Addressing Science and Policy Needs with Community Emissions Efforts

Greg Frost
NOAA/Earth System Research Laboratory & University of Colorado/CIRES, Boulder, CO
Gregory.J.Frost@noaa.gov

Claire Granier
NOAA/Earth System Research Laboratory & University of Colorado/CIRES, Boulder, CO
University Pierre et Marie Curie, CNRS/INSU, LATMOS-IPSL, Paris, France
Max Planck Institute for Meteorology, Hamburg, Germany
cgranier@latmos.ipsl.fr

Leonor Tarrasón
Norwegian Institute for Air Research, Kjeller, Norway
leonor.tarrason@nilu.no

Paulette Middleton
Panorama Pathways, Boulder, CO
paulette@panoramapathways.net

The scientific results and conclusions, as well as any views or opinions expressed herein, are those of the author(s) and do not necessarily reflect the views of NOAA or the Department of Commerce.
Acknowledgements

Global Emissions Initiative
http://www.geiacenter.org/

Leonor Tarrasón (Chair), Gregory Frost (Chair), Beatriz Cardenas, Hugo Denier van der Gon, Claire Granier (Past Chair), Alex Guenther (Past Chair), Greet Janssens-Maenhout, Johannes Kaiser, Terry Keating, Zbigniew Klimont, Jean-François Lamarque, Catherine Liousse, Paulette Middleton (Network Manager), Slobodan Nickovic, Toshimasa Ohara, Martin Schultz, Ute Skiba, John van Aardenne, Yuxuan Wang

Emissions of atmospheric Compounds & Compilation of Ancillary Data
Claire Granier, Catherine Liousse, Sabine Darras, Aude Mieville, Vincent Pignot
http://ether.ipsl.jussieu.fr/eccad

Community Initiative for Emissions Research and Applications
http://ciera-air.org/

Gregory Frost, Stefan Falke, Claire Granier, Ann Keane, Terry Keating, Jean-François Lamarque, Megan Melamed, Paulette Middleton, Gabrielle Pétron, Steven Smith
Outline

• Emissions information challenges
 ➢ Global and regional examples
• Emissions evaluations and approaches
 ➢ Examples of top-down evaluations
• Overview of community emissions efforts
 ➢ GEIA
 ➢ ECCAD
 ➢ CIERA
Motivation for Understanding Emissions

Actions and decisions about the atmosphere focus on emissions

Quantitative emission information is needed for:
- Accounting for the past
- Observing and calculating the present
- Predicting and projecting the future
- Taking action on emissions
- Making choices: Which “knob” to turn? Is one better than the other?

➢ Do current emissions data meet our needs?
➢ How can these data be improved while maximizing sparse resources?
Emissions Information Challenges

Many emissions data requirements are common to air quality and climate research, regulation, & policy

- Transparency
- Consistency
- Accuracy
- Timeliness
- Uncertainty
- Timeliness

At the same time, there are many issues and needs associated with emissions data

Complexity
- Spatial/temporal scales
- Source types
- Interdisciplinary

Development
- Inconsistencies
- Timeliness
- Traceability

Analysis
- Evaluations
- Uncertainties
- Impacts

Communication
- Data access and sharing
- Literature access
- Producer – user feedbacks

Frost et al., Atmos. Environ., 2012
Bottom-up Inventory Methodology

Inventories are an amalgam of calculations and measurements

\[E_X = \sum_S \left[\text{EF}_{X,S} \cdot A_S \cdot (1 - \text{CE}_{X,S}) \right] \]

- **Total mass emissions of compound X**
- **Emissions factor** = mass of compound X emitted by source S per unit activity; “representative” measurements or estimated
- **Activity of source S**, e.g., amount of fuel burned, vehicle miles driven, etc.; measured or estimated
- **Effectiveness of control measures** for cmpd X at source S; estimated or “representative” measurements

Above calculation carried out over a particular geographic region (usually national scale, or state/county) for a specific time period (usually annual or monthly)

Additional steps usually needed to use inventory in modeling or analysis
- **Spatial Allocation**: gridding, spatial scaling
- **Temporal Variability**: between and subdivisions of inventory periods
- **Temporal Extrapolation**: projections, scenarios
- **Speciation**: VOCs, PM, ...
Inconsistencies in Global Inventories

ACCMIP Emissions for IPCC AR5

- IPCC 5th Assessment work in progress
- Needed consistent 1850-2000 inventory
- 2000: Scenarios begin
- Different initial inventories give different emissions estimates
- Reconciliation necessary

Lamarque et al., ACP, 2010
Global Inventory Comparisons

Global inventories developed around the world show large differences for most pollutants (see previous talk)

