National and regional emissions projections in Europe: methodology, tools and case studies

Carlo Trozzi*, Silvio Villa, Rita Vaccaro, Enzo Piscitello

Techne Consulting (Italy)

carlo.trozzi@techne-consulting.com
EU air quality directives

- In the last year, new European Union (EU) air quality directives have been introduced.
- The Directives require Member States to divide their territory into zones related to air quality standards.
- The directives require Member States to adopt plans and programs inside zones when air quality standards are not respected.
EU NEC Directive

- sets upper limits for each Member State for the total emissions in 2010 of four pollutants (sulphur dioxide, nitrogen oxides, volatile organic compounds and ammonia)
- a proposal to amend the NEC Directive is still under preparation and should set emission ceilings to be respected by 2020 for the four already regulated substances and for the primary emissions of PM$_{2.5}$ as well
EU legislation procedure

1. Preliminary Air quality assessment
2. Definition of zones and agglomerations
3. Assessment of ambient air quality requirements
4. Plan and programs
Assessment of ambient air quality

- **Zones where levels are between lower and upper assessment threshold**

- **Measurement**
- **Air quality assessment**
- **Emission Inventory & Models**

- **Definition of zones and agglomerations**

- **Agglomerations (>250,000 inhabitants) and Zones where levels exceed upper assessment threshold**

- **Zones where levels are below the lower assessment threshold**

US EPA 20th Emissions Inventory Conference
August 13-16, 2012 - Tampa, FL
Plan and programs

Zones and agglomerations in which the levels of one or more pollutants are:

- Higher than the limit value
- Attaining the limit value within the specific time limit
- Plan or programme

- Maintain the levels of pollutants below the limit values
- Preserve the best ambient air quality, compatible with sustainable development
- Below the limit values
National and regional emissions projections in Europe: methodology, tools and case studies
Carlo Trozzi, Silvio Villa, Rita Vaccaro, Enzo Piscitello
Techne Consulting (Italy) – carlo.trozzi@techne-consulting.com

Emissions inventory and projections

Emission Inventory

National point sources emissions
Minor point sources emissions
Area emissions inside zones
Line emissions inside zones

Scenario definition in Emissions Projection System

Projection Drivers

Future Emissions
Emission inventory

- SNAP classification of Activities
- Main air pollutants (\(\text{NO}_x\), \(\text{SO}_x\), NMVOC, CO, PM\(_{10}\), PM\(_{2.5}\), NH\(_3\)), heavy metals, benzene, polycyclic aromatic hydrocarbons, other aromatics, dioxin, greenhouse gases (CO\(_2\), CH\(_4\), N\(_2\)O)

- Sources:
 - **Point** (stationary sources whose emissions exceed fixed thresholds, (i.e. \(\text{NO}_x\) 100 tons for national and 5 tons for local)
 - **Line/ nodal sources**: the main roads, railways, and waterways, ports, airports, landfills, storage areas (totals for the national one by one in local one)
 - **Area sources**: all other sources (totals for national district level in local)
Emissions estimation

- Stacks emissions from point sources are calculated using hourly gas flow, working hours and average concentration of pollutant.

- Area and line emissions are estimated using data obtained by direct surveys, statistical information and knowledge of the sources and through the software £²Gov Emissions.

National and regional emissions projections in Europe: methodology, tools and case studies
Carlo Trozzi, Silvio Villa, Rita Vaccaro, Enzo Piscitello
Techne Consulting (Italy) – carlo.trozzi@techne-consulting.com

August 13-16, 2012 - Tampa, FL US EPA 20th Emissions Inventory Conference
Emissions projection formula

Emissions \(E_{ijkn} \) of pollutant \(j \) from at year \(k \), in zone (or plant or line) \(n \), for the activity \(i \) are evaluated as:

\[
E_{ijkn} = E_{ij0} \cdot a_{ik} \cdot f_{ijk} \cdot a_{zjkn} \cdot f_{zijkn} + E_{zijkn}
\]

