 7 m/s with concentrations increasing rapidly
for wind speeds in excess of 10 m/s. Fortunately, these high winds are infrequent, occurring
for only 83 hours during 1995. Several of these hours were consecutive, however, and were
associated with 24-hour average PM, exceeding 150 pg/m”.

The non-urban desert site experienced a similar frequency of high winds, but it does
not show significant increases in emissions until these speeds exceed 11 m/s. A slight
increase in PMj is noticeable for wind speeds above 8 m/s. This example refutes the
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Figure 3-1.. Average PMj classifed by wind speed from hourly beta attenuation monitor
(BAM) measurements at an Urban/Construction site and a Non-Urban/Desert site near Las
Vegas, NV during 1995 (Chow and Watson, 1997b; Chow et al., 1999). Wind speeds were
measured at 10 m above ground level.
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argument that most urban dust derives from natural surfaces. Only when wind speeds are
high and persistent do undisturbed areas provide measurable, though not major, fractions of
PMjy or PMy5 in the atmosphere. Non-urban surfaces disturbed by off-road traffic,
agricultural operations, and construction should not be classified as natural sources because
they were created by human intervention.

Chepil and Woodruff (1963) and Gillette and Hanson (1989) show that the amount of
dust suspended by wind depends on particle size distributions, wind speed at the surface,
surface roughness, relative amounts of erodible (<2 mm diameter) and non-erodible (>2 mm
diameter) material, and the cohesion of the soil particles with one another. Values for each
of these variables affect other variables. For example, a higher moisture content increases
cohesion among particles and shifts the size distribution to larger particles. Larger
agglomerations of small particles increase surface roughness, thereby decreasing wind speeds
at the surface.

The effects of all of these variables are embodied in a threshold friction velocity that
is experimentally determined by placing a wind tunnel over an example of the affected soil
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and measuring the surface speed at which soil movement first becomes visible (Zingg, 1951;
Gillette, 1978a, 1978b, 1980, 1981; Raupauch et al., 1980; Borrmann and Jaenicke, 1987,
Rajendran and Fraftz, 1992; Visser, 1992; Nicholson, 1993; Braaten, 1994; Giess et al.,
1994). With the more common use of continuous particulate monitors (Watson et al.,
1998b), threshold friction velocities might be inferred from hourly PM;y, PM, s and wind
speed measurements at ambient sampling sites as demonstrated in Figure 3-1. Averaging
times of one to five minutes would provide more precise estimates than the hourly averages
used in Figure 3-1.

Gillette (1980) shows threshold friction velocities that vary from 0.19 to 1.82 m/s for
soils with different degrees of disturbance. Most ambient wind speed measurements such as
those in Figure 3-1 are made at elevations between 5 and 10 m above ground level, and these
must be translated to surface friction velocities to determine suspension. This is done using
estimates of surface roughness and friction velocities from the actual or similar sites (U.S.
EPA, 1999). For this range of surface threshold values, emissions will be initiated at ambient
wind speeds (measured at 7 m above the ground level, the height of most National Weather
Service wind sensors) between 7 and 10 m/s (26 to 37 km/h). Even though emissions begin
at these velocities, the wind force contains insufficient energy to suspend very much of the
erodible soil mass. The amount of dust suspended increases at approximately the cube of the
wind speed above the threshold velocity. This is consistent with the measurements in Figure
3-1.

Particles suspended into the atmosphere are acted upon by gravity in a downward
direction and by atmospheric resistance in an upward direction. Every particle attains an
equilibrium between these forces at its terminal settling velocity. The settling velocity
increases as the square of the particle diameter, and linearly with particle density
(Friedlander, 1999). For very small particles (<10 pm diameter), turbulent air movements in
wind storms can counteract the gravitational settling velocity and such particles can remain
suspended for long times (Sehmel, 1980, 1984; Slinn, 1982). Transport distance depends on
the initial elevation of a particle above ground level, the horizontal wind velocity component
at the particle elevation, and the gravitational settling velocity.

Pye (1987) shows vertical profiles for different sized particles that might be elevated
through a 100 m depth during a wind storm. The particles smaller than 10 um are nearly
uniformly distributed through this depth, while the larger particles exhibit much higher
concentrations closer to the surface. Terminal settling velocities dominate most situations for
>10 um particles in the absence of violent winds.

3.2.5 Moisture Content

Water adhering to soil particles increases their mass and surface tension forces,
thereby decreasing suspension and transport. Cohesion of wetted particles often persists after
the water has evaporated due to the formation of aggregates and surface crusts. Soil moisture
content is determined from representative samples swept or vacuumed from the potentially
emitting surface and stored in an airtight container. A portion of the sample is weighed
before and after 24-hour heating at ~110 °F in a laboratory drying oven, with the difference
being equal to the evaporated water (Weems, 1991; Ley, 1994). Low temperatures are used
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to minimize volatilization of materials other than water that might affect the weight change.
Appendix C-2 of AP-42 (U.S. EPA, 1999) provides detailed procedures.

Rosbury and Zimmer (1983) found that moisture content affects the ejection of
particles by vehicles, as well as the strength of the road bed and hence its ability to deform
under vehicle weight. The addition of water to create surface moisture contents exceeding
2% resulted in >80% reductions for PM;( emissions compared to a control surface with an
average moisture content of 0.56% (Flocchini et al., 1994). Road surface-moisture content
enhances the strength of surface crusts and the stability of aggregates (Bradford and
Grosman, 1982; Lehrsch and Jolley, 1992).

Kinsey and Cowherd (1992) show how watering reduces emissions at a construction
site.  Significant dust control benefits are derived initially by doubling the area that is
watered; however, benefits are reduced as more water is applied to the site. Ultimately,
control efficiency is limited because grading operations are continually exposing dry earth
and burying the moistened topsoil.

Excessive moisture causes dust to adhere to vehicle surfaces so that it can be carried
out of unpaved roads, parking lots, and staging areas. Carryout also occurs when trucks exit
heavily watered construction sites (Englehart and Kinsey, 1983). This dust is deposited on
paved (or unpaved) roadway surfaces as it dries, where it is available for suspension far from
its point of origin. Fugitive dust emissions from paved roads are often higher after
rainstorms in areas where unpaved accesses are abundant, even though the rain may have
flushed existing dust from the paved streets.

The same amount of moisture affects different dust surfaces in different ways.
Moisture capacities of different geological materials are documented in soil surveys. Soil
surveys include several indicators of the ability of soils to absorb moisture, with the most
common being the “plastic limit” and “liquid limit”. The plastic limit is the moisture content
at the threshold between the plastic and semi-solid states of a clayey soil. It is determined by
repeatedly rolling an ellipsoidal pellet of soil on a ground glass plate until a slender thread of
soil forms and then crumbles. The liquid limit is the moisture content at the threshold
between the plastic and semi-liquid states of a clayey soil. It is determined using a standard
cup of soil, grooving tool, and tapping device to determine the moisture content when a
groove carved in the soil closes (Das, 1998). Soil surveys also report the infiltration rate (the
movement of water through soil layers) and field moisture capacity.

The actual moisture content at a given time or place is not recorded and must be
estimated. Thornthwaite (1931) proposed the ratio of precipitation to evaporation as an
indicator of the availability of moisture for soils. Thornthwaite’s major concern was the
agricultural potential of land in different areas. The precipitation-evaporation effectiveness
index (P-E index) is ten times the sum of the monthly precipitation to evaporation ratios.
Thornthwaite (1931) classified North American regions as wet (P-E index > 128), humid (64
< P-E index < 128), sub-humid (32 < P-E index < 64), semi-arid (16 < P-E index < 32), or
arid (P-E index < 16). Much of the western U.S. is in the arid and semi-arid categories. The
P-E index has been used to estimate the moisture content of different soils with emission
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factors for different surface types. Cowherd et al. (1988) provide a map of average
evaporation rates for the 1946-1955.

Precipitation events and the P-E index are crude methods of estimating soil moisture,
which is likely to be affected by snow, fogs, and high humidity, and to decrease over several
days following heavy precipitation. The moisture content of soils varies throughout the year
depending on the frequency and intensity of precipitation events, irrigation, and relative
humidity and temperature of the surrounding air. Large amounts of rain falling during one
month of a year will not be as effective in stabilizing dust as the same amount of rain
interspersed at intervals throughout the year. Vehicle traffic enhances moisture evaporation
by increasing air movement among the surface particles and exposing dry soil below the
moist surface. Trees and other natural or manmade formations that evapo-transpire or cast
shadows can also enhance or retain soil moisture content. A more realistic model might use
hourly rainfall, snowfall, relative humidity, and traffic volumes with monthly average Class
A Pan evaporation rates to estimate soil moisture content.

3.2.6 Vehicular Movement

The most common urban dust-suspending activity is vehicular movement on paved
roads, unpaved roads, parking lots, and construction sites. Vehicle shape, speed, weight,
number of wheels as well as previous history (e.g., dust acquisition for trackout) interact with
different road surfaces to change the particle size, surface loading, wind effects, and surface
moisture. Vehicular traffic adds to particle suspension because tire contact creates a shearing
force with the road that lifts particles into the air (Nicholson et al., 1989). Moving vehicles
also create turbulent wakes that act much like natural winds to raise particles (Moosmiiller et
al., 1998). Natural crusts are often disturbed by vehicular movement, increasing the reservoir
available for wind erosion.

Dust on paved roads must be continually replenished; minimizing the deposition of
fresh dust onto these surfaces is a viable method for reducing their PM emissions. Dust
loadings on a paved road surface build up by being tracked out from unpaved areas such as
construction sites, unpaved roads, parking lots, and shoulders; by spills from trucks carrying
dirt and other particulate materials; by transport of dirt collected on vehicle undercarriages;
by wear of vehicle components such as tires, brakes, clutches, and exhaust system
components; by wear of the pavement surface; by deposition of suspended particles from
many emission sources; and by water and wind erosion from adjacent areas (Chow and
Watson, 1992; Chow et al., 1990).

The relative contribution from each of these sources is unknown. Axetell and Zell
(1977) estimated typical deposition rates of 67.8 kg/km over a 24-hour period for particles of
all sizes from the following sources: 1) 42% from mud and dirt carryout; 2) 17% from litter;
3) 8% from biological debris; 4) 8% from ice control compounds (in areas with cold
winters); 5) 8% from erosion of shoulders and adjacent areas; 6) 7% from motor vehicles;
7) 4% from atmospheric dustfall; 8) 4% from pavement wear; and 9) less than 1% from
spills. Axetell and Zell (1977) cite these fractions without describing the methodology used
to estimate them.
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Unpaved roads and other unpaved areas with vehicular activity are unlimited
reservoirs when vehicles are moving. When regularly traveled, these surfaces are always
being disturbed and wind erosion seldom has an opportunity to decrease surface loadings or
increase the surface roughness sufficiently to attenuate particle suspension. The grinding of
particles by tires against the road surface shifts the size distribution toward smaller particles,
especially those in the PM; fraction. Pinnick et al. (1985) found the distribution of particle
sizes within a vehicle-created dust plume to be bimodal, with one mode peaking at ~50 pum
another mode peaking at ~2.5 um. Patterson and Gillette (1977) reported a similar
distribution for naturally generated windblown dust plumes, with fewer large particles in the
natural plume than in the vehicle-generated plume. The bimodal distribution was attributed
to grinding processes caused by tires for the vehicle dust (Pinnick et al., 1985) and to a
sandblasting process for wind-generated dust (Patterson and Gillette, 1977). Nicholson et al.
(1989) show particle size and emission rate increasing with vehicle velocity, consistent with
higher energy transfer through surface contact and turbulent wakes at higher speeds.

Dyck and Stukel (1976) hypothesized that vehicle weight and road type influence
dust emissions. Mollinger et al. (1993) found the shape of vehicles to have a large impact on
the amount of dust suspension; a cylinder, an elliptical solid, and a rectangular solid were
mounted on a pendulum that swung back and forth over dust-covered test areas. After
twenty passes by the cylinder and elliptical solid, 65% and 45% of the dust remained in the
test area, respectively. After twenty passes by the rectangular solid traveling at the same
velocity, less than 20% of the dust remained. Moosmiiller et al. (1998) found that only high
profile vehicles, such as semi tractor trailers, produced sufficient turbulence to suspend dust
along an unpaved shoulder next to a paved road. Normal passenger vehicles and pickup
trucks produced negligible shoulder emissions when traveling at speeds of 80 to 96 km/h.

Figure 3-2 shows the effect of several variables, especially surface loading, on
emissions from a paved roadway measured by the particle scattering methods of Kuhns and
Etymezian (1999). PMj, (light scattering equivalent) measured behind a vehicle tire on a
clean-looking roadway was 10 to 100 times the PMj in the surrounding air. PM;, measured
behind the tire increased by another order of magnitude when the vehicle passed over a
visible deposit from construction site trackout. Figure 3-2 demonstrates the variability of
road emissions over short distances. It also suggests a method to evaluate roadway emissions
potential that would couple high time response PM;, measurements with Geographic
Positioning System (GPS) tracking. These continuous measurements may be more closely
related to actual emissions than sporadic silt content and surface loading samples.