Global Totals

Granier et al., Clim. Change, 2011
Regional Inventory Comparisons

Regional inventories show even larger differences for some pollutants (see previous talk)

China Totals

India Totals

Granier et al., Clim. Change, 2011
Emissions Evaluations and Approaches

Inventories
• Consistent inventories for all pollutants relevant to air quality and climate more common
• Alternative hybrid inventory methods now available

Inventories + Observations
• Combination of observing platforms provide data useful for emissions evaluations
• Evaluate inventories using observations
 • Relative and absolute fluxes of pollutants
 • Spatial distributions of emissions
 • Temporal variability
 • Speciation

Inventories + Observations + Models
• Direct and inverse models aid emissions evaluations
• Models needed to understand AQ/climate impacts of emissions changes and feedbacks

Frost et al., Atmos. Environ., 2012
Top-Down vs. Bottom-Up Emissions Approaches

Top-Down
Research atmospheric measurements and modeling
- Sector specific
- Time specific
- Speciated
- Regional or global scales
- Wide range of uncertainties

Relies on high quality atmospheric measurements of trace gas enhancements and measurements or modeling of the atmosphere mixing and wind characteristics

Bottom-Up
Regulatory or research emissions inventories
- Sector specific/process specific
- Time specific
- Not always speciated (total VOCs)
- Regional or global scales
- Uncertainty estimates usually non-existent or low
- Rarely up-to-date

Relies on high quality activity data (routine and non routine), emissions factors, estimates of control effectiveness

G. Pétron, 2012
Inventories Evaluated by Satellite and Aircraft Data

Dallas & Houston NO$_x$ emissions

- Observations consistent with NEI urban NOx emissions when onroad sources dominate
- Top-down analysis highlights NEI biases in industrial point & in-port shipping sources

Satellite (OMIs) vs. Model (WRF/Chem) NO$_2$

Aircraft (WP-3D) vs. Model (WRF/Chem) NO$_2$

S.-W. Kim et al., Atmos. Chem. Phys., 2011
Inverse Modeling of Emissions Using Aircraft Data

Houston fossil-fuel CO\textsubscript{2} emissions calculated without a prior

Inverse modeling using correlated observations of combustion tracers (CO, NO\textsubscript{x}, SO\textsubscript{2}, CO\textsubscript{2}) allows estimate of CO\textsubscript{2} emissions without the use of an explicit CO\textsubscript{2} inventory.

J. Brioude et al., J. Geophys. Res., 2012
Emissions Inferred from Tower and Mobile Sampling

Inferred natural gas CH$_4$ leak rates in Colorado

Atmospheric observations point to inventory underestimates of hydrocarbon leakage from production in Colorado oil & natural gas basin
Bringing together people, data and tools to create the highest quality information on global exchange processes
GEIA
Global Emissions InitiAtive

Mission since 1990
• Quantify anthropogenic emissions & natural exchanges of trace gases & aerosols
• Facilitate use of this information by research, assessment, & policy communities

Ongoing Activities
• Provide consistent access to global and regional emission inventories
• Organize meetings & schools for inventory developers and users
• Facilitate emissions data evaluations and assessments
• Prepare state-of-the-science emissions summaries
• Support international scientific projects

New Directions
Demonstrate potential of improving inventories
 • Promote interoperability of datasets & tools
 • Make use of near-real-time observations

Funding: NASA, EU programs
Current chairs: Greg Frost, Leonor Tarrasón
Past chairs: Claire Granier, Alex Guenther
Network manager: Paulette Middleton
Steering Committee: Newly formed in 2012

IGBP/IGAC/iLEAPS/AIMES initiative

GEIA Network
~1300 data developers and users

http://www.geiacenter.org/
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leonor Tarrasón (Chair)</td>
<td>NILU, Norway</td>
</tr>
<tr>
<td>Gregory Frost (Chair)</td>
<td>NOAA & Univ Colorado, USA</td>
</tr>
<tr>
<td>Beatriz Cardenas</td>
<td>INE, Mexico</td>
</tr>
<tr>
<td>Hugo Denier van der Gon</td>
<td>TNO, The Netherlands</td>
</tr>
<tr>
<td>Claire Granier (Past Chair)</td>
<td>CNRS & UPMC, France</td>
</tr>
<tr>
<td>Alex Guenther (Past Chair)</td>
<td>NCAR, USA</td>
</tr>
<tr>
<td>Greet Janssens-Maenhout</td>
<td>JRC, Italy</td>
</tr>
<tr>
<td>Johannes Kaiser</td>
<td>ECMWF, UK</td>
</tr>
<tr>
<td>Terry Keating</td>
<td>EPA, USA</td>
</tr>
<tr>
<td>Zbigniew Klimont</td>
<td>IIASA, Austria</td>
</tr>
<tr>
<td>Jean-Francois Lamarque</td>
<td>NCAR, USA</td>
</tr>
<tr>
<td>Catherine Liousse</td>
<td>Laboratoire d’Aérologie, France</td>
</tr>
<tr>
<td>Paulette Middleton (Network Manager)</td>
<td>Panorama Pathways, USA</td>
</tr>
<tr>
<td>Slobodan Nickovic</td>
<td>WMO, Switzerland</td>
</tr>
<tr>
<td>Toshimasa Ohara</td>
<td>NIES, Japan</td>
</tr>
<tr>
<td>Martin Schultz</td>
<td>FZ Jülich, Germany</td>
</tr>
<tr>
<td>Ute Skiba</td>
<td>CEH, UK</td>
</tr>
<tr>
<td>John van Aardenne</td>
<td>EEA, Denmark</td>
</tr>
<tr>
<td>Yuxuan Wang</td>
<td>Tsinghua University, China</td>
</tr>
</tbody>
</table>
GEIA’s new interactive emissions data portal
Consistent access to GEIA’s inventories and ancillary data with easy-to-use tools
Supports EU science & forecasting projects