- \(E_{ij0z} \) emissions at base year
- \(a_{ik} \) driver for global activity indicators projection
- \(f_{ijk} \) driver for global emission factors projection
- \(a_{zjkn} \) driver for zone (or plant or line) activity indicators projection
- \(f_{zijkn} \) driver for zone (or plant or line) emission factors projection
- \(E_{zijkn} \) additional emissions for new absolute contribution (new activities in some zones, new plants or lines)
Projection drivers: activity

\[a_{ik} = \frac{V_{ik}}{V_{i0}} \]

\(V_{i0} (V_{ik}) \) activity levels at base (at future) year

examples:

- population, gross domestic product
- agricultural production, waste production
- number of road vehicles, number of takeoff/ landing
- tons of freight transported by road and sea
- specific reduction of miles in zone by traffic limitation
- specific reduction of miles in zone by fuel limitation
- specific modification of single Point and Line sources activities
Projection drivers: technology (EFs)

\[f_{ijk} = \frac{V_{ijk}}{V_{ij0}} \]

\(V_{ij0} \) (\(V_{ijk} \)) parameters which affect emission at base year (at future year)

examples:

- sulphur content of fuels
- new regulation limits on emissions from point sources and mobile sources
- solvent content of products (paints, inks, glues, etc.)
- application of Best Available Technologies/Practices - BATs/ BAPs at regional or single sources level
Scenarios definition

- activity scenarios defined associating to selected activities, specific activity drivers at regional, zone, line and units of point source level
- technology scenarios defined associating to selected activities and pollutants, specific technology drivers at regional, zone, line and units of point source level
- emissions scenarios obtained as combination of activity, technology and point sources scenarios
BAU and plan scenario

- Reference or Business as Usual (BAU) Scenario will consider socio-economical and technology trends and all already planned and approved measures.
- Plan scenario will include all proposed measures for air quality improvement, often counterbalancing Reference BAU Scenario trends that will produce an emission raise.
- The forecasted emissions can then be used also as an input to computer-based dispersion models in order to find out direct impact of the measures on air quality.
National and regional emissions projections in Europe: methodology, tools and case studies
Carlo Trozzi, Silvio Villa, Rita Vaccaro, Enzo Piscitello
Techne Consulting (Italy) – carlo.trozzi@techne-consulting.com

E²Gov Projections model

E²Gov Emissions
Energy and Environmental Planning
Emissions Data Base

E²Gov Projections
Energy and Environmental Planning
Projections Data Base

Future Emissions Reports

Future Emissions Maps

Future Air Quality Maps

Air quality models

US EPA 20th Emissions Inventory Conference
August 13-16, 2012 - Tampa, FL
Regional case studies in Italy (1)
Regional case studies in Italy (2)
National and regional emissions projections in Europe: methodology, tools and case studies
Carlo Trozzi, Silvio Villa, Rita Vaccaro, Enzo Piscitello
Techne Consulting (Italy) – carlo.trozzi@ techne-consulting.com

Percentage Variation of PM10 between 2025 and 2010
Reference Low Scenario
- Over 200%
- 30 to 50%
- 20 to 30%
- 10 to 20%
- 0 to 10%
- -10 to 0%

National case study (Montenegro)
Use of emissions projections in air quality models
Conclusion

- Additional methodologies and tools are introduced to obtain emissions projection in different scenarios
- E²Gov Projection model is a complete tool for this kind of issue
- Application of the model in the last years in Europe made possible national and local planning that improved the overall air quality
The authors wish to thank all people involved in the realization and improvement of this model among the years in Italy, Montenegro, Albania and in several local regional administration in Italy (Liguria, Friuli Venezia Giulia, Toscana, Umbria, Abruzzo, Campania, Basilicata, Sicilia, Trento, Bolzano, Roma, Firenze)