A Detailed Approach for Improving Continuous Emission Monitoring Data for Regulatory Air Quality Modeling

Zachariah Adelman, Mohammad Omary, Jason Zhao, Qun He, Dongmei Yang
Center for Environmental Modeling for Policy Development
University of North Carolina Institute for the Environment

James Boylan
Georgia Department of Natural Resources

Presented at the 19th International Emission Inventory Conference
August 14-16, 2012 Tampa, FL
Year 2007 CEM NOx Emissions

IL CEM 2007 annual time series plot of 880067–BLR15

IN CEM 2007 annual time series plot of 6113–2

19th Annual EPA Emission Inventory Conference

Tampa, FL
Objectives

• Identify and correct anomalies in the CEM inventories
• Reconcile differences between CEM and NEI point inventories
• Identify full and partial-year reporting CEM sources
• Calculate emissions for the non-reporting period for partial-year reporters
CEM Anomalies

• Continuous Emission Monitor (CEM) data available for hourly NOx, SO2, heat input, gross load, and steam load
• CEM sources required to report for every operating hour
• Gapfilling of missing readings can produce values much larger than the actual emissions
• Metadata in the CEM database can be used to identify anomalies
CEM Anomalies

- Hourly CEM NOx, SO2, and heat input flags:
 1. Measured
 2. Calculated
 3. Substituted
 4. Measured and substituted

- First compute annual or seasonal means by source/hour for records flagged 1 and 2

- Anomalies identified on an hourly basis:
 - records flagged as 2, 3, or 4 AND
 - hourly value > 2x annual or seasonal mean for that source/hour
CEM Anomalies

- Anomaly scrubbing process
 1. Scrub anomalies in the hourly heat input data
 2. Calculate mean emissions rates (lbs/mmBTU)
 - SO2 = annual mean rate
 - NOx = ozone season rate (May-Sep)
 - NOx = non-ozone season rate (Jan-Apr, Oct-Dec)
 - Atypical operations (e.g. new SCR installation)
 3. Calculate NOx and SO2 hourly replacement values as product of scrubbed HI and mean emissions rates
 4. Identify and replace NOx and SO2 anomalies
- Output scrubbed CEM data and flag replaced values
Year 2007 CEM NOx Emissions

IL CEM 2007 annual time series plot of 880067-BLR15

IN CEM 2007 annual time series plot of 6113-2

19th Annual EPA Emission Inventory Conference
Atypical Operations

IL CEM 2007 annual time series plot of 861–01

Date

IL CEM 2007 annual time series plot of 861–01

Date

19th Annual EPA Emission Inventory Conference Tampa, FL
Partial Year Reporters

- CEM sources that report only for part of their operating year
- Annual total CEM < annual inventory
- CEM data are missing or null for at least one full month
Partial Year Reporters

- Identify partial year reporters
- Calculate reporting and non-reporting period emissions
- Develop hourly temporal profiles for the non-reporting period
 - NOx, SO2, and heat input
 - Representative CEM sources: Same state + same SCC
 - Fall back to SCC hierarchy
- Approach requires consistency in years between annual and CEM inventories
Results

• 2007 CEM anomaly scrubbing
 – NOx: 9,764 tons and 46,388 hours
 – SO2: 10,511 tons and 8,903 hours
 – Heat input: $14,142 \times 10^3$ mmBTU and 14,744 hours

• 2008 CEM anomaly scrubbing
 – NOx: 11,258 tons and 59,110 hours
 – SO2: 13,525 tons and 13,152 hours
 – Heat input: $13,915 \times 10^3$ mmBTU and 20,965 hours
Results: 2008 Partial Reporting NOx
Results: 2008 Partial Reporting SO2
Conclusions and Future Work

• Approaches applied to 2007 and 2008 modeling for SESARM, MARAMA, WestJump, and OAQPS modeling studies
• Targeted air quality sensitivities
• Refinements to estimating the replacement values for anomalies
 – Use monthly averages rather than annual/seasonal averages
• Java program *CEMCorrect* for scrubbing anomalies available upon request