Application of Emission Inventories in the Development of SIP Control Strategies and Reconciliation with Air Quality Measurements

Henry Hogo
Assistant Deputy Executive Officer
Mobile Source Division
Science and Technology Advancement

2015 International Emission Inventory Conference
San Diego, CA
April 14, 2015
California’s South Coast Air Basin

• Substantial Air Quality Progress, But Still Serious Health Impacts

• Nation’s Largest Containerized Freight Gateway

4-county Region
16+ Million People

261,000+ Diesel Vehicles
11+ Million Gasoline Vehicles
National Ambient Air Quality Standards

Annual & 24-hr PM2.5 Standards

New Annual PM2.5 Standards

2014 2020 2022 2023 2026 2029 2032 2035 2038 2041

1990 1-hr Ozone Standard

1997 8-hr Ozone Standard

2008 8-hr Ozone Standard

Future 8-hr Ozone Standard
2023 VOC and NOx Emissions in the South Coast Air Basin

VOC

- Stationary and Area Sources 59%
- Off-Road Vehicles 25%
- On-Road Vehicles 16%

Total = 437.8

NOx

- Stationary and Area Sources 22%
- Off-Road Vehicles 42%
- On-Road Vehicles 36%

Total = 319
Top NOx Emissions Sources in 2014

- Heavy-Duty Diesel Trucks: 129 tons/day
- Cars/SUVs: 68 tons/day
- Off-Road Equipment: 64 tons/day
- Ships & Commercial Boats*: 47 tons/day
- Manufacture/Industrial: 35 tons/day
- Med-Duty Vehicles: 27 tons/day
- RECLAIM**: 27 tons/day
- Heavy-Duty Gasoline Trucks: 22 tons/day
- Locomotives: 22 tons/day
- Residential Fuel Combustion: 20 tons/day
- Aircraft: 14 tons/day

* Ocean-going vessels = 35 tons/day
**RECLAIM: 320 largest stationary sources, including all refineries and power plants
Top NOx Emissions Sources in 2023

- Heavy-Duty Diesel Trucks: 51 tons/day
- Off-Road Equipment: 43 tons/day
- Ships & Commercial Boats*: 41 tons/day
- Cars/ SUVs: 27 tons/day
- RECLAIM**: 27 tons/day
- Locomotives: 22 tons/day
- Aircraft: 16 tons/day
- Residential Fuel Combustion: 16 tons/day
- Heavy-Duty Gasoline Trucks: 15 tons/day
- Manufacture/ Industrial: 14 tons/day
- Med-Duty Vehicles: 13 tons/day

* Ocean-going vessels = 32 tons/day
**RECLAIM: 320 largest stationary sources, including all refineries and power plants
Top NOx Emissions Sources in 2032

- Heavy-Duty Diesel Trucks: 46 tons/day
- Ships & Commercial Boats*: 39 tons/day
- Off-Road Equipment: 35 tons/day
- RECLAIM**: 27 tons/day
- Locomotives: 20 tons/day
- Aircraft: 17 tons/day
- Manufacture/Industrial: 15 tons/day
- Cars/SUVs: 13 tons/day
- Residential Fuel Combustion: 11 tons/day
- Heavy-Duty Gasoline Trucks: 10 tons/day
- Med-Duty Vehicles: 7 tons/day

* Ocean-going vessels = 29 tons/day
**RECLAIM: 320 largest stationary sources, including all refineries and power plants
Needed Pollution Reduction to Meet Ozone Air Quality Standards

- Heavy-Duty Diesel Trucks
- Off-Road Equipment
- Ocean-going Vessels
- Other
- RECLAIM (Large Stationary)
- Locomotives
- Aircraft
- Residential Fuel Combustion
- Heavy-Duty Gasoline Trucks
- Light-Duty Vehicles
- Medium-Duty Trucks
- Light-Duty Trucks
- Manufacturing and Industrial
- Commercial Boats
- Service/Commercial

Needed by 2023
Needed by 2032
Passenger Sector
Emission Contributions – NOx (tpd)

2014 Total: 485 tpd

- Off-Road Passenger Transportation, 26
- On-Road Passenger Transportation, 106
- Others, 353*

2023 Total: 319 tpd

- Off-Road Passenger Transportation, 27
- On-Road Passenger Transportation, 59
- Others, 233*

2032 Total: 276 tpd

- Off-Road Passenger Transportation, 27
- On-Road Passenger Transportation, 45
- Others, 204*

* Others represent sources not related to passenger transportation
Goods Movement Sector
Emission Contribution to Total NOx (tpd)