3.2.7 Industrial Processes and Construction

In addition to paved and unpaved roads and disturbed areas, many industrial and
construction sites that use mineral products have storage pile, material conveyance and
loading, digging, dozing, grading, scraping, and blasting activities. These activities create
dust reservoirs, mechanically inject dust into the atmosphere, and present targets for wind
erosion. Most of these operations are affected by the same variables described above, but the
frequency, spatial extent, and magnitudes differ from those of urban and non-urban dust
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Figure 3-2. PM,, equivalent concentrations on a paved road in Las Vegas, NV on the front
hood (~1 m above ground level [agl]) and behind the right front tire (~0.25 m agl) of a
vehicle moving at 10 mph. Concentrations behind the tire increased considerably with travel
over a surface with visible trackout from a construction site.  One-second PM;g
concentrations are estimated using a DUSTRAK® photometer calibrated with Arizona road
dust.
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sources. Since most industrial operations are confined to private property, the combined
PM,y and PM, 5 emissions that travel beyond the property limits are of greatest concern to
NAAQS attainment. Visible clouds and deposition of large particles (>30 pm) on
neighboring communities are often nuisances that need to be addressed.

Most modern industrial sites have designed the placement of their operations to
minimize both emissions and transport of dust outside of property boundaries. Large
blending domes, for example, are used in the cement industry to contain dust and to obtain a
more homogeneous composition of the feed material to the kiln, thereby making better use of
raw materials and minimizing upsets. Underground transport systems and covered conveyers
are commonly used to minimize product loss. A fortunate by-product of these technological
advances is to reduce fugitive dust from materials handling and plant upsets while increasing
product volume and quality.




3.3 Dust Control Measures

The fractional reduction owing to fugitive dust controls (Pj in Equation 3-1) is
variable and uncertain. Dust controls are applied with various degrees of effectiveness and
diligence, often in response to local nuisance complaints rather than as part of a
comprehensive emission reduction strategy. Mitigation methods include some combination
of reducing suspendable dust, preventing its deposit, stabilizing it, enclosing it, and reducing
the activities that suspend it. Table 3-1 identifies several control methods and the sources to
which they apply.

Emission reduction plans usually assume that some sources or facilities will not be
fully in compliance with regulations. For industrial sources, permits are issued, the processes
and emissions are fairly well known, and enforcement by regulatory agencies is ongoing.
For fugitive dust, however, controls and their enforcement differ substantially from region to
region. Reasons for differences include: 1) variable air quality permitting processes for
construction projects, unpaved roads, disturbed soil surfaces, etc.; 2) the temporary nature of
activities such as construction projects; 3) the large number of small construction projects
that can be active at a given time; 4) the intermittent nature of control actions, such as
watering or use of chemical stabilizers, as opposed to continuously operating controls, such
as baghouses or scrubbers; and 5) the ever changing number of contractors, material haulers,
and others, many from out-of-area or out-of-state, who lack knowledge of local fugitive dust
control regulations.

The success of fugitive dust control programs depends on outreach and education
programs for contractors and public works agencies as well as continuing enforcement of air
quality rules. Penalties must be sufficient to motivate offenders to obey the law, and not just
a “cost of doing business.”

3.3.1 Surface Watering

Surface watering is often applied on disturbed land at construction sites and other
unpaved surfaces to reduce particle suspension by vehicles. Flocchini et al. (1994) found that
the addition of sufficient water to increase the surface moisture content from 0.56% to 2%
can achieve greater than 86% reduction in PMjy emissions. Kinsey and Cowherd (1992)
found immediate dust reductions at construction sites as a result of surface watering;
however, the effectiveness of this measure did not increase as more water was applied to the
site. Excessive moisture content on unpaved roads can have negative effects, such as: 1)
reducing the strength of the road bed; 2) enhancing road bed deformation under vehicle
loading; and 3) increasing the potential for brittle failure that produces small particles to be
further crushed by tires (Rosbury and Zimmer, 1983).

Excessive moisture at construction sites can increase track-out and carry-out onto
paved roads when wet dust adheres to haul trucks. Track-out refers to the sediment that is
attached to vehicle tires and subsequently transferred to the road surface. Carry-out is the
sediment attached to the vehicle that may eventually fall off and become resuspended by
other vehicles (Axetell and Zell, 1977; Brookman, 1983). Washing vehicles as they depart
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Table 3-1. Urban fugitive dust emission control methods.

Control Sources

Method Controlled Description

Street Paved roads Sweepers use mechanical brushes, vacuum suction,

sweeping regenerative air suction, or blow-air/suction recirculation
to remove street debris, litter, and dirt.

Water flushing | Paved roads Pressurized water sprays or water with surfactants added
dislodge road dust and transport it to a drain system.

Resurfacing Paved roads Repaving with non-erodible materials minimizes
pavement cracks that trap and accumulate dust and
reduces pavement abrasion.

Wet Unpaved roads, | Water applied to loose soils agglomerates small dust

suppression construction particles into larger entities that adhere to the surface,
resist suspension, or deposit rapidly after suspension.

Windscreens | Unpaved roads, |Fabric or wooden barriers, trees, or shrubbery are placed

and greenbelts

disturbed land,
construction

upwind to reduce surface wind speeds or downwind to
allow for horizontal impaction of suspended particles.

Traffic controls

Paved roads,
unpaved roads

Lower vehicle speeds, limited road usage, restriction of
heavy-duty vehicle traffic, and provision of parking and
public transit opportunities reduces activity on roads that
produce dust.

Carryout and | Construction Wheel and truck washing on leaving a dusty site limits
trackout distribution of suspendable particles onto paved roads.
reduction A paved or stabilized area with a wheel vibrator that is
constantly swept prior to exiting a job site allows
residual material to fall off of vehicles.
Enclosures Storage piles, Covering piles with tarps or building structures around
open haul trucks |them limits wind erosion.
Chemical Unpaved roads, | Chemical agents bind particles into larger aggregates
stabilization construction sites, | that reduce the reservoir of suspendable particles.
storage piles
Vegetative Inactive Ground cover and shrubbery reduces wind velocity at
stabilization construction sites, | the surface and binds surface soil particles.
unpaved
shoulders
Foggers Construction Small water droplets, sometimes electrically charged,

vehicles, material
transfer, storage
piles

agglomerate suspended particles, thereby increasing
particle size and deposition velocity.
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from work areas can minimize dust track-out and carry-out. Axetell and Zell (1977) found
that TSP concentrations (~84 pg/m’) increased by 40 to 60 pg/m’ due to uncontrolled mud
track-out. Immediate cleanup with shovel and broom reduced TSP by 10 to 20 pg/m’, and daily
cleanup reduced TSP by about 5 to 10 pg/m’. These values correspond to control efficiencies of
about 30% for immediate cleanup and 15% for daily cleanup. Besides wheel washing, other
cleaning procedures include street sweeping, manual broom and shovel cleanup, and water
flushing to remove mud and dirt from paved surfaces after it has been tracked out. .

3.3.2 Chemical Suppression

The application of chemical suppressants on unpaved surfaces can reduce fugitive
dust emissions (Cuscino et al., 1983a; Drehmel et al., 1982; Gillies et al., 1999). Watson et
al. (1996b) enumerate commercially available dust suppressants. These products are
classified into seven categories according to their chemical composition and the suppressant
mechanism they employ:

e Salts: Hygroscopic compounds such as magnesium chloride or calcium chloride.
They adsorb water as ambient relative humidity exceeds 50%. Water improves
the adherence of the soil particles to each other, thereby reducing dust emissions.
Since salts are water soluble, precipitation tends to wash them away.

e Resin or petroleum emulsions: Non-water-soluble organic carbon compounds
suspended in water. When these emulsions are sprayed onto soil, they stick the
soil particles together, and eventually harden to form a solid mass. Several
emulsion products are based on tree resin, petroleum, or asphalt compounds.

e Polymers: Long-chain molecular compounds that act as adhesives to bond soil
particles together. In theory, polymers may be able to stick to more particles than
ordinary resins, or they may bridge larger particle-to-particle gaps.

e Surfactants: Chemicals that reduce water surface tension and allow available
moisture to more effectively wet the particles and aggregates in the surface layer.

e Bitumens: Materials such as asphalt or road oil that act as adhesives to bond soil
particles together.

o Adhesives: Paper mill byproducts, such as lignin sulfonate (a syrupy wood
product), which form a sticky but water-soluble layer on unpaved surfaces.

e Solid Materials: Petroleum industry byproducts made by mixing recycled
materials with soil.

Most suppressants require repeated application at frequencies on the order of weeks
or months. The effectiveness of chemical suppressants depends on road surface conditions,
soil composition, application intensity, traffic volume, vehicle weight, and environmental
factors such as precipitation and temperature. Prior to suppressant application, the road
surface often needs to be graded or wetted. Most products can be dispensed as liquids by a
truck equipped with a tank and spray bar. The spraying process injects the suppressant into
the road material. Solid materials can be spread and mixed into the soil or road bed with a
grader.
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Several studies have examined the effectiveness of different chemical suppressants on
various types of unpaved roads (e.g., Cuscino et al., 1983a). The control effectiveness is
used as a measure of suppressant effectiveness between untreated and treated surfaces.
Rosbury and Zimmer (1983) found considerable variability in dust emission rates for
untreated and chemical-suppressant-treated surfaces. Much of this variation was attributed to
the effects of ambient meteorological conditions (especially precipitation), the types of
vehicles traveling on the road, and the initial road conditions. Control effectiveness varied
from 7% to 54% for well-mixed suppressant applications, and from insignificant to 80% for
topical suppressant applications. To achieve 50% control effectiveness, monthly surface
watering was needed.

Muleski and Cowherd (1987) evaluated the effectiveness of chemical suppressants on
unpaved roads used by the iron and steel industry. Particles in three size fractions (<15 um,
<10 um, and <2.5 um) were acquired at heights up to 6 m above the surface to assess the
suppressant efficiencies. Characteristics of unpaved road surfaces (such as percent silt and
moisture content and the amount of loose surface material) were measured. Muleski and
Cowherd (1987) report unpaved road emission rates similar to those found by Rosbury and
Zimmer (1983). Average control effectiveness of ~50% or more was found within the first
30 days of suppressant application; suppressant effectiveness was negligible 30 days after
suppressant application.

Grau (1993) tested suppressant-treated soil specimens under controlled laboratory
conditions. Wind erosion (one-minute blasts from 80 km/h and 160 km/h air jets at 20° from
the horizontal), rainfall, and jet fuel spills were simulated. Forty-nine suppressants were
evaluated by visual observations of entrainment or lack thereof. Of these, eleven
suppressants were deemed to be effective in laboratory simulations.

Flocchini et al. (1994) estimated PM,, fugitive dust emissions from non-urban
unpaved roads and evaluated the effectiveness of chemical suppressants in California’s San
Joaquin Valley. The effectiveness of surface watering, gravel cover, lignin sulfonate,
magnesium chloride, oiling, and nonhazardous crude oil were assessed by measuring PM;,
and size-segregated particle mass concentrations at upwind and downwind locations.
Vertical concentration gradients for particles above and below PM,; s were acquired (Cahill et
al., 1990). Mass concentrations at 10 m downwind and 3.3 m in height were adjusted for
background concentrations to assess the effect of vehicles traveling on the unpaved roads.
Surface characteristics, soil type, surface loading per unit area, moisture content, and silt
content (< 75 um particle diameter) were measured. Surface samples were resuspended in
the laboratory to determine their relative potentials for PMj, emissions. Surface watering
and road oiling reduced PM;( emissions by 87 + 6% and 59 + 12%, respectively. Reducing
vehicle travel speeds on unpaved roads from 40 km/h to 16 and 24 km/h reduced PM;g
emissions by 58 = 3% and 42 + 35%, respectively.

Gillies et al. (1999) and Watson et al. (1996b) describe a year-long study to assess
changes in suppressant effectiveness in reducing PM;, emissions from unpaved public roads
in California’s San Joaquin Valley. Three different types of chemical suppressants were
applied on the unpaved roads: an acrylic co-polymer, a bitumen with co-polymer additive,
and a “bio-catalyst”. Vehicle-induced vertical PMj, concentration profiles were measured.
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Gillies et al. (1999) found that within a week of application the bitumen and acrylic co-
polymer showed over 95% emission reduction as compared to the untreated surface. The
“bio-catalyst” had an effectiveness of only 39%. After three months, the efficiency of the
bitumen and bio-catalyst had decreased by 20% and 30%, respectively, while the efficiency
of the acrylic co-polymer remained constant. After eleven months, the control effectiveness
had been reduced to 53% for the bitumen, 85% for the acrylic co-polymer and 0% for the
“bio-catalyst.”

