Temporal and Spatial Detail of On-road Mobile Emission Inventories for Regional Air Quality Modeling

Presented by Allison DenBleyker

Ralph Morris, Chris Lindhjem, Lynsey Parker, Tejas Shah, and Bonyoung Koo, ENVIRON International Corporation

Cyndi Loomis, Alpine Geophysics, LLC

Jerry Dilly, Denver Regional Air Quality Council

August, 2012
Outline

• Introduction to emissions processing for motor vehicles
• Denver SIP on-road emissions
• CONCEPT vs. SMOKE-MOVES
• Impacts of processor selection
 – Emissions totals
 – Predicted ozone
Introduction to Emission Processing

• Goal: prepare emissions inventory that is hourly, gridded, and speciated

• Emissions processing options for on-road mobile
 1. Reformat existing emissions
 Mass emissions over an area
 2. Build the inventory inside emission processor
 Emission factor lookups, VMT, meteorology, etc.

• Two publically available emission processors that build on-road inventories
 – CONCEPT Motor Vehicle
 – SMOKE with SMOKE-MOVES Integration Tools
Denver Case Study

• Denver 8-hour ozone SIP
• On-road mobile emissions prepared three ways

1. MOVES Inventory
 • Area source processing
 • All U.S. counties
 • Average weekday/end in each month

2. SMOKE-MOVES
 • Road type and grid cell processing
 • Colorado counties
 • Episode days

3. CONCEPT
 • Link level and grid cell processing
 • DMA/NFR Counties
 • Episode days
Denver Case Study

• **CONCEPT and SMOKE-MOVES**
 Comparison of the Denver Metropolitan Area and North Front Range (DMA/NFR)
 - Input data, processor differences
 - Emission totals
 - Ozone impacts

• **MOVES Inventory** emissions not compared
 - Intended for areas outside Colorado
 - Default MOVES inputs
CONCEPT Motor Vehicle

• **Consolidated Community Emissions Processing Tool**
 – Developed by ENVIRON and Alpine Geophysics
 – Open source and freely available
 – Processes all major emission sources
 ▪ Point Sources
 ▪ Area Sources
 ▪ **On-road Mobile Sources**
 ▪ Non-road Mobile Sources
 ▪ Biogenic Emissions
 – Database management system
 – Integration with GIS/spatial tools
CONCEPT Motor Vehicle

• Interface with Travel Demand Models (TDM)
• Link-level (road segment) traffic volumes by time period (e.g. AM peak)
• Trip starts & ends by Transportation Analysis Zone (TAZ) by time period
• Automated traffic recorder (ATR) monitors under pavement pre-processed into temporal profiles used by CONCEPT
• Hourly, link-level speeds in CONCEPT respond to high-volume congestion, just like the TDM
CONCEPT vs. SMOKE-MOVES

CONCEPT Motor Vehicle
- Developed by ENVIRON and Alpine
- VMT **weekday multi-hour time period**
- VMT by **individual links** from travel demand models (TDMs)
- Temporal profiles from **automatic traffic recorders (ATRs)**
- Speeds calculated **hourly by link**
- Parked emissions occur spatially according to **TAZ trip distributions from TDM**

SMOKE-MOVES Integration
- Developed by UNC and ENVIRON
- VMT **annual average day total**
- VMT **county total by road class and vehicle**
- Temporal profiles included with SMOKE setup are **not local**
- Speeds are **average by road class**
- Parked emissions occur spatially according to gridding surrogates: **75% on roadways and 25% on human population**
CONCEPT vs. SMOKE-MOVES

CONCEPT and SMOKE-MOVES have much in common

- Both use gridded meteorological (MET) data
- Both use MOVES emission factor lookup tables
- In this modeling MOVES inputs, MET files, and chemical speciation were identical

Key differences: local data & calculation methods

1. Temporal profiles
2. Off-network spatial allocation
3. Vehicle speed algorithms
4. MET data processing
Temporal Profiles 1 of 2: *Total VMT*

- Average day total VMT matches well, within 0.4%
- SMOKE temporal profiles miss the AM rush hour that CONCEPT captures
- CONCEPT uses local automated traffic recorder (ATR) continuous counts

Hour (MDT), Thursday to Wednesday, July 10 to 16, 2008
Temporal Profiles 2 of 2: **Fleet Mix**

