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ABSTRACT 

In order to accurately quantify and regulate emissions in the U.S. onroad transportation sector, its spatial 

heterogeneity must be characterized. To portray a spatially-explicit fleet distribution, driving patterns, 

and mitigation strategies, we compare a high-resolution onroad emissions data product (Vulcan) to a 

national averaging of the Vulcan result. This comparison is performed for light- and heavy-duty vehicle 

classes, and rural and urban road groups. We find that the use of national averages incurs state-level 

biases for road groupings that are almost twice as large as for vehicle groupings. The uncertainty for all 

groups exceeds the bias, and both quantities are positively correlated with total state emissions. States 

with the largest emissions totals are typically similar to one another in terms of emissions fraction 

distribution across road and vehicle groups, while smaller-emitting states have a wider range of variation 

in all groups. State-specific errors in reduction estimates as large as ±60% corresponding to ±0.2 MtC 

are found for a national-average emissions mitigation strategy focused on a 10% emissions reduction 

from a single vehicle class, such as passenger gas vehicles or heavy diesel trucks. These differences 

highlight the importance of spatial resolution for achieving consistently effective emissions reductions. 

Climate agreements that fully account for uncertainties in emission estimates as well as regional 

differences will be best suited to enact effective policy. 

 

INTRODUCTION 

Carbon dioxide (CO2) is the most abundant anthropogenic greenhouse gas and projections of fossil fuel 

energy demand show CO2 concentrations increasing indefinitely into the future
1
. Because localities have 

considerable control over transportation planning and policy, interest in the potential of the 
transportation sector to offer effective mitigation options is increasing on both local and national levels

2
. 

After electricity production, the transportation sector is the second largest CO2 emitting economic sector 

in the United States, accounting for 32.3% of the total U.S. emissions in 2002 
3
. Over 80% of the 

transportation sector is composed of onroad emissions, with the remainder of emissions shared by the 

nonroad, aircraft, railroad, and commercial marine vessel transportation 
4
. 

Both national and local legislation have recognized the importance of the transportation sector. In order 

to construct effective mitigation policies for the onroad transportation sector and more accurately predict 
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CO2 emissions for use in atmospheric transport models and measurements, analysis must incorporate the 

three dominant components that determine onroad transport CO2 emissions: vehicle miles traveled 

(VMT), vehicle fuel efficiency and emissions regulation strategies. 

Studies to date, have either focused on only one of these three components, have been completed only at 
the national scale, or have not explicitly represented CO2 emissions 

5-7
.  

Southworth 
6
 analyzed VMT and CO2 emissions for the 100 largest metropolitan areas in the U.S. but 

only disaggregated vehicles into trucks and passenger cars and used a single national estimate of vehicle 
fuel efficiency for each of the two vehicle types. 

Puentes 
5
 presented a thorough analysis of national-level VMT from 1966 to 2008 and further 

subdivided the analysis into vehicle classes, road classes and the largest metropolitan areas but there was 
no analysis of CO2 emissions. 

Stone 
7
 discussed the impact of Hybrid Electric Vehicle (HEV) introduction on urban mobile CO2 

emissions. The study involved a sample of eleven cities located in six states in the Midwestern United 

States. However, there was no variation in the vehicle fleet across the six states and hence, the vehicles 

had the same CO2 emissions per mile of travel. 

We overcome many of the previous limitations by analyzing onroad CO2 emission differences between a 

new, high-resolution emissions data product and a “low-resolution” or “national-average” approach, 

typical of previous studies. Our aim is to demonstrate the quantitative impact of a highly-resolved 

approach on emissions estimation and mitigation in the U.S. onroad transportation sector. We perform 

this analysis at the state spatial scale and disaggregate results by road, vehicle, and fuel classifications. 

We also make a series of recommendations to lower and better quantify the uncertainty associated with 

our high-resolution emissions data product. 