3.3.3 Street Cleaning

Mechanical broom and vacuum street sweeping are applied in urban areas to remove
street debris, litter, and dirt rather than to control air pollution. Water droplets are often
sprayed onto the road surface prior to sweeping to minimize dust resuspension induced by
the sweeper. Sweeping schedules vary from weekly to monthly. Sweeping for aesthetic
purposes is confined to the curb lanes in commercial and/or residential areas. Major
highways and freeways are rarely swept.

Mechanical broom sweepers use large rotating brooms to lift the material from the
street onto a conveyer belt. The conveyer discharges street debris into a collection hopper.
Circular gutter brooms direct the debris into the path of the rotating broom. Mechanical
broom sweeping has been discounted as a means of air pollution control on paved urban
streets (Axetell and Zell, 1977; Gatz et al., 1983). Chow et al. (1990) found that the brushes
resuspend as many small particles as they remove.

Vacuum sweepers use pure vacuum suction, regenerative-air suction, or blow-
air/suction recirculation (Calvert et al., 1984; Duncan et al., 1985; Cowherd and Kinsey,
1986; Cowherd et al., 1988). A gutter broom loosens dirt and debris from the road surface
and directs this material to a vacuum nozzle that sucks it into a hopper. The hopper usually
consists of a chamber into which particles are collected by gravitational settling. The air
passing through this chamber can be exhausted directly to the environment, through a bag-
filter or precipitator, or to the collection nozzle for recirculation.

Pure vacuum sweepers create a strong vacuum within the pickup head that draws air
from outside the head, through a duct, and into a hopper. The air movement across the road
surface removes particles from the pavement and entrains them in the air flow. The
vacuumed air is exhausted to ambient air after a brief residence time in the hopper. This
residence time is usually insufficient to allow gravitational settling of particles in the PM;,
size fraction.

Regenerative-air vacuum sweepers direct the exhaust air back to one end of the
pickup head at velocities between 50 and 200 m/s. This blast air is directed perpendicular to
the pavement where it is intended to dislodge dirt particles. The blast air and its entrained
particles move across the pickup head to a suction nozzle that transports the debris to the
collection hopper. The pickup head must seal with the pavement using a flexible rubber
curtain to prevent blast air from escaping the collection nozzle and to maintain a negative air
pressure within the nozzle.
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The blow-air/suction recirculation sweeper directs a portion of the exhaust air to a
blast nozzle located immediately behind the pickup head. This blast air is directed at an
angle to the pavement to blow particles from the road surface into the airstream caused by
suction through the head. The suction flow rate exceeds the blast flow rate so that ambient
air is always being drawn into the pickup head, thereby minimizing the escape of recirculated
particles to the air. The nonrecirculated portion of the exhaust air is vented into a separated
settling chamber before it escapes to ambient air.

Water flushing uses pressurized sprays from a water truck to dislodge road dust and
transport it to the curb, where much of the particulate is washed into the drain system. A
combination of water flushing followed immediately by broom sweeping has been widely
used as a means of street cleaning.

Water flushing generally results in more consistent and higher dust reduction than
sweeping, with 30% to 80% control effectiveness determined by source measurements, and 0

to 18 pg/m’ reductions in TSP determined by receptor measurements (Axetell and Zell,
1977; Cowherd, 1982; Cuscino et al., 1983b).

Flushing can be expected to reduce particle resuspension dramatically while the road
surface is still wet, but its effect on average emissions during a typical cleaning cycle cannot
be ascertained from the data reported. Results of the receptor-oriented studies are mixed and
are based on TSP measurements. Flushing is generally considered to be more effective for
reducing particle loadings on the street surface than broom or vacuum sweeping. There are
few data to support this, and the results of studies based on TSP measurements are not
directly applicable to PMj.

The combination of water flushing and broom sweeping has the highest reported
control effectiveness, from 47% to 90% for PM;s particles and 48% to 83% for PM;s
particles (Cowherd, 1982; Cuscino et al., 1983a, 1983b). However, the time frame of these
measurements is either not specified or very short — less than three hours, when the road
surface may still be wet. Effectiveness tests were made on industrial paved roads;
applicability to public roads has not been demonstrated.

Seton, Johnson, and Odell, Inc. (1983) describe a six-month street-sweeping study
conducted in Portland, OR, in 1981. Geological source contributions to chemically speciated
TSP, PM;s, and PM; 5 concentrations at a nearby sampling site were compared for sweeping
and nonsweeping periods. No reductions in geological source contributions were detected
with daily vacuum sweeping of the curb lane on industrial-area streets.

Hewitt (1981) reports a four-year study in Bangor, ME, where TSP averages during
two years without regular sweeping periods were compared with averages over the following
two years with a sweeping program in place. Nearly 800 TSP measurements were obtained
and a 20% reduction in average TSP during the final study years was attributed to vacuum
street cleaning.

PEDCo Environmental (1981) measured TSP, PM;s, and PM, s concentrations near
paved roads that had been sanded during wintertime snow storms in Denver, CO. One site
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had the sand removed by sweeping while the other site had no sand removal. Though slight
decreases in TSP and PM, s were observed near the site where sand was removed, the
difference was not statistically significant.

Cuscino et al. (1983b) made size-resolved vertical profile measurements near paved
roads before and after sweeping. For PM;s mass concentrations, emission reductions of 16%
were estimated at two hours after sweeping, 51% at three hours after sweeping, 0% at four
hours after sweeping, and 58% at 24 hours after sweeping. Cuscino et al. (1983b) note that
meteorological variability may have been responsible for these differences. In earlier studies,
Cowherd (1982) reported efficiencies of about 45% for PM;s and 35% for PM,s when
vacuum sweeping was used. Both of these vacuum-sweeping studies were performed on
industrial paved roads where initial street loadings and material tracked on is typically much
higher than on public streets.

Chow et al. (1990) applied a receptor model to determine the contributions from PMj
dust and from primary motor vehicle exhaust near a roadway. The ratio of these two
contributions is less sensitive to meteorological and emission rate differences between
sweeping and nonsweeping study periods than the absolute source contributions from either
source. Chow et al. (1990) found that daily street sweeping with a regenerative-air vacuum
sweeper resulted in no detectable reductions in geological contributions to ambient PM;
measured in the sweeping area and that the street-sweeper design used in this study cannot
possibly reduce PMy on pavements.

Fitz and Bumiller (2000) evaluated the PM produced by different sweepers as well
as their effectiveness in removing sandy material from a paved surface in a circus tent.
Although more than 97% of the sand was removed from the roadway surface, the sweepers
themselves generated from 7.5 to 160 mg/km of PM;, during the sweeping process. A
modification of this test procedures was adopted by the South Coast Air Quality
Management District (1999a, 1999b) as a fugitive dust emissions reduction rule.

While recently improved sweepers seem to effectively deplete the reservoir of
material from which PM; particles can be generated, none of these studies conclusively
demonstrates the effectiveness of street sweeping on ambient concentrations of suspended
PM, after sweeping is completed. Chow et al. (1990) and Fitz and Bumiller (2000) indicate
that the sweepers themselves generate substantial fugitive dust PMj, emissions. Suspended
particle concentrations are affected by many variables and differences caused by street
sweeping may not be detectable at nearby monitoring sites. The variables that appear to
influence emission reduction efficiencies are: 1) loading of dirt on the street before and after
sweeping; 2) particle size distribution of dirt on the street; 3) sweeper efficiency in removing
dust from the street surface; 4) sweeper exhaust emission rates for small particles; 5) portion
of roadway which is swept; 6) length of roadway that is swept; 7) sweeping frequency; and
8) meteorological variables such as precipitation, wind speed, wind direction, and relative
humidity. The largest unknown variable for paved roads are the times and locations where
the reservoir of suspendable dust is replenished. The previous studies offer little guidance on
the quantitative effects of changes in these variables on geological contributions to PM; or
PM, 5 concentrations measured near paved roads.
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3.3.4 Surface Roughness Alterations

Fugitive dust emissions introduced by wind erosion can be mitigated by: 1) altering
the surface (such as increasing its roughness with tillage implements and practices),
2) providing sufficient vegetative stubble or mulch coverage, or 3) using windbreaks.
Applying tillage implements to ridge the soil or create large nonerodible clods is a standard
practice in wind erosion control where the establishment of vegetative coverage is difficult.
This method results in large nonerodible roughness elements that absorb momentum from the
erodible soil and trap the erodible soil in larger cracks and crevices.

No-till and minimum-till planting procedures have been developed to minimize
topsoil erosion, conserve water, and reduce dust emissions (Rice, 1983). During farming
practice, new seeds are planted into stubble from the last crop or into a cropped field by
cutting through the surface vegetation and inserting the seed directly into the ground. This
type of low- or no-till farming operation reduces wind-generated fugitive emissions because
vegetative cover (e.g., standing stubble or mulch) is left on the soil surface. Vegetation
protects the soil by absorbing the energy of the surface wind, reducing the wind velocity, and
sheltering the resuspendable particles. The fraction of vegetative cover, its shape, and
density of coverage determine the effectiveness of wind-blown dust controls (Leys, 1991).
Annual crops can be interplanted in narrow strips or rows to minimize ground-level soil
movement. Interplanting is often supplemented with other practices such as protecting the
strips with other vegetative coverage to more efficiently reduce dust emissions.

Windbreaks or other surface barriers absorb or deflect wind energy and minimize soil
movement or particle resuspension from unprotected surfaces. The length of a windbreak
needs to be six to ten times its height to effectively mitigate dust emissions. In general, the
shape, width, height, and porosity of the barrier, along with the surface wind speed and wind
direction, affect the efficiency of the windbreak.

3.3.5 Minimization of Activity

Fugitive emissions can be reduced by minimizing the activities that generate them.
Vehicle-related dust can be reduced by regulating vehicle travel speeds, prohibiting road use
by vehicles with more than four wheels, and reducing vehicle volume by providing perimeter
parking and mass transit to industrial sites. Traffic controls are often supplemented with
other control measures, such as surface watering and wheel washing, to minimize dust
emissions induced by anthropogenic activities.

34 Emission Estimates

The effects of different selections for each of the variables in Equation 3-1 and the
different levels of spatial and temporal distributions become apparent when fugitive dust
emissions from the National Trends Inventory of Table 2-1 are compared with a state-
generated inventory that has more specific information available to it.
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Table 3-2 compares recent countywide inventories compiled by the California Air
Resources Board (ARB) with those determined from the National Trends PM; s inventory
(U.S. EPA, 1998a) for unpaved road, paved road, and construction emissions. The national
inventory makes assumptions for emission factors and uses activity databases that are
common to all states and localities. This assures that there is a consistency among all
emission estimates and that biases between emissions from different states are minimal.
National emission estimates are usually made for an entire state and are apportioned to
counties in proportion to a reasonable surrogate (e.g., population, area, miles of road).

State and local inventories such as those from California may use different sources of
activity data, different emission factors, and in some cases wholly different emission
estimation methodologies than were used in the preparation of the national emissions
inventory.

Most local emissions inventories begin with the default values in EPA’s AP-42 (U.S.
EPA, 1999). These are improved by substituting local activity data and, when available,
locally derived emission factors which reflect specific local conditions. For unpaved road,
paved road, and construction emissions, Table 3-2 shows that ARB’s fugitive dust emission
estimates are 59% of EPA’s estimates. This large difference is within the expected
uncertainty of most of the emission estimates. Ratios of ARB to EPA emission rates by
county range from 7% for San Francisco County to 2,800% for Inyo County. Explanations
for these discrepancies offer insight into reasons why the proportions of fugitive dust
emissions in inventories do not compare well with geological source contributions to ambient
PMjy and PM; 5 samples.

The national inventory uses a construction emission factor that is about ten times
higher than the emission factor used in the California inventory. The California emission
factor was developed from recent field analysis of construction sites in the western United
States (Midwest Research Institute, 1996). For paved roads, the national inventory assumes
79% control in nonattainment areas due to street sweeping and incorporates a moisture factor
that also reduces emissions. ARB does not reduce emissions due to street sweeping and does
not include a moisture reduction. However, the EPA inventory emission factors are two to
five times higher than the California emission factors that use silt loadings specific to
California roads. Vehicle miles traveled on paved and unpaved roads are also determined
from different activity data sets. Details about these differences are discussed below.

Knowledge about the counties included in Table 3-2 and the urban areas in those
counties that are monitored for PM;, and PM,s provides additional insight into the
discrepancies. Fresno and San Francisco counties both contain large urban areas of about the
same spatial extent (the cities of Fresno and San Francisco). While the city of San Francisco
completely occupies San Francisco County, the city of Fresno occupies only a few percent of
the land area in Fresno County that extends from the coastal mountains, through the San
Joaquin Valley, and to the crest of the Sierra Nevadas. According to Table 3-2, the ARB and
EPA inventories correctly assign no unpaved road emissions to highly urbanized San
Francisco County. Fresno County contains numerous miles of agricultural and back-country
unpaved roads for which the traffic volumes are uncertain. The effect on emissions of
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Table 3-2. Comparison of California Air Resources Board (ARB) and U.S. EPA PM, 5 1995
emissions by county.

