Predictors of Measurement Accuracy in the Remote Sensing of CO₂ Emissions

Dahl Winters
August 15, 2012

Public domain image courtesy of NASA: http://www.nasa.gov/images/content/285744main_PIA11066_full.jpg
Conducting CO$_2$ Emissions Inventories from Space

- Ideally every emissions source is accounted for.
- Concentration measurements \rightarrow modeled CO$_2$ fluxes (emissions)
- Current instruments not designed to measure *anthropogenic* CO$_2$, but to provide constraints on natural CO$_2$ sources/sinks or to perform entirely different mission objectives
Anthropogenic CO$_2$ emissions must be detected against much larger variations in background CO$_2$ concentration.

Dr. Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/) and Dr. Ralph Keeling, Scripps Institution of Oceanography (scrippsco2.ucsd.edu/).
Question

What properties of satellite instruments might enable them to achieve high anthropogenic CO₂ measurement accuracy?

- **Current instruments**: CO₂ measurement accuracy can be determined by comparison to ground and aerial CO₂ measurements.

- **Planned instruments**: CO₂ measurement accuracy estimated from simulated measurements.
Properties of Satellite Instruments

- **Repeat cycle**
 - time before the same location is re-imaged
 - SSM events more likely to be captured with increased frequency

- **Spectral resolution**
 - the smallest wavelength difference that the instrument can resolve
 - Tradeoff between spectral and spatial resolution

Public domain image courtesy of http://www.gps.gov/multimedia/images/
Properties of Satellite Instruments

- **Spatial resolution**
 - the size of each pixel on the ground
 - tradeoff between spatial and temporal resolution

- **Swath width**
 - the width of the instrument’s field of view, as projected onto the ground

Public domain image courtesy of http://www.nasa.gov/centers/goddard/images/content/94933/main_CaliforniaFires.jpg
Find studies that describe actual or estimated CO$_2$ measurement accuracies of satellite instruments.

Then apply anthropogenic emissions monitoring requirements to determine which instruments, if any, will be useful for obtaining the accurate measurements necessary for conducting this monitoring.
1. Researched studies describing the CO₂ measurement accuracy of 15 instruments being flown on 25 current and planned satellite missions until 2020.

2. Gathered data on the properties of these instruments.
 - Repeat cycle (not relevant to single CO₂ measurements)
 - Spectral ranges (all instruments had sufficient coverage in one or more CO₂ absorption bands)
 - Spectral resolution (variable across many bands)
 - Spatial resolution (used in this study)
 - Swath width (used in this study)
3. Researched studies describing the measurement requirements for anthropogenic emissions monitoring:

- A spatial resolution of 2x2 km (4 km\(^2\)) or less is necessary to visualize plumes from point sources (Bovensmann et al. 2010)

- A 90% confidence level (+/- 20% uncertainty) in anthropogenic emissions was deemed possible with a combination of satellite observations, accurate meteorological data, and a ground sensor network (JASON 2011)
4. Developed multiple regression models in R to find which properties were good predictors of CO₂ measurement accuracy.
 - Exploratory plots indicated one or more log transformations would be useful.
 - Developed single-predictor models for each of the two independent variables, two-predictor models with both variables, then two-predictor models with an interaction term between both variables.
 - The smallest value of Akaike’s information criterion (AIC) was used to determine the model of best fit to the data (Burnham and Anderson 2002).
Measurement accuracy and spatial resolution of CO₂-sensing satellites
Measurement accuracy and swath width of CO$_2$-sensing satellites
Variation of instrument spatial resolution with swath width

\[y = 9.6665x^{0.7776} \]

\[R^2 = 0.5361 \]
Results

- Swath width is a better predictor of measurement accuracy than spatial resolution, though models including both outperformed single-predictor models.
- The best model included an interaction term between spatial resolution and swath width.

\[
\log_{10}(\text{CO}_2\text{Acc}) \sim \text{SpatRes} \times \text{SwathWidth}
\]

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| (Intercept) | 5.157e-02 | 6.332e-02 | 0.814 | 0.42603 |
| SpatRes | 5.800e-04 | 1.763e-04 | 3.291 | 0.00406 ** |
| SwathWidth | 3.347e-04 | 5.905e-05 | 5.668 | 2.24e-05 *** |
| SpatRes:SwathWidth | -5.912e-07 | 1.558e-07 | -3.796 | 0.00132 ** |

CO\textsubscript{2}Acc = CO\textsubscript{2} measurement accuracy (ppmv)
SR = spatial resolution (km2); SW = swath width (km)
Key Findings

- A satellite instrument’s CO$_2$ measurement accuracy is dependent on the combination of two properties: swath width and spatial resolution.
- Higher accuracy is correlated with smaller swath widths and finer spatial resolution.
- An ideal instrument for monitoring anthropogenic CO$_2$ emissions will need a spatial resolution of 2x2 km or less to identify point sources (i.e. plumes).
- To reduce the time needed to cover an area, the instrument should have as wide a swath width as possible without sacrificing measurement accuracy.
Only 3 of the 15 instruments investigated meet the spatial resolution and accuracy requirement posed by Bovensmann et al. (2010) for the monitoring of anthropogenic point sources.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Status</th>
<th>CO₂ Accuracy</th>
<th>Spatial Resolution</th>
<th>Swath Width</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TES</td>
<td>Current until 2013</td>
<td>1.3 ppmv</td>
<td>2.809 km²</td>
<td>18 km</td>
<td>mid-troposphere sensitive; can measure CO₂ but would require a good transport model</td>
</tr>
<tr>
<td>OCO-2</td>
<td>Planned (2013)</td>
<td>1 ppmv expected</td>
<td>2.9025 km²</td>
<td>10.3 km</td>
<td></td>
</tr>
<tr>
<td>CarbonSat</td>
<td>Planned (2018)</td>
<td>2 ppmv expected</td>
<td>4 km²</td>
<td>500 km</td>
<td></td>
</tr>
</tbody>
</table>
Enhancing Ground-Based Inventories

The Vulcan Project
Total Emissions of Fossil Fuel Carbon Dioxide, 2002

www.purdue.edu/eas/carbon/vulcan

The Vulcan Project
Purdue University
Dr. Kevin B. Gurney

Support provided by:
NASA (Carbon/04-0525-0167)
DOE (DE-AC02-05CH11231)