 

BODY 

 

Methodology 

 

Data 

The onroad CO2 emissions analyzed here are a product of the Vulcan Project, an effort aimed at 

quantifying hourly fossil fuel CO2 emissions for the entirety of the United States at fine space/time 

resolution 
3
. The onroad mobile emissions are constructed from a series of existing databases and 

modeling efforts to generate CO2 emissions for the year 2002 at the spatial scale of a U.S. county every 

hour for the entire U.S. Further spatial allocation is performed in order to place these emissions onto 
U.S. roads and onto a common 10 km x 10 km spatial grid.  

 

Emissions calculation 

The Vulcan onroad transportation emissions calculation utilizes the total vehicle miles traveled (VMT) 

from the National Mobile Inventory Model (NMIM) County Database (NCD) in which the data is 

provided for each combination of 28 vehicle types, 6 road types, county, and month (see Appendix A for 

details).  

To obtain onroad transportation CO2 emission factors (grams CO2/mile driven), EPAs MOBILE6.2 

onroad combustion model was utilized 
8,9

. The product of VMT and corresponding CO2 emission factor 

yields the county CO2 emissions for each road and vehicle type combination. This can be expressed as,  

 

 



3 

 

Equation (1)       CFVMTC
VXV

C

XV

C


,,   

 

where                      



C

V ,X
C  = CO2 emissions for vehicle type V on road type X in county C 
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V ,X
VMT = the total vehicle miles traveled in county C, for vehicle class V and      

road type X 

        



V
CF  = the CO2 emission factor (mass of CO2/mile) for vehicle type V 

 

Each county-specific fleet is therefore defined by the combination of the vehicle type mix and their 
respective VMT. 

 

Comparison Method 

In order to compare results from the Vulcan high-resolution emissions data product to a “low-

resolution” or “national-average” approach, we simulate results by creating average CO2 emissions 

factors for aggregate vehicle and road type groups. Vehicles are grouped into either a light-duty (LD) or 

heavy-duty (HD) vehicle group (all fuels combined) and an urban or rural road group (see Appendix A 

for details). All groups are analyzed at the U.S. state spatial scale. The difference between these two 

approaches can be considered a bias that can be quantified for each of the vehicle and road groups. We 

attempt to quantify two qualities of this bias: 1) the ratio of the bias from each of the aggregate vehicle 

and road groups to the CO2 total in a given state and 2) the ratio of the bias from each of the aggregate 
vehicle and road groups to the national total group-specific CO2 emissions. 

Equation (2)    S
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where  
G

S%
 
= the percent difference between the Vulcan CO2 and national-average CO2 

emissions for state S and group G  

G

SVEM  = the CO2 emissions for state S and group G obtained from the Vulcan 

data product 
G

SLEM  = the CO2 emissions for state S and group G obtained from the national-

average approach 

SVEM  = the total (summed across all groups) CO2 emissions for state S obtained 

from the Vulcan data product 

G

NVEM  = the national total CO2 emissions for group G  

Positive values for Equations 2 and 3 imply that the national-average approach overestimates emissions 

relative to the Vulcan estimate, and vice-versa. Equation 2 quantifies the difference in state-level CO2 

emissions between the national-average approach and the Vulcan estimate for each of the groups relative 

to the Vulcan state total. Equation 3 quantifies the difference in state-level CO2 emissions between the 

national-average approach and the Vulcan estimate for each of the groups relative to the Vulcan national 

total. Hence, Equation 2 provides information about what is driving the biases present at the state-level 

while Equation 3 provides information about where across the nation, the biases are most important. 
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Uncertainty  

There are two central variables in the calculation of onroad transportation CO2 emissions in the Vulcan 

system, each with an associated uncertainty. The first is the uncertainty associated with the estimate of 

VMT. The other is the assignment of the CO2 emission factor to vehicle class. The uncertainties are 

centered symmetrically about the calculated Vulcan result with an equal magnitude of uncertainty in 

both the positive and negative directions.  

