Long-Term Trends in Mobile Source Emissions and Urban Air Quality

Brian McDonald¹,², Si-Wan Kim¹,², Stuart McKeen¹,², Gregory Frost², Michael Trainer²

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder
2. Earth Systems Research Laboratory, Chemical Sciences Division, National Oceanic and Atmospheric Administration

Acknowledgments: Robert Harley (UC-Berkeley), Thomas Kirchstetter (UC-Berkeley), Joost de Gouw (NOAA), and Regional Tropospheric Chemistry Group (NOAA).

21st International Emission Inventory Conference
April 16, 2015
Significant Improvement in U.S. Air Quality

Mean, 10th, and 90th percentiles shown across all EPA routine monitoring locations.

Research Objectives

(1) Assess long-term trends in mobile source emissions
 • Focus on BC, CO, and NO$_x$

(2) Map motor vehicle emissions spatially and temporally
 • Demonstrate a fuel-based approach to mapping emissions
 • Account for differences between heavy-duty trucks (diesel) and passenger vehicles (gasoline)

(3) Urban air quality modeling
 • Reconcile fuel-based mobile source emission inventory with observations
Fuel-Based Approach to Estimating Emissions

Emissions = Activity (kg fuel) x Emission Factor (g/kg fuel)

McDonald et al. (ES&T 2015)
Emissions = Activity (kg fuel) x Emission Factor (g/kg fuel)

- Emission factors obtained from roadway studies
 - IR remote sensing
 - Tunnel studies

- Other pollutants analyzed
 - NO$_x$, VOCs, BC, POA

McDonald et al. (ES&T 2015)
Emissions = Activity (kg fuel) x Emission Factor (g/kg fuel)

- Emission factors obtained from roadway studies
 - IR remote sensing
 - Tunnel studies

- Other pollutants analyzed
 - NO\textsubscript{x}, VOCs, BC, POA

McDonald et al. (ES\&T 2015)
Large Off-Road Emission Factors (in g kg$^{-1}$ fuel)

As of 2010

Mobile Sources
- On-Road Gasoline
- On-Road Diesel
- Off-Road Diesel
- Off-Road Gasoline (Two-Stroke)

Emission factors from McDonald et al. (ES&T 2015)

PM and VOC emission factors for off-road engines are now larger than for on-road engines.
Overall Decrease in BC Emissions

San Francisco

McDonald et al. (ES&T 2015)
Since 1970, mobile source emissions have dominated ambient BC in the SF Bay Area.

McDonald et al. (*ES&T* 2015)
Diesel trucks are an important source of BC, but not the only mobile source contributor.

McDonald et al. (ES&T 2015)
Increasing importance of off-road gasoline engines accounts for slower decrease in total anthropogenic emissions.
Similar Trends in Ambient CO

Los Angeles

All Anthropogenic (mostly mobile)

Ambient CO

On-Road Gasoline

CO emissions dominated by mobile sources in LA.
Trends in Running Exhaust NO\textsubscript{x} Emission Factors

Slower decrease in diesel NO\textsubscript{x} emission factors.

McDonald et al. (JGR 2012)
Comparison with MOVES (EPA)

![Graph showing NOx EF (g kg\(^{-1}\) fuel) over years for On-Road Diesel, On-Road Gasoline, and MOVES2014.]
Comparison with EMFAC (ARB)
Trends in NO$_x$ Emissions with Ambient Trends

Los Angeles

NO$_x$ emissions dominated by mobile sources in LA.

Adapted from McDonald et al. (JGR 2012)
Fuel-Based Inventory of Vehicle Emissions

- Taxable gasoline and diesel fuel sales by state

- Census traffic count data
 - Explicitly resolves ~70% of national passenger and ~80% of truck traffic

- Road density
 - Surrogate for remaining ~30% of passenger and ~20% of truck traffic
Resolution = 500 m
High-Res Model

Emissions Flux
(tC km^{-2} y^{-1})

- <30
- 31 to 100
- 101 to 300
- 301 to 1000
- 1001 to 3000
- 3001 to 10000
- >10000

McDonald et al. (JGR 2014)
Heavy-duty trucks and passenger vehicles exhibit different spatial patterns of activity.
Kim et al. (in prep)
Temporal Patterns of Vehicle Activity (Urban)

Derived from ~70 weigh-in-motion stations across CA

Heavy-duty trucks and passenger vehicles exhibit different diurnal and day-of-week patterns.

McDonald et al. (JGR 2014)
Defaults in MOVES treat light- and heavy-duty vehicles the same.

McDonald et al. (JGR 2014)
Good temporal agreement between fuel-based inventory and aircraft data.

CalNex 2010 Field Campaign in Los Angeles
NOAA WP-3D (May-June 2010)
Kim et al. (in prep)
Summary

- **Long-term trends of mobile source emissions**
 - Similarity in emissions and ambient trends suggests dominance of mobile sources for BC, NO$_x$, and CO in urban regions
 - Growing importance of off-road engines to urban air pollution

- **High-resolution mapping of on-road emissions**
 - Merged fuel sales, traffic count, and weigh-in-motion data to map motor vehicle emissions spatially and temporally
 - Light- and heavy-duty vehicles have different activity patterns

- **Air quality modeling of fuel-based inventory**
 - Fuel-based inventory (input to WRF-Chem) reconciled with spatial and temporal patterns of NO$_2$ during CalNex 2010