PM, s Emissions (tons per year) ARB/
Unpaved Road Paved Road Construction Total EPA

County ARB EPA ARB EPA ARB EPA ARB EPA (%)
ALAMEDA 51 38 720 2152 261 5894 1032 8084 13
ALPINE 102 8 5 7 3 0 110 15 733
AMADOR 235 155 30 126 14 22 279 303 92
BUTTE 701 213 169 308 81 383 951 904 105
CALAVERAS 393 218 31 177 23 79 447 474 94
COLUSA 574 88 49 72 3 1 626 161 389
CONTRA COSTA 94 111 512 1393 301 3921 907 5425 17
DEL NORTE 268 118 22 96 25 11 315 225 140
EL DORADO 527 546 198 449 80 383 805 1378 58
FRESNO 2801 357 838 338 303 1484 3942 2179 181
GLENN 428 106 38 88 4 8 470 202 233
HUMBOLDT 794 344 122 288 35 205 951 837 114
IMPERIAL 1712 173 198 164 114 80 2024 417 485
INYO 1418 29 46 17 3 6 1467 52 2821
KERN 2119 278 604 236 302 910 3025 1424 212
KINGS 599 98 111 57 49 30 759 185 410
LAKE 438 244 49 200 30 49 517 493 105
LASSEN 1290 157 58 128 6 8 1354 293 462
LOS ANGELES 946 243 5838 2716 1135 | 15865 7919 | 18824 42
MADERA 575 124 160 72 40 91 775 287 270
MARIN 81 111 151 90 30 17 262 218 120
MARIPOSA 425 121 25 455 5 921 455 1497 30
MENDOCINO 878 423 109 346 65 134 1052 903 117
MERCED 1039 340 289 387 89 203 1417 930 152
MODOC 1068 50 23 41 2 2 1093 93 1175
MONO 1507 37 33 34 4 34 1544 105 1470
MONTEREY 599 468 308 780 97 611 1004 1859 54
NAPA 58 146 70 245 29 385 157 776 20
NEVADA 519 413 98 338 109 212 726 963 75
ORANGE 38 12 1925 715 337 8099 2300 8826 26
PLACER 382 454 265 520 199 858 846 1832 46
PLUMAS 857 119 33 97 20 4 910 220 414
RIVERSIDE 1009 504 1982 591 362 2879 3353 3974 84
SACRAMENTO 633 229 741 539 499 2805 1873 3573 52
SAN BENITO 428 135 39 112 26 71 493 318 155
SAN BERNARDINO | 2363 318 1881 615 842 2775 5086 3708 137
SAN DIEGO 1246 930 1764 4881 1850 9577 4860 15388 32
SAN FRANCISCO 0 0 236 1205 52 3174 288 4379 7
SAN JOAQUIN 903 213 504 216 173 960 1580 1389 114
SAN LUIS OBISPO 707 329 236 359 247 594 1190 1282 93
SAN MATEO 116 55 359 1114 172 3040 647 4209 15
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Table 3-2. (continued)

PM, 5 Emissions (tons per year) ARB/
Unpaved Road Paved Road Construction Total EPA

County ARB EPA ARB EPA ARB EPA ARB EPA (%)
SANTA BARBARA 244 183 248 641 217 1173 709 1997 36
SANTA CLARA 692 242 821 2810 311 6609 1824 9661 19
SANTA CRUZ 342 208 148 494 129 539 619 1241 50
SHASTA 1040 441 146 622 66 529 1252 1592 79
SIERRA 683 26 12 21 2 0 697 47 1483
SISKIYOU 968 232 99 190 15 22 1082 444 244
SOLANO 344 144 244 688 131 1362 719 2194 33
SONOMA 1098 830 224 1067 107 1778 1429 3675 39
STANISLAUS 440 165 382 158 306 825 1128 1148 98
SUTTER 394 119 66 183 24 126 484 428 113
TEHEMA 588 243 72 199 13 40 673 482 140
TRINITY 86 55 18 45 68 0 172 100 172
TULARE 1157 309 482 204 134 372 1773 885 200
TUOLUMNE 298 274 55 224 33 129 386 627 62
VENTURA 222 241 495 1289 242 1865 959 3395 28
YOLO 483 118 129 258 447 500 1059 876 121
YUBA 260 125 52 173 11 34 323 332 97
Total 40,260 | 13,010 | 24,562 | 32,030 | 10,277 | 82,688 | 75,099 |127,728 59

mountain and desert roads, many of which are maintained by state and national forest or land
management services, can be seen in emissions from Lassen, Inyo, Mono, Placer, and other
mountain/desert counties. Mountain and desert roads are distant from population centers
where PM is monitored.

Paved road dust is the dominant fugitive dust emission that would affect San
Francisco and Fresno particle monitors. ARB’s estimate is only one-fifth of the EPA
estimate for San Francisco County, but more than twice EPA’s estimate for Fresno County,
Given that Fresno County includes several highly traveled freeways linking the southern and
northern parts of the state (I-5 and SR-99), while San Francisco traffic is congested and
primarily local, the ARB proportions are more reasonable than the EPA values. Paved road
dust emissions within the Fresno city limits would probably be less than 20% of the
countywide total. EPA construction estimates for San Francisco are nearly twice those for
Fresno, even though San Francisco is completely built out and the cities in Fresno County are
among the most rapidly growing urban areas in the state. The ARB estimates are more
consistent with this in magnitude and proportion between the two cities.

More detailed comparisons of the methods used by EPA and ARB, and the
differences between them, are given in the following sub-sections for different fugitive dust
source categories.
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3.4.1 Unpaved Road Dust Emissions

Emission factors used for the National Trends Inventory (U.S. EPA, 1998b) presented
in Table 2-1 is given below. These are consistent with the road dust emissions included in
the PARTS mobile source emission model (U.S. EPA, 1995):

Ructsp = 5.9 x (Silt/12) x (Speed/30) x (Weight/3)*” x (Wheels/4)"? (3-2)

where:

Ryrrsp = TSP unpaved road dust emission factor for all vehicle classes combined
(grams per mile).

Silt = silt fraction content of the surface material (% mass).
Speed = average speed of all vehicle types combined (miles per hour [mi/hr]).
Weight = average weight of all vehicle types combined (tons).

Wheels = average number of wheels per vehicle for all vehicle types combined.

The most recent AP-42 emission factor (U.S. EPA, 1999) eliminates the speed factor
and is specific to PMj, but this factor is being re-evaluated and has not yet been used to
estimate annual trends.

For 1995 national estimates, average unpaved road silt fractions were compiled for
the 1985 National Acid Precipitation Assessment Program by the Illinois State Water Survey.
The Survey measured silt from ~200 unpaved roads in thirty states. Average silt contents of
unpaved roads were calculated for each state that had three or more samples for that state.
For states that did not have three or more samples, the average for all samples from all states
was substituted.

Vehicle speeds were assumed to be 20 mi/hr for urban local, arterial, and collector
roads. For non-urban roads, speeds were 39 mi/hr for minor arterials, 34 mi/hr for major
collectors, and 30 mi/hr for minor collectors and local roads. Estimates of average vehicle
weight and average number of wheels per vehicle over the entire vehicle fleet were obtained
from the Motor Vehicle Manufacturers Association (1991), Crain Communications Inc.
(1991), and the U.S. Department of Transportation.

The control measure modifier consists of two parts. The first part assumes that no
emissions occur during rain:  Pannyalstaie=(365-PrecipDays)/365 where PrecipDays is the
number of precipitation days per year with greater than 0.01 inches of rain. Days of
precipitation for each state were obtained from the National Climatic Data Center, averaging
over several meteorological stations within each state. The second part assumes that one of
the watering or chemical stabilization procedures described above is applied in areas that
exceed PMjy standards. On urban unpaved roads in moderate PM nonattainment areas,
paving unpaved roads is assumed. This control was applied with a 96% effectiveness to 50%
of unpaved roads. On rural roads in serious PM nonattainment areas, chemical stabilization
was assumed. This control was applied with a 75% effectiveness to 50% of unpaved roads.
On urban unpaved roads in serious PM nonattainment areas, paving and chemical
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stabilization controls were assumed with an aggregate effectiveness of 90% on 75% of the
road surfaces.

Particle size modifiers for PM;y and PM; 5 are Ky, ppio= 0.36 and Ky pyvz 5=0.0525.

The activity factor (Aannualstate) database was for vehicle miles traveled (VMT) from
average daily traffic volumes and miles of unpaved roads for county and non-county (state or
federally) maintained roadways. The U.S. Department of Transportation reports state-level,
county-maintained roadway mileage estimates by surface type, traffic volume, and
population category. From these data, state-level unpaved roadway mileage estimates were
derived for the volume and population categories.

State and federally maintained unpaved road VMT were added to the county-
maintained VMT for each state and road type to determine each state’s total unpaved road
VMT by road type. The state-level unpaved road VMT by road type were then allocated by
month with temporal allocation factors from the National Acid Precipitation Assessment
Program. Monthly state-level, road type-specific VMT were multiplied by the corresponding
monthly, state-level, road type-specific emission factors. The state/road type-level unpaved
road PM emission estimates were allocated to each county in the state using estimates of
county rural and urban land area from the U.S. Census Bureau for the years 1985 through
1989. For the years 1990 through 1996, 1990 county-level rural and urban population was
used to distribute the state-level emissions instead of land area.

The ARB procedures used substantially different emission factors, activities, and
emission reductions. California-specific PMj, emission factors (Flocchini et al., 1994;
Watson et al., 1996b; Gillies et al., 1999) were used, resulting in 2.27 Ibs PM;o/VMT, lower
than the previous emission factors derived using the AP-42 methodology. California
Department of Transportation data were used to estimate the miles of unpaved road in each
county. Unpaved road mileage in agricultural areas was estimated as a fraction of crop
acreage. Agricultural road travel was estimated as 175 VMT/40-acre parcel.

No emission controls were assumed as there is little information on how much this is
used in California, and the long-term effectiveness of most suppressants has not been proven
(Watson et al., 1996b). Effects of precipitation were estimated monthly using regional
rainfall data. During wet months when unpaved roads are muddy, it was assumed that VMT
was lower along with lower emissions per VMT.

Even with greater specificity for California, the unpaved road emission estimates are
uncertain. Using a single emission factor for all unpaved roads does not adequately represent
the diversity of unpaved roads in California. In addition, estimates of VMT on unpaved
roads are uncertain. Lacking better information, ARB assumes that each mile of unpaved
road receives ten vehicle passes per day.

3.4.2 Paved Road Dust

U.S. EPA (1998) emission factor used for the National Trends Inventory presented in
Table 2-1 is given below. This is consistent with the road dust emissions included in the
PARTS mobile source emission model (U.S. EPA, 1995):
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Rorsize = Kiize * (SiltLoad/2)" % x (Weight/3)'? (3-3)

where:

Rprsize= PMio or PM, s road dust emission factor for all vehicle classes combined
(grams per mile).

Kiize= 7.3 g/mi for PM; or 1.8 g/mi for PM; s.

SiltLoad=silt loading of the surface material (g/m?).
Weight =average weight of all vehicle types combined (tons).

Note that the size fraction is incorporated into the emission factor and that the silt
loading rather than the fraction of silt is used. There is no dependence of the paved road dust
emission factor on vehicle speed or number of wheels as there is in Equation 3-2 for unpaved
road emissions.

For the national inventory, one of three paved road silt loadings is assigned to twelve
functional roadway classifications (six urban and six rural) based on the average annual
traffic volume of each functional system by state. Values of 1 g/m* were assigned to local
functional class roads. A silt loading of 0.20 g/m” was assigned to road types that had
average traffic volumes less than 5,000 vehicles/day, and a loading of 0.04 g/m’ was
assigned to road types that reported more than 5,000 vehicles/day. Average daily traffic
volumes were determined by dividing annual VMT for each state and functional class by
state-specific functional class roadway mileage.

The unpaved road dust precipitation effectiveness factor was applied to paved road
dust using the same National Climatic Data center information for 1995 and 1996 estimates.
The assumed control was vacuum sweeping of paved roads twice per month with an
effectiveness of 79%. This control was assumed for urban and rural roads in serious PM
nonattainment areas and for urban roads in moderate PM nonattainment areas. The diligence
of sweeping varied by road type and attainment classification (serious or moderate).

State/road-type-level VMT for paved roads was calculated by subtracting the
state/road-type-level unpaved road VMT from total state/road-type-level VMT. There are
cases where unpaved VMT is higher than total VMT because estimation methods differ. For
these cases, unpaved VMT was reduced to total VMT and paved road VMT was assigned a
value of zero. The paved road VMT were allocated by month using the NAPAP temporal
VMT allocation factors. These monthly/state/road type-level VMT were multiplied by the
corresponding paved road emission factors. Paved road emissions were allocated to counties
according to the fraction of total VMT in each county for the specific road type.