 

VMT Uncertainty 

The VMT uncertainty stems from the precision of the measurements and estimates of VMT produced by 

the FHWA. These estimates may be found in Appendix C of the HPMS Field Manual. Samples 

designated at a “90-10” confidence interval and precision level contain VMT estimation within ±10 

percent of the true value, 90 percent of the time. In order to convert these values to a one-sigma VMT 

variation, the stated confidence interval and precision level were combined into a single estimate of 
uncertainty as follows:  

Equation (4)    Ux = Vx / Sx           

 

where              Ux = the uncertainty percent value associated with road type X 

Vx = the percent variation from the true value for road type X (10 for 90-10) 

Sx = the number of standard deviations within a normal distribution that is within 

variation Vx of the true value for road type X (“90” for 90-10).  

In case of road types with missing data, the lowest confidence and precision level (80-10) was used. 

 

Age Distribution Uncertainty 

The CO2 emission factor per mile driven is derived from the results of the MOBILE6.2 combustion 

model and is a function of fuel carbon content (grams CO2/gallon of fuel), a vehicle fuel efficiency 

(miles/gallon of fuel), a vehicle age distribution, and a carbon oxidation factor. The age distribution has 

an impact on fleet emission levels due to the fact that for a particular vehicle class, a newer fleet has 

higher fuel efficiency than an older fleet. 

 

Fuel Efficiency Uncertainty 

The other source of uncertainty considered for the CO2 emission factor is the vehicle fuel efficiency or 

the well-known “MPG” rating for a given vehicle type and model year. For Vulcan uncertainty 

estimation, we use the percent difference between the “5-cycle” and “Current EPA Label” estimates 

obtained from tests performed by the EPA (see Appendix A for details). The percentage difference 

values are assumed to be symmetric uncertainties (both “hi” and “low”) and are considered one-sigma 
variations. 

 

Results 

 

Bias of a national-average approach 

Figure 1 shows the state-specific biases (Equation 2) of the national-average results relative to the 

Vulcan data product organized into the road and vehicle type groups. The spread of positive and 

negative biases for both the road and vehicle type groups are driven by the road and vehicle type 

compositions of each state, which differ from the national-average. Figure 1 also highlights the 

correlation between the road and vehicle type group emissions biases that results from the underlying 
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relationships. For example, traffic on urban roads is comprised mostly of LD vehicles (r=0.64; p < 

0.0001), while rural roads have a comparatively larger percentage of HD vehicle traffic (r=0.74; p < 

0.0001) 
10

.  

In the case of the vehicle group bias, the magnitudes are driven by states having a greater/lesser 

proportion of LD/HD vehicles within their total state fleet when compared to the national-average. For 

example, the LD vehicle class has emission factors ranging from 177.4 grams CO2/mile (motorcycles) to 

577.0 grams CO2/mile (LD diesel trucks). If the amount of motorcycles in a state is greater than the 

national-average, the national-average approach will yield a positive emissions bias compared to the 

Vulcan approach. The standard deviation of these biases is 2.0% and 0.8% for the LD and HD groups, 

respectively. 

 

Figure 1. State-specific biases of the national-average results relative to the Vulcan data product 

for road and vehicle aggregate groups. a) light duty vs. urban groups; b) heavy duty vs. rural 

groups. A one-to-one line is present in each panel as a reference and large values are denoted by 
red symbols. 

 

a) 

 

b) 

  

The road group bias is driven by a combination of two factors: 1) the amount of rural versus urban VMT 

within each state relative to the national average and 2) the vehicle class distribution comprising the 

rural/urban VMT and its difference from the national average. Hence, states having a larger amount of 

rural VMT relative to the national average, but for which the vehicle class composition of the rural VMT 

matches the national average, will still result in a negative bias. If the vehicle class composition within 

the rural VMT contains a greater proportion of higher-emitting LD vehicle types than the national 

average, this will compound the negative bias. Similarly, states in which the amount of rural VMT 

matches the national average may still arrive at a bias were the vehicle class composition within the 

rural VMT to contain a larger proportion of higher-emitting LD VMT than the national average. These 

factors account for the larger bias values in the road groups. The standard deviation of these biases is 

3.2% and 2% for the urban and rural groups, respectively. 