CONCEPT

- Fleet mix varies by hour and day type
- SMOKE fleet mix nearly flat
- Heavy Duty portion of VMT is important due to relatively high NOx emission factors
- Timing of emissions is important

SMOKE-MOVES

- CONCEPT fleet mix
- SMOKE fleet mix
- Heavy Duty portion of VMT is important
- Timing of emissions is important
Off-network Spatial Allocation

Trip Starts
- Carbon monoxide emissions
- Start Exhaust
- 9AM, July 14, 2008

Trip Ends
- Paraffin emissions
- Evap. Fuel Vapor Venting
- 3PM, July 14, 2008

CONCEPT estimates off-network emissions in TAZs where trips occur.
Vehicle Speeds

• CONCEPT calculates speeds by link and hour
 – Designed to use TDM’s Bureau of Public Records (BPR) curve
 – Can implement any other speed function

• The BPR curve

\[S_a = \frac{S_{ff}}{1 + \left(A \times \left(\frac{V}{C} \right)^B \right)} \]

- \(S_a \) = Actual speed (mph)
- \(S_{ff} \) = Free Flow speed (mph)
- \(V \) = Volume of link (vehicles/hour)
- \(C \) = Capacity of link (vehicles/hour)
- \(A, B \) = Empirical constants

• SMOKE-MOVES speeds are input by road class and annual average day or hourly
Diurnal Temperatures

• In MOVES one hydrocarbon emission process depends on previous hours’ temperatures: **Evaporative Fuel Vapor Venting from parked vehicles**
 – Meteorological data → unique temperature profile by grid cell
 – Too calculation-intensive

• Both CONCEPT and SMOKE-MOVES **average** diurnal temperature profiles over geographic areas

• CONCEPT uses episode-day specific profiles per area per day

• SMOKE-MOVES uses an average episode normalized (0,1) diurnal profile, fits the daily min/max to the normalized profile
Compare TOG Emissions

Daily total TOG (tons) for 2008 episode days

SMOKE over predicts overall TOG compared to CONCEPT by 20-50%

- Off-network Evaporative Fuel Vapor Venting:
- Method of estimating these emissions clearly important to TOG daily totals
Compare NOx Emissions

Daily total NOx (tons), 2008 episode days

SMOKE predicts lower NOx compared to CONCEPT by 5-25%

- HD Diesel vehicles contribute more NOx in CONCEPT than SMOKE
 - Weekdays 70-100%
 - Weekends 10-30%

- Causes
 - Slightly larger HDDV mix
 - Slower speeds on weekdays
Smaller differences noted in CO, NH₃ and SO₂ between CONCEPT and SMOKE

- CO differs 1-15%
 - Larger on weekdays
- NH₃ differs 0-14%
- SO₂ differs 0-4%
Impact on Ozone Formation 1/2

• CAMx model ozone sensitivity:
 What are the impacts in the Denver urban area?
 – CONCEPT Motor Vehicle
 – SMOKE-MOVES
 – MOVES Inventory
 – Zero-out all on-road mobile emissions

• Review highest ozone day (July 10)
 – Nine monitors’ 8-hour ozone averages 81-93 ppb

• Results from each on-road scenario minus the zero-out shows the motor vehicle processing methods’ contributions to ozone
Impacts on Ozone Formation 2/2

• Summary of contributions to 8-hour O_3 on July 10, 2008

- 1.5 ppb and 1.3 ppb are significant discrepancies
- CONCEPT vs. SMOKE-MOVES
 - CONCEPT predicted higher ozone at 4 monitors, located northeast of Denver
 - CONCEPT predicted lower ozone at 5 monitors
- Overall motor vehicle contribution to O_3 is between 0.5 and 5.5 ppb
Conclusions

• CONCEPT uses more local data and more detailed calculation methods than SMOKE-MOVES

• SMOKE predicts more TOG (20-50%) and less NOx (5 to 25%) than CONCEPT

• On high ozone days this can make a difference of up to 1.5 ppb difference in 8-hour ozone

• Many monitors showed smaller impacts, and results could vary for other cities

• Air quality managers need to consider to what degree local data and detailed calculations should be used
Thanks

• Alpine Geophysics, LLC
• Denver Regional Air Quality Council
• Colorado Department of Public Health and the Environment
• Denver Regional Council of Governments
• North Front Range Metropolitan Planning Organization