ARB paved road dust emissions are estimated for freeways, major streets/highways,
collector streets, and local streets. California-specific silt loadings were used with county-
specific VMT on each of the four roadway types. Emission growth for future years was
changed so that freeways and major road travel grows in proportion to increases in roadway
centerline mileage, and local and collector road travel grows in proportion to VMT increases.
Previous travel projections were based solely on VMT.
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Incorporation of all of these changes reduced California paved road dust emission
estimates by about 70% from the previous published inventory values. California specific
roadway silt loadings were the major cause of this reduction; U.S. EPA (1999) includes many
silt loading samples from other states (predominantly Montana) that have road sanding and
other soil sources.

3.4.3 Construction

The national inventory uses the following emission factor that was determined from
upwind and downwind emissions around selected construction sites:

Reonst.Tsp = 1.2 tons/acre/month of activity (3-4)

A size factor of 0.22 is applied for PM,( emissions. Dust control effectiveness of
62.5% for PMy and 37.5% for PM,s were applied to counties classified as PM
nonattainment areas.

The acres of land under construction were estimated by EPA region based on the U.S.
Census Bureau’s 1987 dollars spent on construction. These estimates are available every five
years. Regional-level emissions were distributed to the county-level using county estimates
of payroll for construction from County Business Patterns.

For the California construction dust inventory, an improved emission factor (Midwest
Research Institute, 1996) reduced emission estimates by ~70%. The construction dust source
category includes fugitive dust particulate matter emissions caused by construction activities
while building residential structures, commercial structures, and roads. The estimated
emissions result from individual construction operations such as scraping, grading, loading,
digging, compacting, light-duty vehicle travel, and other operations. Only the heavy earth-
moving portion of a construction project approaches the emissions indicated by Equation 3-4,
and this is a relatively short fraction of the duration of the project. For most parts of
California a value of 0.11 tons of PM,¢/acre-month is used. Activity data are similar to those
used by the national inventory.

3.4.4 Wind Erosion

Since wind erosion depends on wind speeds at the surface exceeding the threshold
velocity, hourly wind speed measurements at a known height above ground level are needed.
Gusts or “fastest mile” winds are used in the estimation method. Gusts are the highest speed
recorded for 60 seconds or less during an hour. The fastest mile is reported by the National
Weather Service as the speed corresponding to the fastest wind within an hour to traverse a
full mile. The emission factor for wind erosion is:

Reros.pmio = 0.5 x T(58(u—u,)* x 25 x (u'—u) (3-5)
Sum only for (u*—ut*)>0

where:
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Reros.pm10 = PM o emission factor (g/m2 of available reservoir).
u = friction velocity at surface (m/s).

u; = threshold suspension velocity at surface (m/s).

For a typical configuration with 0.05 surface roughness and measurements from a
10 m meteorological tower, the surface friction velocity is ~0.053 times the gust or fastest
mile speed measured at 10 m. U.S. EPA (1999) provides several examples and default
values for surface roughness that can be used to adapt the emission factor to a variety of
landforms. Particle size modifiers are Keros pmi10=1.0 and Ky pm2.5=0.30.

The national inventory estimates wind erosion from annual average wind speeds
applied to land use data (Barnard and Stewart, 1992). Most of these emissions derive from
tilled agricultural land. Urban windblown dust is not included in the national inventory.

The California inventory also emphasizes agricultural windblown dust rather than
urban windblown dust, and wind erosion of desert areas is not included in the inventory.
Climatological data used by the soil erosion equation was improved by estimating region
specific temperature, rainfall, and wind speed by month. This approach gives a much better
representation of the seasonality of windblown dust emissions.

Emission estimates do not explicitly account for irrigation effects, which tend to
reduce emissions. The ARB inventory includes the dust-reducing effects of irrigation by
treating it as a form of precipitation. The adjustment takes into account the overall soil
texture, number of irrigation events, and the fraction of wet days during the time period. The
existing wind erosion equation also does not take into account the effect of growing crop
cover on windblown dust emissions. Using information gathered from agricultural experts,
monthly crop canopy profiles were developed for the major California crops. Wind erosion
potential for the soil under each crop was modified based on the quantity of vegetation
available to protect the soil from erosion as the growing season progresses. The updated
estimates also include factors for the post-harvest soil cover, post-harvest planting, and the
amount of bare and unplanted border area for major California crops.

California windblown dust estimates are estimated for each month using location
specific soils, climatic, and land use data. The inventory also incorporates crop specific
irrigation, crop coverage, farming practice, and land use data into the windblown dust
equation. These methodological improvements reduced the PM;y windblown dust estimates
by ~80% from previous estimates.

3.4.5 Active Storage Piles

Active storage piles generate dust when material is dropped onto them from above in
an unenclosed area. Material can be added in batches or continuously. The material is
carried away from the pile by wind, so this is an important variable in emission estimation.
The emission factor for storage piles is:

Ryitepmio =-0011 x (WindSpeed/s)"” x (Moisture/2)"* (3-6)
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where:

Rpile pmi10 = PMg storage pile emission factor (pounds/ton of material dropped).
WindSpeed = mean wind speed (m/hr).

Moisture = material moisture content (%).

Particle size modifiers are Ky pmio=1.0 and Kpie pm2.5=0.314. Multiply Rpiie pyio by
0.5 to obtain units of kg/megagram of material dropped. Silt content was not found to be a
significant variable in the regression analysis used to generate Equation 3-6. The range of
conditions for the emission tests that generated Equation 3-6 were silt contents of 0.44% to
19%, moisture contents of 0.25% to 4.8%, and wind speeds of 1.3 to 15 mph. These
emissions are a very small fraction of the EPA and ARB inventories.

3.4.6 Other Fugitive Dust Sources

Several other sources contribute to fugitive dust emissions, but they are not normally
quantified in inventories. These include landfills, leafblowers, equestrian facilities, turbulent
wakes from vehicles, sod overseeding, uncovered haul trucks, and urban wind erosion.
Botsford et al. (1996) examined these emissions and found them minor compared to those
from paved roads, unpaved roads, construction, and wind erosion. These may be important
within certain neighborhoods, however.

In urban areas, solid wastes are disposed of in landfills. Daily accumulations of waste
material are dumped in an active area of the landfill until daily maximum input is achieved.
At the end of the disposal day, earthen materials, or sometimes green waste materials, are
used as a covering to the daily waste material. Soils are typically hauled in to the site to be
used as the daily cover. At some landfill sites, soils are excavated from adjacent areas; at
other landfills, soils may need to be hauled in from more distant locations. Because the
location of the daily solid waste dumping can vary from day to day, temporary unpaved roads
are used by the solid waste haul trucks. Fugitive dust sources include unpaved road dust;
reentrained road dust on paved road portions of landfills or adjacent roadways from trackout;
soil handling, both from the excavation portion and the cover portion; and windblown dust.

Botsford et al. (1996) examined the potential for fugitive dust emissions from five
landfills in California and four in Nevada. Overall emissions were determined to be a sum of
three different fugitive dust components: road emissions (paved and unpaved), working
emissions (excavation and cover), and wind erosion. Botsford et al. (1996) found landfill
emissions to range from less than one ton per year for a small landfill about 0.6 km* and
handling about 1,500 m® of waste material per day to nearly 38 tons per year for a larger
landfill about 5 km? in size and handling about 8,000 m’ of waste per day. It was concluded
that landfills accounted for less than 1% of the local urban area fugitive dust emissions
inventory in Las Vegas and Los Angeles.

Leafblowers are used primarily by homeowners and gardeners. Often cited as a local
nuisance due to noise and deposited particles, some municipalities in Southern California
have moved to ban their use. Some air quality regulations foster cleaner burning leatblowers
to reduce VOC emissions from gas powered machines, but do little to reduce fugitive dust.
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Botsford et al. (1996) made an aerodynamic calculation of potential dust suspension and
concluded that about 420,000 units were in operation in the South Coast Air Basin (SoCAB).
Assuming that, on average, each leafblower is used one day per week, and that the area
cleaned is approximately 1,000 m? fugitive dust emissions could be 9 tons per day. This
represents ~2% of the 1993 SoCAB emissions inventory.

Even in urban areas, recreational horseback riding is popular, and equestrian centers
offer riding opportunities for enthusiasts, including riding trails. At faster paces, horses
traveling over dry dusty surfaces can kick up clouds of dust. Botsford et al. (1996)
constructed a simple box model to estimate emissions from horse-riding activities. Based on
surveys of equestrian centers in the Los Angeles area, it was concluded that about 13,000
horses were associated with equestrian centers, and that PM,, emissions from horse-riding
activities were less than 0.2 tons per day, or less than 0.1% of the SOCAB fugitive dust
inventory.

In some locations, travel lanes abut unpaved shoulders or unpaved sidewalk areas
(even where curbing may exist). It has been observed that large vehicles, such as trucks and
buses can cause dust plumes from the adjacent unpaved surfaces due to turbulent wake
effects. Botsford et al. (1996) attempted to estimate the magnitude of this source by
adjusting the paved road emission factor to account for silt content on the unpaved shoulder.
The wake velocity, or turbulence intensity, was represented as a function of the distance from
the side of the truck. Unpaved shoulder emissions in California’s Coachella Valley were
estimated to be ~2.3 tons per day. Countess and Countess (1996) noted an error in the VMT
data and concluded that using the approach taken, the emissions from this source would be
the single largest source category for the area. Moosmiiller et al. (1998) found only the
wakes behind large trucks near unshouldered roads were sufficient to suspend dust from the
shoulder. Their estimates were a relatively small amount of total dust emission estimates for
California’s San Joaquin Valley.

Western golf courses and other recreational areas that need to maintain green grass
throughout the year overseed annual grasses that go dormant during the winter. This process
ceases watering over a two- to three-week period prior to overseeding in order to enhance the
dormancy process. Once dormant, special raking machines scour the sod to collect the
residual dormant grass (thatch), and to apply fresh seed. This process is extremely dusty, and
in California’s Coachella Valley it results in noticeable increases in measured PM, levels
during the fall. No emission estimates have been made for this source, although emission
reduction measures have been tested by Fitz (1995). Aside from the Coachella Valley, other
similar areas have not been identified. This is likely to be important in only a very few urban
areas, and the need for national inventories for this source is not deemed necessary.

Despite the high degree of finished surfaces (e.g., pavement, buildings, landscaping)
in urban areas, there are ample opportunities for mechanical and windblown fugitive dust
emissions. Available surfaces include vacant properties, unpaved alleyways, unpaved areas
in commercial/industrial facilities, and unmaintained roadway median strips. Mechanical
disturbances are caused by vehicles traveling over these surfaces, and because such surfaces
are not considered to be unpaved roads, emissions are not calculated. In urban areas,
buildings cause additional turbulence that can enhance dust suspension even under relatively
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low wind speeds. There are no known inventories to determine the extent to which such
surfaces exist within urban areas, nor have there been any estimates of the importance of
fugitive dust emissions from these sources. Some preliminary surveys and emission
estimates are needed to ascertain the importance to overall urban fugitive dust emission
inventories.

Trucks carrying aggregate material can be a source of emissions when traveling at
speeds that can cause emissions to occur. Mitigation actions are required in many areas,
including covering or adequate freeboard (e.g., the top of the hauled load must be lower than
the sides of the container). In most circumstances, the main effects from haul trucks are the
losses of larger materials that contribute to paved road silt loadings, and are inherently
accounted for within the paved road dust emission categories. Nevertheless, there may be
direct PM emissions as well.

3.5  Hypothesis Testing

This section provides information on the third, fourth, and fifth hypotheses advanced
in Section 1.

e Incompatible temporal and spatial averaging of fugitive dust emissions
relative to ambient PM measurements. The comparison between California
and national emission estimates shows substantial differences by county. Some of
the differences are due to the national inventory’s allocation of statewide
activities to counties as compared to California’s aggregation of countywide
activities to the state level. Differences in assumed silt loadings are a major cause
of differences for road dust. Unpaved road mileage and VMT are other causes.
Differences are also due to averages across large counties that contain small but
highly populated urban areas imbedded in large but sparsely populated non-urban
areas. Most of the PM ambient measurements are taken within the population
centers and do not represent county-average concentrations.

e Inaccurate formulation of emission factors. Construction factors in the
national inventory clearly overestimate actual construction emissions. They
should apply only to those portions of the construction project that involve earth
moving. The California construction emissions are considerably lower because
they are adjusted for emissions during the different phases of a construction
project. Area-specific silt loadings and silt fractions also reduce emission factors
in California relative to the values used in the national emissions inventory.

e Insufficient and uncertain activity levels, specifically with respect to the
reservoir of suspendable particles, particle size distributions in the reservoir,
meteorological variables, and human intervention. The county specific
activity data available in California better allocate emissions than the statewide
activity databases used in the national inventory. On the other hand, the national
inventory assumes control effectiveness values that are not borne out by fugitive
dust control demonstration studies. There are still large uncertainties and
variabilities in the activity databases for both inventories.
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4. MODELSFOR FUGITIVE DUST CONTRIBUTIONS

Estimates of source contributions from fugitive dust and other sources are made using
air quality models. Source-oriented emissions, meteorology, chemical transport models, and
receptor models are often used independently to assess source contributions. A better
integration of these different modeling systems would identify emission mechanisms that are
not adequately represented in any of the models and would improve the attribution of
excessive PM o and PM, 5 concentrations to fugitive dust sources.