Figure 2 shows the biases of Figure 1 but normalized by the national total, group-specific fossil fuel CO2 

emissions (Equation 3). When normalized by national totals, the biases highlight states with large 

amounts of onroad emissions that also deviate significantly from the national average. For example, 

although Connecticut has the fifth largest rural road group bias (Figure 1a), the state accounts for less 

than 0.25% of the national emission total and hence, is not an outlier value in Figure 2b. 
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Figure 2. As in Figure 1 but normalized by the national total CO2 emissions in each road and 

vehicle group. A one-to-one line is present in each panel as a reference and large values are 

denoted by red symbols. 

a) b) 

 

The vehicle class distribution is a significant contributor to the observed LD and HD biases (Figure 3). 

States that exhibit a positive LD bias (Figure 2a: Texas, Florida, California) have large contributions 

from the lowest-emitting vehicle classes. Conversely, the states showing a negative LD bias (Michigan, 

Illinois, New York) have larger fractions than the national average of emissions from the highest-

emitting vehicle classes. A similar pattern is shown in Figure 3b for the HD group. 

 

Figure 3. Distribution of emissions from each vehicle classes within a vehicle group. Lighter 

colors denote higher-emitting vehicles per mile traveled. a) light-duty group; b) heavy-duty 

group. 

 a)  b) 

 

Onroad fossil fuel CO2 emissions uncertainty 

In order to place the uncertainty of the Vulcan onroad CO2 emissions in context, we calculate a 

“normalized” uncertainty for each state. This quantifies uncertainty from each of the uncertainty 

contributors (VMT, age distribution, fuel efficiency) and from each of the aggregate road and vehicle 
type groups as a fraction of the state total CO2 onroad emissions. This can be expressed as, 
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Equation (5)     S
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where  
GU

SHEM ,
= the high uncertainty Vulcan CO2 emissions for state S, group G, and 

uncertainty type U 

GU

SVEM , = the central Vulcan CO2 emissions for state S, group G, and uncertainty 

type U 

SVEM  = the central Vulcan CO2 emissions for state S 

The uncertainty type is either uncertainty due to VMT, age distribution, fuel efficiency, or the 

combination of all three uncertainty factors. A group represents either the aggregate vehicle type group 

(HD or LD) or aggregate road type group (rural or urban). The normalized uncertainty is presented in 

Figure 4. 

 

Figure 4. Vulcan state-specific normalized onroad fossil fuel CO2 uncertainties versus 

emissions. a) normalized urban uncertainty vs. total emissions; b) normalized rural uncertainty 

vs. total emissions; c) normalized LD uncertainty vs. total emissions; d) normalized HD 

uncertainty vs. total emissions. VMT uncertainty (blue diamonds), fuel efficiency uncertainty 

(green triangles), fleet age uncertainty (red squares). The y-axis scales are different in each 
panel. 

 

a) 

 

b) 

 

c) 

 

d) 

 

As specified in the uncertainty construction, the largest contributors to the total uncertainty are the VMT 

and fuel efficiency uncertainties which are an order of magnitude larger than the Fleet Age uncertainty 

in all aggregate groups. The LD uncertainty generally shares characteristics of the urban uncertainty 

since the majority of vehicles on urban roads are within the LD group. 
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VMT uncertainty is dependent only on road type. Hence, the magnitude of the VMT uncertainty in the 

rural and urban road type groups (Figure 4a, 4b) reflects the proportion of state VMT on rural versus 

urban roads and these magnitudes are inversely related for a given state. Unlike the road group VMT 

uncertainty, the magnitude of the two vehicle group VMT uncertainties reflects the relative proportion 

of state VMT in the LD versus HD vehicle groups, and the distribution of each vehicle group on either 

urban or rural roads. VMT uncertainty magnitude reflects the correlation between vehicle type and road 

type. Hence, the VMT uncertainty for the LD group is much larger and closer to the urban VMT 

uncertainty (7.8%) when compared to the HD vehicle group, the vehicles of which are more likely to 

travel on rural roads. 