2014 Total: 485 tpd
- Off-Road Goods Movement, 60
- On-Road Goods Movement, 161
- Others, 264*

2023 Total: 319 tpd
- Off-Road Goods Movement, 54
- On-Road Goods Movement, 76
- Others, 188*

2032 Total: 276 tpd
- Off-Road Goods Movement, 29
- On-Road Goods Movement, 75
- Others, 172*

* Others represent sources not related to goods movement
Emission Reduction Scenarios

- Baseline Emissions – 2023, 2032
- Equal Share Reductions (Across-the-Board)
- All Sources at Greatest Level of Control Based on Existing Emission Standards
- Certain Emission Sectors with 90% Greater Reductions than Existing Emission Standards
Mobile Source NOx Emission Reductions to Achieve 8-Hr Ozone Air Quality Standards (2023)

- Ocean-going Vessels
- Locomotives
- Aircraft
- HHD Diesel Trucks
- MHD Diesel Trucks
- LHD Diesel Trucks
- HHD Gasoline Trucks
- MHD Gasoline Trucks
- LHD Gasoline Trucks
- Light-Duty Passenger
- Medium-Duty Trucks
- Light-Duty Trucks
- Harbor Craft

Needed by 2023

100% Engines Meeting Most Stringent Current Std.

All Sources Reduced Equally

Aggressive Scenario for Key Sectors*

*Key Sectors: On-Road HD Trucks, Locomotives, Marine Vessels at Berth, Harbor Crafts, Cargo Handling Equipment
Mobile Source NOx Emission Reductions to Achieve 8-Hr Ozone Air Quality Standards (2032)

- Ocean-going Vessels
- Locomotives
- Aircraft
- HHD Diesel Trucks
- MHD Diesel Trucks
- LHD Diesel Trucks
- HHD Gasoline Trucks
- MHD Gasoline Trucks
- LHD Gasoline Trucks
- Light-Duty Passenger
- Medium-Duty Trucks
- Light-Duty Trucks
- Harbor Craft

100% Engines Meeting Most Stringent Current Std.

Reduced Equally

Needed by 2032

Aggressive Scenario for Key Sectors*

*Key Sectors: On-Road HD Trucks, Locomotives, Marine Vessels at Berth, Harbor Crafts, Cargo Handling Equipment
Some Initial Observations

• Not Likely to Reach “Equal Share” Levels with Current Emissions Standards

• Some Emission Sources May Not Reach “Equal Share” Level – Need for Other Sources to Further Reduce Emissions

• Potential to Reach “Equal Share” Levels of Emission Reduction with Greater Penetration of Zero- and Near-Zero Emission Technologies
Some Initial Observations

- Need for Earlier Penetration of Zero- and Near-Zero Emission Technologies (Commercialization/Deployment)
- Priority Placed on Reducing Emissions from Largest Contributors (i.e., Sub-Categories of Emissions)
Examples of Using Air Quality Measurements to Reconcile Emission Inventories
Ozone Air Quality Modeling

1994 Air Quality Management Plan – Air Quality Modeling Showed Low Levels of Ozone in the Eastern Region

March Air Force Base – Military Aircraft Emission Profiles Different from Commercial Aircraft
- Military Aircraft – Higher VOC Emissions, Lower NOx Emissions
- Commercial Aircraft Emissions – Mostly NOx

Revised Emission Profiles Resulted in Closer Levels of Ozone Compared with Monitoring Data
Use of Default AP-42 Factors May Not Be Applicable in Local Situations

- Entrained Road Dust – Factors Assumed Increased Dust with Increased VMT (No Limits)
- GIS Model Developed to Estimate Entrained Road Dust Limiting Amounts
Multiple Air Toxics Studies

MATES I - 1987

MATES II - 1998-99

MATES III - 2004-06

MATES IV - 2012-13
MATES Data Analysis

- Air Monitoring Measurements of ~40 Chemicals at 10 Fixed Sites
- Computer Simulation Modeling to Show Estimated Risk Levels Throughout the Region
- Computer Simulation Results Compared with Monitoring Data
Reconciliation

• MATES-II
 – Elevated Levels of Styrene Measured in Anaheim
 – Model Did Not Predict High Levels
 – Further Investigations Discovered Foam Plant Out of Compliance

• MATES-III
 – Elevated Levels of Hexavalent Chrome in Riverside Area, Not Predicted in Computer Modeling
 – Further Investigations Discovered Elevated Levels of Chromium in Cement Manufacturing Operations
 – Rule Amendments Were Adopted to Remedy Situation
Summary

- Emissions Inventory Development Need to be Cross Checked with Real World Measurements Where Available
- Air Quality Modeling – Iterative Process Between Modeling Staff and Emissions Inventory Staff
- Control Strategy Development – Iterative Process Between Planning Staff, Emissions Inventory Staff, and Air Quality Modeling Staff