Emission models need to be compatible with the spatial scales of atmospheric
dispersion models and PM 1o or PM,5 measurement networks. These scales (Watson et al.,
1997b) are given below. Distances indicate the diameter of a circle, or the length and width
of agrid square, with amonitor at its center.

Microscale (10 to 100 m): Microscale pollutant concentrations show significant
differences between locations separated by 10 to 50 m. This often occurs next to
aemission sources, such as a busy roadway, construction site, vent, or short stack.

Middle Scale (100 to 500 m): Middle-scale pollutant concentrations show
significant differences between locations that are ~0.1 to 0.5 km apart. Middle-
scale zones of representation are often source-dominated.

Neighborhood Scale (500 m to 4 km): Neighborhood-scale pollutant
concentrations do not show significant differences with spacing of a few
kilometers. This dimension is often the size of emission and modeling grids used
in large urban areas for source assessment. Sources affecting neighborhood-scale
sites typically consist of small individual emitters, such as clean, paved, curbed
roads, uncongested traffic flow with a small number of heavy-duty vehicles, or
neighborhood use of residential heating devices such as fireplaces and wood
stoves.

Urban Scale (4 to 100 km): Urban-scale monitors show consistency among
concentrations separated by of tens of kilometers. These concentrations represent
a mixture of pollutants from many sources within an urban complex, including
those from the smaller scales.

Regional-Scale Background (100 to 1,000 km): Regional-scale concentrations
show consistency among measurements for separations of a few hundred
kilometers. Regional concentrations are often more consistent for secondary
pollutants, such as ozone, sulfate, and nitrate, than they are for primary PM o or
PM,s emissions. Regional-scale concentrations are a combination of naturally
occurring substances as well as pollutants generated in urban and industrial areas
that may be more than 1,000 km distant. Regional-scale sites are best located in
rural areas away from local sources, and at higher elevations.

Continental-Scale Background (1,000 to 10,000 km): Continental-scale
background concentrations show little variation even when they are separated by
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more than 1,000 km. They are hundreds of kilometers from the nearest
significant emitters. Although these sites measure a mixture of natural and
diluted manmade source contributions, the manmade component is at its
minimum expected concentration.

* Global-Scale Background (>10,000 km): Global-scale background
concentrations represent source emissions transported between different
continents as well as naturally emitted particles and precursors from oceans,
volcanoes, and windblown dust.

41 Emission M odels

Previous sections have discussed the emissions inventory as a static entity based on
empirical factors related to commonly available data. While emissions inventories provide
useful compilations of information, they will not achieve their full potential until they are
elevated to the status of other air quality models that are applicable to specific situations.
Thisis especially true for fugitive dust emissions, as these are not confined specific times and
locations as are industrial sources and vehicle exhaust.

Severa types of emission models are considered separately: 1) speciated rollback;
2) horizontal and vertical flux; and 3) dynamic activities.

411 Speciated Rollback

Linear rollback (Barth, 1970; deNevers and Morris, 1975; Cass, 1981; Cass and
McRae, 1981, 1983) is the most commonly used method for control strategy development,
although it is not often identified as such. Rollback assumes that atmospheric concentrations
in excess of background are proportional to aggregate emission rates. Reducing excessive
concentrations of a pollutant to levels below a pre-set standard requires emission reductions
that are proportionally equal to the relative amount by which the standard is exceeded, after
background subtraction. Linear rollback for PM1p or PM,5 mass emissions identified in
Table 2-1 nearly aways targets fugitive dust sources because these are the largest mass
emitters.

A better approach is a speciated rollback that applies to the maor chemical
components of PMyp or PM,s (i.e, geological material, carbon, sulfate, nitrate, and
ammonia). This requires a speciated inventory that applies chemical profiles to emission
estimates from each source type. Speciated inventories have only been created for specific
modeling studies and are not commonly available in non-attainment areas.

Speciated linear rollback has the fewest complex data requirements, but it also carries
large uncertainties. These uncertainties might not, however, be larger than those associated
with other modeling methods. They may be acceptable for selecting among different
pollution control measures, or at least narrowing the scope of viable alternatives.

Linear rollback does not consider the effects of meteorological transport between
source and receptor or of differences in gas-to-particle conversion for different precursor
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emitters. It is most valid for spatial and tempora averages of ambient concentrations that
represent the entire airshed containing urban-scale sources. The effect of transport from
distant sources located outside the airshed is compensated by subtracting background
concentrations, measured nearby but outside the airshed, from ambient levels prior to
determining needed emission reductions. Linear rollback also assumes for secondary
particles, such as ammonium nitrate and ammonium sulfate, that one of the precursors limits
particle formation.

Whether or not speciated linear rollback is used to develop control strategies, a
Speciated emission model is needed to better evaluate emission estimates against ambient
concentrations. Over year-long temporal and spatial averaging times, the ratio of carbon to
geological concentrations above background levels should be similar in air samples and in a
speciated primary particle inventory.

4.1.2 Horizontal and Vertical Fluxes

Fugitive dust emissions are emitted over large surface areas and are not ducted. This
makes their quantification inherently less accurate than emission tests on stacks or other
ducts through which effluents are g ected into the air.

Fugitive dust emission factors are most commonly determined by measuring the
horizontal flux from an emitting area such as a road or vacant lot (Cowherd et al., 1984).
Thisis accomplished by locating sampling systems with the desired size-selective inlet (TSP,
PM1o, or PM55) at various elevations downwind of the dust-emitting area. Monitors located
upwind are used to determine the flux into the emitting domain.

Each of the downwind samplersis used to represent the amount of dust carried by the
wind component perpendicular to a plane parale to the source. Both the wind speed and
concentration vary with height above ground level, so the horizontal flux is calculated
through an area that extends above and below each sampler. These fluxes are added to
obtain the aggregate emission rate from the source, after the flux of particles into the emitting
area has been subtracted. Figure 4-1 shows a typical configuration for making these
measurements. Sampler elevations, distances from the source, and measurement devices
vary among the different studies that have been conducted.

Figures 4-2 through 4-4 show the cumulate horizontal emission fluxes at different
elevations above ground level (agl) for paved roads, unpaved roads, and bare
soil/construction sites.  These plots result from many the same downwind profile tests
(Cowherd, 1999) that were used to derive commonly used PM o emission factors. The most
noticeable feature from these plots is that approximately 60% to 90% of the horizontal
emission flux is detected at elevations less than 2 m agl.

A 10 um aerodynamic diameter particle has a settling velocity of ~0.3 cm/s, and
would therefore deposit to the surface within ~5 minutes after achieving an elevation of 1 m
above ground level. This corresponds to a travel distance of no more than 1 km in a3 m/s
wind. Travel distances would be 0.25 km for a 20 um particle and 4 km for a5 pum particle
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Figure 4-1. Example of horizontal flux measurement system around an unpaved road treated with different suppressants (Watson et

al., 1996h).
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Figure 4-2. Cumulative horizontal PMyo flux at different downwind elevations above
different unpaved roads (data from Cowherd, 1999).
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Figure 4-3. Cumulative horizontal PMyo flux at different downwind elevations above
different paved roads (data from Cowherd, 1999).

120%
c
ks
S 100%
Q
]
Z 80%
)
o]
X
S 60%
LL
=
& 40%
o
c
S
5 20%
s
LL
0%
0 1 2 10

3. 4 5 6 7
Elevation above Paved Road (m agl)




Figure 4-4. Cumulative horizontal PMyo flux at different downwind elevations above
different construction and bare soil sites. (data from Cowherd, 1999).
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under similar wind conditions. Plate-like particles (e.g., clay) fall more slowly than spherical
particles. Upon returning to the surface, supermicron-sized particles can “bounce” and/or
become resuspended (Chamberlain, 1967; Wu et al., 1992; Paw U, 1992). During wind
erosion processes, airborne particles become electrically charged relative to surfaces, and can
be attracted to those surfaces (Schmidt et a., 1998). A fairly well known manifestation of
this charge separation is electrical discharges (“lightning”) near the surface during some dust
storms. The resulting electrical forces can substantially increase the rate of dry deposition of
the airborne particles, a process apparently not currently included in dry deposition models.

If fugitive dust can be lofted from the near-surface atmospheric layer by mechanical
and/or thermally generated turbulence, then particles have potential for residing in the
atmosphere for substantial time periods. If the only removal process is by dry deposition,
with deposition velocity vg4, and if the particles are mixed fairly uniformly to a height hy (e.g.,
the height of the atmospheric mixing layer), then the residence time is essentially hq/vq. For
example, if hy = 1 km and if vq = 1 cm/s, then this residence time is 10° sec or approximately
aday.

Low-level particles are likely to deposit to the ground, horizontally impact on nearby

obstructions, or rapidly disperse within a short distance from the point of emissions. The
rapid attenuation of PMyo concentrations downwind of an unpaved road is illustrated in
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Figure 4-5. While there is substantial scatter in the ratios of downwind to roadside
concentrations, it is clear that PM g is attenuated by ~90% within only 50 m from an unpaved
roadside.

Urban- and regional-scale dispersion models usually consider fugitive dust emissions
at elevations much higher than 2 m agl. Effective emission heights of 5to 10 m agl are often
used so that a plume can develop downwind of a site. Most models are unable to resolve
terrain variations of 1 to 2 m and do not account for the effects of horizontal impaction on
vegetation and obstructions such as trees, shrubbery, and buildings.

There is little published information on the quantitative effect of nearby obstructions
on low-level dust emissions, but it is common practice to place obstructions such as
greenbelts (Kapoor and Gupta, 1984; Gupta and Kapoor, 1992) near visible dust emitters.
For example, Slinn (1982) shows that dust deposition velocities through a eucal yptus forest
can be five to ten times higher than gravitational settling velocities with wind speeds of 5 to
10 m/s.

Vertical flux is an aternative to horizontal flux as a method to estimate fugitive dust
emissions (Gillette, 1977). Only a fraction of the horizontal flux moves upward, with this
fraction dependent on a variety of meteorological, aerosol, and surface conditions. Vertical

Figure 4-5. Attenuation of PM o concentrations with distance from an unpaved road
(Watson et al., 1996b).
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flux emissions can become available for transport to distances beyond the immediate vicinity
of the source. Vertical flux is proportional to particle density, surface friction velocity, and
the difference between particle concentrations at different elevations above ground level.
These variables can be estimated from the same measurements used for horizontal flux
measurements with a configuration similar to that of Figure 4-1 (Nickling and Houser, 1999).

It appears that currently used emission factors based on integrated horizontal flux
adequately represent suspendable dust, the amount that leaves a dust-generating surface, but
they do not adequately represent transportable dust, the fraction of suspendable dust that is
likely to travel more than afew kilometers from the emitter.

More realistic estimates for the vertical components of the dust fluxes from fugitive
emissions are needed to evaluate fugitive-dust concentrations beyond the immediate vicinity
of sources (e.g., Johnson, 1983; Shao and Ledie, 1998). Shao and Ledlie (1998) set the
vertical flux for each particle-size range proportional to the horizontal flux, with the
proportionality “constant” dependent on particle size. There is no dependence of the vertical
flux on atmospheric stability.

Modeling of vertical fluxes of particles from fugitive emissions should proceed on
two fronts. For regional- to continental-scale models, algorithms should be developed and
tested to estimate a representative vertical flux (e.g., at the lowest layer of the air quality
model, which is typically 30 m) for emissions in each grid square. This agorithm could
incorporate a relatively simple boundary-layer formulation driven by the larger model’s
regional-scale meteorological fields. For practical applications, ssimple plume models that
incorporate deposition and atmospheric stability, especially for high-wind-speed cases, need
to be interfaced with vertical emission flux estimates.

4.1.3 Dynamic Activity Models

Dynamic activity models refer to computerized systems that have access to databases
that may change over periods of months, weeks, days, or even hours. Such models could be
assembled after the fact by compiling information specific to modeled episodes. They could
also be created to access certain databases in real time so that the information could be used
to modify activities to minimize fugitive dust emissions from certain activities such as
construction. The structure of dynamic activity models can range from simple spreadsheets
to complex physical interaction models that include meteorological processes to determine
windflows, turbulence, humidity, and other factors that can influence fugitive dust emissions.