Fuel efficiency uncertainty is dependent on both vehicle and road type (“city” versus “highway”) in the 

uncertainty construction used in this study. However, the magnitude of the uncertainty only varies with 

road type, being a fixed value across all vehicle types. As with the VMT uncertainty, the fuel efficiency 

uncertainty is greater for urban road types because of the greater proportion of “stop-and-go” traffic 

which results in greater fuel efficiency variation. 

Fleet age uncertainty is dependent only on the vehicle type. It exhibits the smallest uncertainty due to the 

small observed variation in state-to-state fleet age distribution. However, despite the fact that the 

uncertainty in age distribution is small, it results almost exclusively from variation in the LD fleet as 

opposed to the HD fleet. HD fleets are commercially-owned and maintained by companies that have 

fleet management policies in place to maximize fleet efficiency 
11

. 

 

Bias and uncertainty comparison 

Figure 5 compares the normalized absolute bias (Equation 2) to the normalized uncertainty (Equation 5) 
for each of the aggregate groups.  

 

Figure 5. Total normalized state-specific uncertainty versus total absolute normalized state-

specific bias. Symbol size is proportional to total state emissions. a) urban; b) rural; c) LD; d) 
HD. Note that scales are different in each panel. 

 

 

 a)  b) 

 c)  d) 
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In nearly all cases, the total Vulcan uncertainty exceeds the calculated bias and exhibits no obvious 

relationship. However, the largest-emitting states exhibit less variation in both normalized bias and 

uncertainty for the aggregate groups than the smallest-emitting states. A state may emit a small amount 

of emissions, with the majority of these emissions occurring on urban roads, while other small-emitting 

states have predominantly rural emissions. Likewise, similar trends are present for the vehicle groups, 

where small states display larger standard and relative standard deviations when compared to the same 

quantities for the larger states.  

 

Discussion 

 

Policy Implications 

Accurate emissions estimation with realistic, unbiased uncertainties are critical in assuring that reported 

emissions reductions are credible. The Kyoto Protocol sets forth emissions reductions targets of 7% 

from 1990 amounts by 2008-2012, a target that was agreed upon but not ratified by the United States. 

The California Senate proposed 8% reductions from 2005 amounts by 2020 and 15% reductions by 2035 
12,13

. These targets are the same size or smaller than the uncertainty found in the rural, urban, and LD 

groups. Therefore even if the targets proposed by the Kyoto Protocol and California Senate were 

achieved, the reductions would not necessarily be detectable for three out of the four road and vehicle 
groups.  

Transportation sector policy formulation based on a US national-average emissions approach is poorly 

suited for cities, states and regions that differ from the national mean. Policies based on the specific 

emission profiles of a county or state will address specific regional needs and idiosyncrasies and 

thereby, maximize emissions mitigation across the entire nation. 

Figure 6 demonstrates the differential impact to state-level emissions of a nationwide 10% reduction in 

emissions from the Light Duty Gasoline Vehicle (LDGV) class and a Heavy-Duty Diesel Vehicle 

(HDDV8B) class. These two vehicle classes were chosen because they account for the largest fraction of 

emissions within their respective vehicle groups. These reductions are comparable to the fuel efficiency 

standards set forth by the EPA for LD and HD vehicles 
14-16

. The reductions are expressed as the 

difference between the actual percent reduction and the expected emission reduction if using a national-

average fleet composition. Figure 6 shows this difference as a function of the proportion each specific 

vehicle class represents within the larger vehicle groups used in this study.  

