Overview of Presentation

• Background
• Ambient Air Monitoring
• Point Source Testing
• Dispersion Modeling
• Public Health Evaluation
• Conclusions
Barnett Shale
Urban Drilling
Hydraulic Fracturing
Principal Tasks

- Fort Worth Natural Gas Air Quality Study
 - Ambient Air Monitoring
 - Point Source Testing
 - Air Dispersion Modeling
 - Public Health Evaluation
Ambient Air Monitoring

- Measure pollutant concentrations in ambient air downwind from natural gas activities
Ambient Air Monitoring

• Approved in the *Ambient Air Monitoring Plan*

• Presented in September Public Meeting

• Data Sources
 – Meteorological Data (NWS/EPA): 2001-2009
 – Active, permitted, and applying gas well locations
 – Compressor station locations
 – City boundaries/properties
 – Major roadways
 – 2010 natural gas production
Ambient Air Monitoring

- 8 sites
- Sampled for 2 months
- Sampled once every 3 days
- Over 140 different pollutants
- High Level Activity Sites
 - 11 additional air pollutants
 - Including formaldehyde, acetaldehyde
- Fence Line Sites
 - Also sampled for methane
Results - Concentrations

- High Activity-Level Site just north of City Center (Site S-4) was generally higher than other sites.
- Fence Line Sites (S-6 and S-7) were generally lower relative to other sites.
- Background Site (S-1) and Mobile Sources Site (S-2) were similar.
- Pre-Production sites (S-3A and S-3B) typically did not display higher pollutant concentrations than the background and mobile sources sites.
Results - Benzene

Benzene average was significantly higher at High Activity Site S-4 than other sites. Fence Line sites (S-6 and S-7) were the lowest.
Point Source Testing

- **Objective:** Characterize emissions from natural gas production sources
- Survey 75% of active well pads, well pad with compression and compressor stations
- Survey various stages of well development
- Measure emissions with:
 - Infrared Camera
 - Toxic Vapor Analyzer
 - HiFlow Sampler (with Canisters)
Point Source Testing

Legend
- Completion Operation
- Compressor Station
- Drilling Operation
- Processing Facility
- Saltwater Treatment Facility
- Fracing Operation

Legend
- Dry Well Pad
- Wet Well Pad
Point Source Testing

Infrared (IR) Camera

HiFlow Sampler

Toxic Vapor Analyzer (TVA)

Canister
Average Annual VOC Emissions from Well Pad

- Miscellaneous
- Valve
- Connector
- Pneumatic Valve Controller
- Gas Regulator
- Tank Relief Devices
- Tank Thief Hatch

Average Tons/Year

Point Source Testing
Point Source Testing

Tank Thief Hatch

Storage Tank Vent

Pneumatic Valve Controller

Pressure Regulators
Point Source Testing

Annual Average Wet Gas and Dry Gas Emissions at Well Pads

- **Dry Gas Site**
 - Average of TOC (tons/year): 35
 - Average of VOC (tons/year): 1.6
 - Average of HAP (tons/year): 0.4

- **Wet Gas Site**
 - Average of TOC (tons/year): 30
 - Average of VOC (tons/year): 1.4
 - Average of HAP (tons/year): 0.2
Air Dispersion Modeling

- Emissions data from point source testing program
- Meteorological data from DFW Airport
- Used EPA-approved model (AERMOD)
- Receptors out to 2 kilometers
- Predict short- and long-term impacts
- Four scenarios considered
Modeling Scenario 1

- *Average* well pad emission rates
Modeling Scenario 2

- *Highest* well pad emission rates
Modeling Scenario 3

• *Highest* compressor station emission rates
Modeling Scenario 4

- **Co-located** well pad and compressor station (worst-case)
Public Health Evaluation

Exposure levels

- Serious health effects observed
- Less serious health effects observed
- No health effects observed

Health-based screening levels published by various agencies
Public Health Evaluation

Dispersion Modeling

• Scenario 1
 – No estimated air quality impacts above screening levels

• Scenario 2
 – Estimated concentrations above screening levels for acrolein, benzene, and formaldehyde, but only in highly localized areas

• Scenarios 3 and 4
 – Estimated concentrations above screening levels for acrolein and formaldehyde extend beyond property boundaries and beyond setback distances
Benzene Modeling Results
Formaldehyde Modeling Results

Scenario 1: Typical Well Pad
- 600-foot setback
- 200-foot setback
- Well Pad

Scenario 2: Worst-Case Well Pad
- 600-foot setback
- 200-foot setback
- Well Pad

Scenario 3: Worst-Case Compressor Station
- 600-foot setback
- 200-foot setback
- Compressor Station

Scenario 4: Co-Located Worst-Case Well Pad and Compressor Station
- 600-foot setback
- 200-foot setback
- Well Pad and Compressor Station
Acrolein Modeling Results

Scenario 1: Typical Well Pad

Scenario 2: Worst-Case Well Pad

Scenario 3: Worst-Case Compressor Station

Scenario 4: Co-Located Worst-Case Well Pad and Compressor Station
Public Health Evaluation

Ambient Air Measurements

• 24-hour average concentrations
 – All below short-term health-based screening levels (one exception of “limited reliability”)

• Program-average concentrations
 – All below long-term health-based screening levels (one exception of “limited reliability”)

• No health hazard associated with continued exposure to measured levels
Conclusions

• Monitoring and modeling data indicate that setback distances are adequate
 – For overwhelming majority of sites, no pollutants were found to exceed screening levels beyond setback distances
 – For sites with multiple, large engines, estimated acrolein and formaldehyde concentrations exceed protective screening levels, but do not reach levels expected to cause adverse health effects
Recommendations

• Encourage the use of air pollution control strategies
 – Catalytic oxidizers on large compressor engines
 – Electric-driven compressor engines
 – Low bleed or no bleed pneumatic valve controls
 – Vapor recovery units on storage tanks

• Implement enhanced inspection and maintenance of well pads and gas handling operation equipment

• Conduct additional research evaluating acrolein and formaldehyde emissions

• Continue ambient air monitoring
Questions?

Mike Pring
Mike.pring@erg.com
919-468-7840

Final report posted at:
http://fortworthtexas.gov/gaswells/default.aspx?id=87074