Emissions Invenories
Relational database with all inventories previously in GEIA and most recent global and regional inventories

Ancillary Data
Access to ancillary data used to construct emissions inventories: population, vegetation, & fire data

Interactive Graphical Tools
Online maps, time series, and data analysis

Funding: French National Center for Space Studies
PIs: Claire Granier, Cathy Liousse

ECCAD
Emissions of chemical Compounds & Compilation of Ancillary Data

http://ether.ipsl.jussieu.fr/eccad
ECCAD Datasets

http://ether.ipsl.jussieu.fr/eccad
ECCAD Maps & Tools

Global Totals
NOx, Residential, year 2005: 6.24 Tg/year

NOx, ships, 1850 to 2000, over strait of Gibraltar

http://ether.ipsl.jussieu.fr/eccad
CIERA
Community Initiative for Emissions Research and Applications

Holistic community effort to improve emissions information

GEIA’s new emissions collaboration space
• Developing interoperability
• Facilitating evaluations
• Innovating in communication
• Community developed and driven

Emissions information resources
• Sharing analyses
• Blogs and web forums
• Emissions bibliography
• Emissions lexicon

Support: EPA, NOAA, ESIP
Working Group: Greg Frost, Stefan Falke, Claire Granier, Ann Keane, Terry Keating, Jean-François Lamarque, Megan Melamed, Paulette Middleton, Gabrielle Pétron, Steven Smith

Distributed Emissions Data System
Inventories, observations, model output

Web standards for exchanging data

Standardized tools to visualize, analyze data
CIERA - Using Emissions Web Services

Standardized web service access to emissions data allow them to be used in online tools

Each web link is a call to a web service, dynamically creating and accessing the netCDF file

Form input is used to create web service call for data

Application controls make calls to web services for maps and data

Web page for data file download

Web form for data access

Web application for visualization, analysis

Export to external application

Export analysis result and use in other favorite tools (e.g. Panoply, NASA)

Development sponsored by US EPA (http://cyair.net/)
Hosted by Federation of Earth Science Information Partners (http://esipfed.org/)
CIERA is part of AQ CoP, an international community of data providers working on:

- Common data structures
- Data standards & conventions
- Standardized tools
GEIA Strategic Planning

GEIA is formulating a strategic plan for the next 5+ years, based on feedback from our 2012 GEIA Conference Town Hall and Steering Committee meetings.

Proposed GEIA focus areas:
1. Cross-regional Collaboration
 • Building stronger links to emerging nations
2. Links to Regulatory Community
 • Working closer with regulatory community to establish priority needs
 • Determining how science community can better help meet those needs
3. Capacity Building
 • Synthesizing the science and what it means
 • Recommending best practices
 • Providing access to relevant data
 • Exposing new techniques
 • Facilitating evaluations and assessments
4. Interoperability of Databases
 • Improving access to inventories, observations, and models
Take-Home Messages

• High quality emissions information is critical to understanding the atmosphere and making good decisions about how to manage it
• Bottom-up methodologies are integral to these efforts, but there are challenges associated with these complex datasets
• Top-down methods based on observations and modeling provide alternative approaches to understanding emissions
• Community emissions efforts seek to bring together people, data and tools to provide the best information on emissions
• The research and regulatory communities need to work together for these emissions efforts to succeed

> Please contact the GEIA, ECCAD, & CIERA teams!

Greg Frost, Gregory.J.Frost@noaa.gov
Leonor Tarrasón, leonor.tarrason@nilu.no
Claire Granier, claire.granier@latmos.ipsl.fr
Paulette Middleton, Paulette@PanoramaPathways.net