Figure 6. The difference between the actual state emission reduction and expected (%) 

associated with a nationwide vehicle-specific 10% emissions reduction versus the proportion of 

vehicle class. a) reduction difference vs LDGV proportion of LD; b) reduction difference vs 

HDDV8B proportion of HD. Symbol size is proportional to total state emissions. The red symbol 

represents the national average. 

a) b) 
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Nationally, 51.9% of an average state's LD group emissions are due to the LDGV class. Figure 6a shows 

the large spread of LDGV proportion values, with some states having as little as 42.7% of their LD 

group emissions accounted for by LDGV class and some states as large as 75.2%. A 10% emissions 

reduction for the LDGV class would yield a 3.8% average reduction in total state emissions, but for a 

given state this value can range from 3.0 to 6.1%. This results in a range of deviation from expected 

emissions reductions of -25 to +60%. For example, the LDGV proportion in Texas exceeds the national 

average; the total reduction for this state would be subsequently underestimated by 0.1 MtC/yr. 

Similarly, 44.2% of an average state's HD group emissions are due to the HDDV8B class (Figure 6b). 

This figure corresponds to a 1.2% total emissions reduction in an average state if a policy advocating a 

10% HDDV8B emissions reduction were implemented. However, because the HDDV8B proportion 

ranges from 22.8% to 57.7% overall reductions vary by state from 0.5 to 1.8%. The range of deviation 

from expected reductions is ±60% from the national average. This would yield an overestimation of 
emissions reductions by 0.2 MtC/yr in the State of California. 

Montgomery County, Maryland passed the first county-wide carbon tax in the U.S. in 2010 calling for 

payments of $5 per ton of CO2 
17

. Using the national-average fleet as a baseline, the difference in 

expected and actual emissions reductions obtained by a 10% emissions reduction would cause California 

to be undercharged by nearly $800,000 under this policy due to its smaller fraction of HDDV8B 
vehicles. Conversely, Texas would overpay by $500,000 due to its larger fraction of LDGV vehicles.  

 

4.2 Uncertainty Improvement 

The largest source of onroad fossil fuel CO2 emissions uncertainty in this study, VMT uncertainty, can 

be traced to a number of sources. Poorly placed or distant traffic monitoring stations may lead to vehicle 

miscounting. If stations are too far apart or placed illogically with respect to exit and entry points on a 

given road segment, vehicles may enter and/or exit without being recorded (undercounting). The 

opposite problem may occur if a vehicle enters just before the monitoring station and exits immediately 

or shortly after being counted (overcounting). In order to reduce all three of these sources of VMT 

uncertainty, a larger and more representative set of monitoring stations is required, with optimal 

placement. Uncertainty is introduced when state-level VMT estimates are downscaled to counties, as 

described in section 2.2. If there are significant differences in road network composition between 

individual counties and the state, bias results. One example of this is a situation in which the proportion 

of interstate to arterial roads varies significantly between an individual county and the state in which it is 

located 
18-20

. 

An option to reduce the uncertainty associated with these problems is a periodic review of the variables 

involved in the VMT calculation. This assessment would be used to adjust the variables to current 

values that reflect actual conditions. Such a procedure would update scope of influence and lane-mile 

values for each station and ensure that any gaps in data readings are filled in the most accurate way 

possible. Additionally, the administration of driver surveys or a sampling of odometer readings for 

vehicles traveling within the domain associated with a particular station would contribute to a more 

realistic characterization of local VMT. 

Analyses of new fuel efficiency regulations for the HD fleet and revised CAFE standards have the 

potential to aid the formulation of a more accurate fuel efficiency estimate, thereby lowering the fuel 

efficiency uncertainty 
15,16

. Available data on annual vehicle sales by class may help to accurately 

represent the particular fleet makeup of each state or region. Such a portrayal, in conjunction with a 

larger, more representative sampling of vehicle classes, would provide the level of detail necessary for a 
more comprehensive and accurate uncertainty estimate.  