Spreadsheets are the easiest and most common means for constructing dynamic
activity models (Kuhns et al., 1998). This approach is most appropriate to a relatively small
area where the number of separate activity databases is limited and where locations can be
precisely defined. Each cell in the spreadsheet can represent a grid, different worksheets can
represent different activity databases, and relationships between activity and emission rates
can be established by calculations in linked worksheets. The spreadsheet approach is most
appropriate when used in rollback calculations, where area-wide, rather than spatially
resolved, emissions are needed.
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Where complex spatial emission inputs are needed, a Geographical Information
System (GIS) provides the most flexible framework. Many of the available activity
databases (e.g., roadway networks, land use, soil characteristics, traffic volumes) have
irregular shapes onto which an arbitrary grid system must be imposed. This grid system may
change for different applications. For the most part, existing spatial and temporal data sets
compiled for purposes unrelated to air quality are obtained to estimate dust-generating
activity.

While spatial activity data sets may be obtained with seasonal, and possibly even
monthly variations, it is unlikely that more highly resolved information will be available. In
this case, temporal profiles can be imposed on an average emission rate for each source type.
These profiles can be determined theoretically or empirically and should have diurnal as well
as day-of-the-week variability. Figure 4-6 shows an example of diurnal variability in PM g
concentrations at different sampling sites near maor roadways in Las Vegas, NV, on
wintertime weekdays and weekends.  Although non-traffic sources influence these
concentrations, the weekday morning and evening rush hour contributions from vehicle
exhaust and paved road dust are clearly discernable in the top panel. The bottom panel
shows a distinctly different diurnal profile on weekends. Traffic profiles can aso be
developed by vehicle counting and by on-road remote sensing methods.

4.2  Dispersion Models

Source-oriented dispersion models use the outputs from emission, meteorological,
and chemica models to estimate concentrations measured at receptors. Source models
include mathematical simulations of transport, dispersion, vertical mixing, deposition, and
chemical mechanisms to represent transformation. The most common source dispersion
models are Gaussian plume, puff, and grid formulations. Gaussian plume models (Schulze,
1990; Freeman et a., 1986; Schwede and Paumier, 1997) are most often associated with the
straight line wind model and estimate a bell-shaped concentration field in the vertical and
horizontal directions from the wind direction. These models are commonly used to evaluate
potential effects of primary emissions from ducted sources, such as industrial stacks. Puff or
trajectory models treat emissions from a variety of sources as independent entities that are
moved in acurvilinear wind field generated by a diagnostic or prognostic wind model. Grid
models transfer pollutants between boxes with pre-defined vertical and horizontal dimensions
(Bowman et a., 1995; Byun and Ching, 1999; Byun and Dennis, 1995; Yamartino et a.,
1992).  Current dispersion modeling of particulate matter emissions is generaly
accomplished using gridded Eulerian chemical-transport models (CTM's) on urban to
regiona scales. Smaller scales are often modeled by less complex Gaussian plume or
trajectory models.

Meteorological models consist of straight line, interpolation (termed diagnostic), and
first principle (termed prognostic) formulations, with increasing levels of complexity and
requirements for computational and data resources. The straight line model is applied to
hourly wind directions from a single monitor, assuming an air mass travels a distance equal
to the wind velocity in the measured direction, regardless of the distance from the monitoring

4-9



Figure4-6. Hourly variations in PM 1o concentrations acquired by beta attenuation monitors
(BAM) at different urban residential (Walter Johnson), commercia (East Charleston, City
Center) and industrial (Craig/Bemis) sitesin Las Vegas, NV on: a) weekdays, and b)
weekends (Chow and Watson, 1997).
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site.  This model is applicable for a few hours of transport in flat terrain, typically for
evaluating a single emission source. Interpolation models integrate wind speed and direction
data from multiple measurement locations, including upper air measurements provide by
remote sensors or balloon launches. The more advanced of these models allow barriers, such
as mountains, to be placed between monitors. Wind fields, therefore, show different
directions and velocities at different horizontal and vertical positions. Interpolation wind
models are applicable to domains with a large number of well-placed monitors and for
estimating the movement of air masses from many sources over transport times of more than
half a day. The number and placement of monitors, especially upper air monitors, is
especially important in mountainous terrain and in coastal areas where winds are unusual.

Advanced chemical transport models are driven with meteorological data taken from
prognostic models (Stauffer and Seaman, 1994; Seaman et al., 1995; Koracin and Enger,
1994) that embody scientists best knowledge of atmospheric physics and thermodynamics.
These models employ basic equations for conservation and transfer of energy and
momentum. These meteorological models are computationally intensive, often requiring
supercomputers but are becoming more practical and cost-effective as workstation and
desktop computers become more powerful. Modern versions use “four-dimensional data
assimilation” that compare model-calculated wind, humidity, and temperature fields with
measurements and “nudge” model outputs toward observations. A more complex
meteorological model is not necessarily a better model for a specific application. The MM5
meteorological model has been adopted as the platform for several air quality studies
(Seaman et al., 1995).

Emission, chemical transport, and meteorological models must be applied to the same
temporal and spatial scales. Horizontal dimensions of chemical transport models range from
as low as 1 to 2 km for urban-scale applications to 10 to 50 km for regional-scale
applications. Vertical dimensions are treated as layers at different elevations above ground
level with thickness ranging from 20 mto 2,000 m. Most of the model inputs and outputs are
assumed to be homogeneously distributed within rectangular solids with these dimensions.
This assumption implies that inputs and outputs with large spatial variability within these
dimensions will not be well simulated by these models.

Emission data needed for regional modeling includes both emission fluxes and some
characteristics of the emissions and their sources. As noted in Section 4.1, fugitive dust
emissions are derived from horizontal flux estimates. Vertical emission fluxes are better
simulated by chemical transport models. Emissions inventory inputs to chemical transport
models include: 1) source location identification (coordinates for point sources, politica
identifiers for political areas); 2) pollutant identification (PMio, PM,s, or other size
fractions); 3) emission flux (mass per unit time); 4) source type; 5) pollutant emission
controls (if any); 6) effectiveness of controls (if any); 7) applicable time frame of inventory;
and 8) for point sources with stack height, identifier, diameter, flow rate, exhaust
temperature, and exit velocity. There is large contrast between the detailed information
available for industrial sources and the less complete information for area and mobile
SOurces.
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43  Receptor Models

The Chemical Mass Balance (CMB) air quality model is one of severa models that
have been applied to air resources management. As described in Section 2, receptor models
use the chemical and physical characteristics of gases and particles measured at source and
receptor to both identify the presence of and to quantify source contributions to receptor
concentrations. Receptor models are generally contrasted with dispersion models that use
pollutant emission rate estimates, meteorological transport, and chemical transformation
mechanisms to estimate the contribution of each source to receptor concentrations. The two
types of models are complementary, with each type having strengths that compensate for the
weaknesses of the other.

The CMB consists of a solution to linear equations that express each receptor
chemical concentration as a linear sum of products of source profile abundances and source
contributions. The source profile abundances (i.e., the mass fraction of a chemical or other
property in the emissions from each source type) and the receptor concentrations, with
appropriate uncertainty estimates, serve as input data to the CMB model. In order to
distinguish among source type contributions, the measured chemical and physical
characteristics must be such that they are present in different proportions in different source
emissions and changes in these proportions between source and receptor are negligible or can
be approximated. The CMB calculates values for the contributions from each source and the
uncertainties of those values.

Receptor models do not need emission rates from an emission model, but they do
need chemical profiles that allow one source to be distinguished from other sources. For
guantitative source apportionment, source profile properties must meet the following criteria:
1) their abundances (mass fraction) are different in different source types;, 2)their
abundances do not change appreciably during transport between source and receptor (or such
changes can be simulated by measurement or modeling); and 3) their abundances are
reasonably constant among different emitters and operating conditions for a selected source
type. These profiles are used in emission inventories to separate mass emissions into
chemical component emissions and in receptor models to apportion ambient concentrations
of suspended particles to sources.

Additional chemical and physical properties beyond the commonly measured
elements, ions, and carbon need to be examined to determine which ones can meet these
criteria in practical source apportionment applications. Several types of analyses that might
meet these needs are:

* Appearance: Optical microscopy provides an overview, albeit semi-quantitative,
of the shape, size, mineralogy, and type of different particles with geometric
diameters larger than ~2 pum.

 Soluble and insoluble inorganic elements and compounds: X-ray
fluorescence, proton-induced x-ray emission, instrumental neutron activation
analyses, atomic absorption spectrophotometry, inductively coupled plasma
atomic emission spectroscopy, X-ray diffraction, computer automated scanning
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electron microscopy, ion chromatography, and automated colorimetry have been
applied, sometimes in conjunction with different extraction and selective sample
preparation techniques, to quantify a variety of elements and crystalline
structures.

* Carbon groupings. Organic and elemental carbon, thermal desorption and
pyrolysis patterns, and solubility in different organic solvents using thermal
manganese oxidation, thermal optical reflectance, thermal optical transmittance,
Fourier transform infrared spectroscopy, thermal desorption gas chromatography
and mass spectrometry, and sequential solvent extraction are possibilities.

» Specific organic compounds. Pesticides, herbicides, cellulose, and many other
specific organic compounds may be analyzed by solvent extraction followed by
gas or liquid chromatography with different detectors.

* DNA, toxins, microbes, and bacteria: Biologically specific tests can be applied
to characterize these substances.

* |Isotopes. Low-level radioactive counting, dilution mass spectrometry, and
accelerator mass spectrometry are potential methods to quantify unique isotopic
abundances in geological materials.

A systematic survey of the extent to which these observables are found in different
sources is needed to further specify source attribution using receptor models.

44  Interaction Among Models

Given the dynamic nature of PM emissions, more accurate representations may be
gained by modeling the emissions as described in Section 4.1. Emission modeling needs to
bring emissions to the same temporal and spatial scales, typically 1 to 10 km and 1 hour
resolutions, that are used for the meteorological and chemical/transport models.

In current practice, emissions are considered static and do not interact with the
modeling process. A better approach would apply a dynamic emission model that uses
meteorology and changing activity databases as inputs. This dynamic emission model would
account for the transportable fraction of dust emissions that is consistent with the spatial
scales of the other models. For microscale modeling of neighborhood impacts, this might
include horizontal fluxesin the lowest levels. For urban and regional modeling with 1 to 10
km spatial domains, only horizontal fluxes at higher elevations, or vertica fluxes, would be
used to represent transportabl e particles.

Receptor models such as the CMB should be included in this interaction. The first
role of receptor models is the direct apportionment of ambient concentrations to their
sources. This apportionment in and of itself has been of great utility in developing control
strategies in PMyo non-attainment areas. The second role of receptor models is to
independently verify emissions inventories, as in the comparison between inventory and
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source apportionment studies presented in Section2. Impediments to CMB/inventory
reconciliation are the lack of specificity of chemical components that distinguish different
fugitive dust source types from each other. Receptor models aso offer a framework for
evaluating the outputs of complicated air quality models. Source-oriented models produce a
pattern of concentrations and uncertainties similar to CMB source profiles that could be used
by the CMB for a multivariate fit to the ambient data. This is a more complex, and
potentially more accurate “profile aging” process, as represented in a simpler context by
Friedlander (1981).

45  Hypothesis Testing

The preceding discussion allows the following conclusions to be drawn about
hypotheses five and six:

» Insufficient and uncertain activity levels. Current emissions inventories are not
dynamic. They do not easily adapt to the changing times and locations of
activities that affect ambient concentrations. Dynamic emission models are
needed that seamlessly interact with meteorological, chemical/transport, and
receptor models. Chemical source profiles need to be enhanced with more
specific markers for different fugitive dust source types to verify changes in
activity through receptor measurements. Dynamic databases of the locations and
timing of emissions need to be incorporated into emission estimation methods.

* Insufficient accounting for injection heights, deposition losses, and horizontal
impaction losses in dispersion models. This is the most evident and
documented cause of discrepancies between emission estimates and ambient
source contributions from fugitive dust. Commonly used fugitive dust emission
factors estimate integrated horizontal fluxes from ~1 m to ~10 m above ground
level. Approximately 60% to 90% of these fluxes are below 2 m and will not
travel long distances (> a few km) from the emitter. Most receptor model source
contributions are estimated at community representative, urban-scale, monitoring
sites that are specifically selected to be uninfluenced by nearby sources. Most
source-oriented models estimate source contributions averaged over dimensions
of 1 km to 10 km. Transportable dust emissions need to be distinguished from
suspendable dust that is currently used to estimate emissions. Transportable dust
emissions depend on the spatial scale of modeling. For middle-scale models,
current estimates are probably adequate. For neighborhood-, urban-, and
regional-scale modeling, the transportable fraction is likely to vary. Methods to
estimate this variability need to incorporate vertical fluxes and removal processes
due to vertical deposition and horizontal impaction. A first approximation for
transportable dust that moves beyond a few kilometers would eliminate the
horizontal flux within the first 2 m above ground level. This would reduce
current fugitive dust emission estimates by ~75%.
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5. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Previous sections of this report identified differences between emission estimates and
ambient geological contributions, estimated the magnitudes of these differences that could be
caused for different reasons, and evaluated the technical bases for currently applied emission
estimation procedures. This section summarizes the results of this examination and specifies
research projects that can be conducted immediately, in the short term (1 to 2 years), and
over a longer term (2 to 5 years) to improve scientific understanding of and quantitative
estimation of fugitive dust emissions.