Because the traffic on each road type can vary by location, fuel efficiency uncertainty has spatial 

dependence. City roads are classified as small roads regardless of the city in which they are located. 
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However, a city road located in a major urban center may experience significantly different traffic 

patterns from those on small town roads. These disparities go unaccounted for in the fuel efficiency 

uncertainty calculation and affect its accuracy. In order to account for these obvious differences, 

revisions and expansions must be made to the current road type classification system. By accounting for 

location-specific differences, improved uncertainty will enable more informed policy decisions to be 
made on the basis of a more comprehensive and accurate assessment of road network biases. 

 

CONCLUSIONS 

As one of the largest sectoral sources of fossil fuel CO2 emissions in the United States, onroad fossil fuel 

CO2 emissions, are an important component of carbon cycle budget studies and figure prominently in 

policies designed to mitigate greenhouse gas emissions. Although onroad CO2 emissions in the United 

States have been studied extensively, these efforts lack sub-national spatial detail. Such detail is 

essential because both scientific questions and greenhouse gas policies are being explored at the urban 

landscape scale and current analysis cannot adequately support quantitative decisions at these scales. 

Onroad CO2 emissions are dependent on a variety of driving factors, all of which are known to vary 

significantly at these smaller spatial scales. Hence, in order to study, project and mitigate onroad CO2 
emissions, a high-resolution onroad emissions data product is paramount. 

We find that using group-specific national averages is consistently associated with state-level emissions 

bias; however, the range of bias estimated is strongly dependent on how the emissions are classified. A 

vehicle group classification yields a state-level normalized bias range of -2.6% to 8.1% while a road 

group classification yields a state-level normalized bias range of -6.3% to 16.8%. When normalized to 

the national total, these differences account for bias ranges of -0.4% to 0.3% for a vehicle type 

classification and -0.3% to 0.5% for a road type classification. These biases are the direct result of 

regional heterogeneity in road and fleet composition. There exists a positive correlation between HD and 

rural biases and between LD and urban biases because urban traffic is comprised mainly of LD vehicles 
and rural traffic has a comparatively larger HD component. 

Three sources of uncertainty are quantified in this study: vehicle miles traveled (VMT), fleet age, and 

fuel efficiency. VMT and fuel efficiency normalized (by state total emissions) uncertainty range from 2 

to 12% and are approximately 5 to 10 times larger than fleet age uncertainty. The total normalized 

uncertainty is 2 to 15 times larger than the normalized bias. Uncertainty quantification and reduction 

measures focused on VMT and fuel efficiency would yield the maximum benefit. VMT uncertainty 

reduction strategies involve a revision of the formula for conversion of vehicle counts to VMT, as well 

an increased number of traffic monitoring stations with optimal placement to minimize inaccuracies in 

vehicle counting. A fuel efficiency uncertainty improvement strategy would involve creating more 
spatially explicit calculations of possible fuel consumption scenarios and driving habits. 

Although it is desirable to reduce uncertainty, it is of equal importance to improve the accuracy of 

uncertainty estimates. This can be accomplished by a more accurate spatial portrayal of the sources of 

uncertainty through methods such as a more representative sampling of vehicle classes and assessments 

of regionally-explicit VMT estimates. Downscaling the temporal domain for comparison to the county 

level is a realistic and attainable goal due to the nature of the Vulcan data product. Due to the 

heterogeneous distribution of roads and vehicles within a state, this level of resolution is necessary for 
policy formulation at this level. 

Policy measures aimed at reducing emissions from a particular group within the vehicle fleet must take 

into account regional differences in fleet composition. Vehicle-specific mitigation strategies based upon 

national-average fleet composition have been shown to display errors of up to 60% in expected state 

level emissions reductions for the passenger car and heaviest diesel truck classes. If a 10% emissions 

reduction from an individual vehicle class is assumed, these estimation errors can be as large as ±60% 

corresponding to ± 0.2 MtC reductions in state totals.  
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