One of the methods used to identify potential discrepancies was to compare emissions
estimated for a single state, California, with national inventory estimates for that state. The
methodology is essentially the same for these inventories, but the emission factors, activity
databases, and control measures applied are substantially different. These differences
resulted in Californias urban dust emissions from unpaved roads, paved roads, and
construction being only 60% of those estimated by the national inventory. Much larger
discrepancies were found for specific areas and source types.

51 Summary

Subtracting secondary sulfate and nitrate contributions from PM 1o prior to estimating
the fugitive dust fraction in source apportionment studies results in a higher fractional
geological contribution. There is still a large discrepancy between the dust fraction in
emissions inventories and the fractional dust contribution to ambient mass concentrations.
Although PM, 5 source apportionment studies are limited, it is likely that discrepancies will
be larger for this size fraction in which geological contributions are much lower. A more
systematic examination of the fugitive dust proportion in ambient samples will be possible
when data become available from EPA’s PMjs speciation network at representative
community exposure sites throughout the U.S.

Spatia distributions of annual average PM,5 soil contributions range from 0.5 to 1
ng/m? at background sites in the United States as determined by the Interagency Monitoring
of PRotected Visual Environments (IMPROVE) network. These should be subtracted from
urban PM;o and PM,s fugitive dust contributions prior to determining proportions for
comparison with local emissions inventories. Higher soil contributions on a few days in
Florida and other areas may be caused by long-range transport of Sahara dust that are not
accounted for in inventories. More extensive IMPROV E monitoring in the eastern U.S. will
supplement urban speciated PM,s monitoring sites to improve estimates of background
contributions to urban fugitive dust levels. More specific chemical and physical markers
need to be developed and measured in source and receptor samples to distinguish background
from other fugitive dust sources, as well as different types of dust emitters from each other.

Temporal and spatial averaging periods for fugitive dust emissions are not the same
as those for ambient PM,5 and PM;o measurements. Nationa inventories are specific to
statewide averages and are based on activities averaged over one year or more. State and
local inventories rarely have spatial resolutions better than the size of a county and temporal
resolution of less than a month. These averaging times contrast with intermittent and often
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random events that raise dust into the atmosphere to affect ambient samples that are averaged
over 24-hours or less. Discrepancies between inventory and ambient concentrations are
especially evident in large counties that contain population centers with PMp or PM35
monitors. A comparison between California and national emissions for unpaved roads,
paved roads, and construction at the county level showed substantial differences by county
and by source category, even though the statewide totals were 40% lower than the national
totals. These are probably due to differences in the statewide activities that are allocated to
county in the national inventory compared to the countywide activities that are aggregated to
state in California. Most of the emissions from unpaved roads and windblown dust occur in
non-urban areas far from the monitor, but they are included in the inventory used to assess
source contributions at that monitor. Even within an urban area, neighborhood-scale studies
show that there may be large differences between dust contributions for monitors separated
by a few kilometers. To improve the relationship between emissions and source
contributions, the spatial and temporal resolutions of emissions inventories need to be made
more compatible with the zone of representation and averaging times of PM monitors.

Emission factors for unpaved road and paved road dust emissions are reasonably
consistent from one test to another. Magor reductions were found for California when
location-specific values were used for silt content and loadings in place of the default values
used for the national inventory. Construction emission factors used in the national inventory
overestimate construction emissions because they assume that the heavy earthmoving
activities on which they are based occur throughout the duration of the project. California
inventories use construction emission factors derived from the actual processes that engender
those emissions and are an order of magnitude lower than those used for the national
inventory.

National inventory activity levels do not accurately reflect the activities at county or
finer resolutions. National estimates are made statewide, then allocated to counties based on
activity surrogates. There are clear discrepancies between this approach and the California
inventory that builds the statewide inventory from countywide activity estimates. The county
specific data better allocate emissions than the statewide nationa activity databases. On the
other hand, the national inventory assumes control effectiveness values that are not borne out
by fugitive dust control demonstration studies. There are still large uncertainties and
variabilitiesin the activity databases for both inventories.

Current emissions inventories are not dynamic. They do not easily adapt to the
changing times and locations of activities that affect ambient concentrations. Dynamic
emission models are needed that seamlessly interact with meteorological, chemical/transport,
and receptor models. Chemical source profiles need to be enhanced with more specific
markers for different fugitive dust source types to verify changes in activity through receptor
measurements. Dynamic databases of the locations and timing of emissions need to be
incorporated into emission estimation methods. The wind erosion portion of the national
inventory represents a relatively small number of individual events that are averaged over a
year. These events should not be included in annual average estimates that are intended to
represent continuous and repetitive processes.



There is insufficient accounting for injection heights, deposition losses, and
horizontal impaction losses in dispersion models. The scale and temporal resolution of
emissions inventories is incompatible with the needs of dispersion models. This is the most
evident and documented cause of discrepancies between emission estimates and ambient
source contributions from fugitive dust. Commonly used fugitive dust emission factors
estimate integrated horizontal fluxes from ~1 m to ~10 m above ground level.
Approximately 60% to 90% of these fluxes are below 2 m and will not travel long distances
(> afew km) from the emitter. Most receptor model source contributions are estimated at
community representative monitoring sites that are located for minima influence from
nearby sources. Most source-oriented models estimate source contributions averaged over
dimensions of 1 km to 10 km. Transportable dust emissions need to be distinguished from
suspendable dust that is currently used to estimate emissions. Transportable dust emissions
depend on the spatial scale of modeling. For middle-scale models, current estimates are
probably adequate.  For neighborhood-, urban-, and regional-scale modeling, the
transportable fraction is likely to vary. Methods to estimate this variability need to
incorporate vertical fluxes and removal processes due to vertical deposition and horizontal
impaction. A first approximation for regionally transportable dust (i.e., dust that is likely to
travel more than a few kilometers) could assume that horizontal flux within the first 2 m
above ground level is removed by nearby surfaces. This would reduce current fugitive dust
emission estimates by about 75%.

5.2 Conclusions

* National inventories do not accurately estimate emissions from fugitive dust
sources that affect ambient PM,s and PMyp concentrations for a variety of
reasons. Both negative and positive biases in emissions result, but the net effect is
to overestimate emissions from fugitive dust sources relative to those from other
sources in the inventory.

» Suspendable particles are not transportable particles. Available data shows that
~75% (ranging from ~60% to ~90%) of suspended PMo remains within 1 to 2 m
above ground level. These particles deposit to the surface or impact on nearby
vertical structures within a few minutes after suspension. Although horizontal
fluxes commonly used in empirically-derived emission factors represent the mass
of dust particles suspended from a surface, they do not represent the mass
entrained into the atmosphere and transported over distances of more than a few
kilometers.

»  Source and receptor models do not represent the same spatial and temporal scales
as emissions inventories. Better integration with and interaction among emission,
meteorological, chemical/transport, and receptor models is needed. This
interaction should help to identify and reconcile deficiencies in all of the
modeling components.



5.3

54

State and local values for emission factors and activities yield lower emission
estimates, at least for California Severa of these emission factors and activities
should be used in national inventories.

Emissions inventories treat fugitive dust emissions as continuous pProcesses,
whereas they are intermittent processes that depend on many meteorological and
activity variables. This causes apositive biasin dust emission estimates.

Few empirical tests are available for the PM 5 fraction of fugitive dust emission
factors. The extent to which TSP and PM 9 emission factors can be scaled to
PM. 5 is uncertain.

Paved and unpaved road dust emission factors have been found to be of similar
form and magnitude for many independent tests for TSP and PMo. Silt loadings,
st fractions, and activity levels used in national inventories appear to
overestimate emissions from these sources, at least with respect to California.

Existing tests for emission factors are biased toward the highest emitters, yet they
are applied to a population of activities that encompasses a wide range of
emission magnitudes. Lower-emitting representatives of a source category are
poorly characterized. This is especialy true for construction emission estimates
that characterize the earth moving portion of a project and not the construction
activities.

Immediate Recommendations for National Emissions | nventory Improvement

Review construction emission factors and compare them to those used in
California. Consider adopting similar factors for the national inventory.

Use measurements from previous fugitive dust emission tests to estimate
horizontal dust fluxes above elevations of 2 m. Create separate estimates for
emissions above these heights that can be used for different modeling and
planning purposes. Urban- and regional-scale source or receptor modeling could
use the >2 m above ground level horizontal fluxes. Preliminary estimates given
in this report indicate that >2 m horizontal fluxes are ~25% of total horizontal
fluxes. This approximation needs more scientific justification.

Conduct countywide comparisons between national inventory and independently
compiled statewide inventories. Use the results of these comparisons to identify
the availability of or need for local information that affect suspendable dust
surface loadings and dust-generating activities.

Short-Term Recommendationsfor National Emissions I nventory Improvement

Create and apply methods to estimate vertical flux, as well as horizontal flux,
from fugitive dust sources and add vertical flux estimates to modeling inventories.



Revise the current emission measurement methodology such that vertical fluxes
and horizontal fluxes above selected elevations are incorporated into emission
factors and are reported in inventories.

Conduct additional emission tests of unpaved roads, paved roads, construction,
and other earth-moving emissions that apply vertical and horizontal flux methods
and are specific to PM,5 and PM g particle sizes. These tests should represent a
variety of areas in the eastern and western United States.

Conduct detailed studies of temporal variability for underlying activities
(including control measure effectiveness) that creaste dust. Determine
representative tempora profiles for diurnal, weekly, monthly, and annual
emissions for each source type. Determine the extent to which reservoirs of dust
are depleted and incorporate these into emission models.

Create a modeling framework that integrates emission, meteorological,
chemical/transport, and receptor models. This framework would use the
meteorological model to estimate wind speed, wind direction, and moisture that
affect fugitive dust emission rates. Receptor models applied to ambient data
would be used to estimate source contributions at receptors and to reconcile
emissions with these contributions on an area-specific basis.

55 Long-Term Recommendations

Modify existing air quality modeling software to better represent the vertical flux,
deposition, and transport of dust for different spatial scales. Develop, test, and
apply more redistic middle- and neighborhood-scale mathematical models to
represent dust concentrations at receptors near a variety of dust emitters.

Develop a complete, GIS-based, emisson model that can be applied to
neighborhood, urban, and regiona scales. This model would include and update
commonly available activity databases such as land use, roadways, and soil
surveys. It would provide for the use of temporal profiles that allow for daily,
weekly, monthly, and annual emission estimation. The model would aso contain
fugitive dust source profiles suitable for receptor model source apportionment and
for creating speciated inventories that can be used for rollback modeling. It
should propagate input data uncertainties, project emissions under different
development scenarios, and allow for aternative emission factors and activity
databases to estimate the same emission rates.

Compile dust characteristics, including surface loadings, chemical compositions
(source profiles), and suspendable particle content (silt or other) for representative
locations throughout the U.S. Include these in a documented database and apply
them to development of emission estimates. Priorities should be given to airsheds
that operate PM,s chemical speciation monitors. A protocol that combines
systematic grab sampling and laboratory analysis with continuous on-road
measurements is needed for this to be practical.
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Calculate source contributions with receptor models applied to data from the
national PM, s speciation network. Reconcile these contributions with fugitive
dust emission estimates from these areas and with background concentrations
from nearby IMPROV E monitoring sites. Use the results of this reconciliation to
further identify and ameliorate emission modeling deficiencies.

Identify and characterize chemical or physical components in different fugitive
dust sources that allow fugitive dust sub-types to be distinguished from each other
in receptor samples. Apply these characterization methods to receptor samples,
quantify contributions at representative distances from sub-type emitters, and use
the results to improve fugitive dust emission estimation methods.

Define and conduct experiments that increase understanding of vertical flux,
deposition, and removal by surrounding barriers. Such experiments might include
eddy-correlation micrometeorological measurements of positive and negative
vertical fluxes, balances of airflow through and over tree stands downwind of dust
emitters, and measures of particle rebound and filtration over short vegetation,
such as grass.

Develop and apply new methods to estimate fugitive dust emissions using real-
time and remote sensing methods. These methods would be used to verify
emissions from the more established and commonly applied methods as well asto
better understand the physical interactions between emissions and the atmosphere.
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7. FUGITIVE DUST BIBLIOGRAPHY

Following are references to fugitive dust emission rates, chemical composition,
suspension and deposition mechanisms, control measure effectiveness, emission modeling,
and source and receptor modeling. These citations span a wide range scientific disciplines,
geographical areas, and emission source types over a period of more than sixty years. It is
beyond the scope of this report to fully review and summarize the information in these
articles, although appropriate examples have been cited where applicable. This bibliography
provides a starting point for the research projects specified in Section 5.
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