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ABSTRACT 

Air quality modeling to support 24-hour PM2.5 attainment demonstrations in regions of the U.S. 
where residential wood combustion (RWC) is a significant source of particle pollution requires a more 
accurate approach to the temporal distribution of emissions from these sources than is currently being 
used. This paper presents a statistical model of the daily temporal variability of RWC emissions as a 
function of simulated daily meteorology.  The products of the model presented here are national county-
specific temporal profiles for converting annual RWC inventories to daily emission estimates.  These 
profiles can be developed as new simulated meteorology data become available and applied in the 
emissions modeling process to simulate the variability in RWC sources resulting from local weather 
conditions. This paper describes the model development process, including descriptions of both 
unsuccessful and successful experiments to (1) identify sites to use for developing the model and (2) 
identify the best predictors to use for simulating PM2.5 from RWC sources. Comparisons are shown 
between the simulated temporal profiles using year 2006 meteorology data at several sites around the 
U.S. and the temporal profiles currently being used to simulate emissions from U.S. and Canadian RWC 
sources. While there are intuitive trends in the results from the RWC temporal variability model that 
appear to have validity, such as shorter burning seasons at lower latitudes than high latitudes, episodic 
burning periods associated with temperature anomalies, and changes in burning patterns across different 
years, there needs to be additional work to validate the model predictions. 

INTRODUCTION 

In 2006, USEPA tightened the 24-hour National Ambient Air Quality Standard (NAAQS) for 
fine particulate matter (PM2.5, diameter ≤ 2.5 µm) from 65 to 35 µg/m3. The stricter PM2.5 standard 
resulted in 31 areas of the United States consisting of 120 full or partial counties being designated as 
non-attainment of the annual or 24-hour PM2.5 standards1.  States and Tribes with PM2.5 non-attainment 
areas are now in the process of developing implementation plans, which are due in 2012, to demonstrate 
how they will reduce emissions to bring the areas under their jurisdiction into attainment of the NAAQS 
by the end of 2014.  A component of the emissions reduction demonstration process required in the 
implementation plans involves using air quality modeling systems to test the impacts of different PM2.5 
emission reduction strategies. Given the relatively fine temporal resolution of the 24-hour standard, the 
effective use of air quality modeling systems for addressing PM2.5 requires accurate representation of the 
day-to-day temporal variability in the major sources contributing to nonattainment in different regions of 
the country. Of the various sources of PM2.5 contributing to the NAAQS violations, residential wood 
combustion (RWC), which consists of fireplaces and wood stoves for home heating and cooking, has a 
disproportionate impact on winter PM2.5 concentrations in some parts of the U.S2,3,4. The U.S. EPA 
Technical Support Document5 for the most recent PM2.5 non-attainment designations highlights several 



areas where RWC is one of, if not the major emissions source of PM2.5 contributing to violations of the 
24-hour standard in the winter. Air quality modeling to support 24-hour PM2.5 attainment 
demonstrations in the regions where RWC is a significant source of PM pollution requires a more 
accurate approach to the temporal distribution of these emissions than is currently being used.   

With state and national emission inventories for RWC sources developed as annual totals, 
accurate emissions modeling processes that convert from annual to hourly estimates are critical for 
modeling these sources for 24-hour PM2.5 NAAQS modeling applications. While the magnitude of the 
RWC emissions are captured as annual county totals in the emission inventory, the distribution of the 
annual inventories to the hourly estimates needed for air quality modeling uses temporal profiles that do 
not change from one year to the next.  Herein referred to as static profiles, the current temporal profiles 
reflect neither the changes in the length of the heating season that occur at different latitudes nor 
episodic temperature changes (i.e., warm fronts or cold fronts). Using air quality models in the 24-hour 
PM2.5 standard implementation plan process to develop emissions reduction strategies that include RWC 
sources requires realistic simulations of the daily variability in these important regional and seasonal 
sources of PM.  To address the need for a more accurate estimate of the temporal patterns from RWC 
sources, this paper presents a statistical model of the daily temporal variability of RWC emissions as a 
function of simulated daily meteorology.  The products of the model presented here are national county-
specific temporal profiles for converting annual RWC inventories to daily emission estimates.  These 
profiles can be developed as new simulated meteorology data become available and applied in the 
emissions modeling process to simulate the variability in RWC sources resulting from local weather 
conditions. 

We developed a regression equation that relates ambient measurements of PM tracers of RWC 
sources to daily minimum temperatures to estimate daily temporal profiles for RWC emission sources. 
While the objective of this work was not to predict ambient PM2.5, we used the model predictions of 
daily PM2.5 to generate temporal profiles that can be applied to RWC emission sources. This paper 
describes the model development process, including descriptions of both unsuccessful and successful 
experiments to (1) identify sites to use for developing the model and (2) identify the best predictors to 
use for simulating PM2.5 from RWC sources. The resulting regression equation can be easily 
implemented in the emissions processing sequence to replace the static national temporal profiles that 
are currently being used for PM2.5 implementation plan modeling.  In addition to discussing the model 
development process, this paper presents some preliminary results from the RWC temporal variability 
model through comparisons of the temporal profiles estimated by the model for different sites in the 
U.S. to the static temporal profiles that are currently being used to simulate emissions from RWC 
sources. 

BODY 

Methods 

The conceptual model driving the development of a RWC emissions temporal variability model 
is that RWC emissions patterns are linked to temperatures, with a greater prevalence of households 
using RWC for heat during periods of cool temperatures.  By relating measured ambient tracers of wood 
smoke at monitors that are strongly impacted by RWC emissions to observed meteorology variables, we 
hypothesize that we can develop a model that predicts the temporal variability of RWC emissions 
patterns given forecasted or simulated meteorology.  In consideration that several factors, other than just 
ambient temperatures, influence both the concentrations of observed wood smoke tracers and behavioral 
patterns leading to RWC activities, we explored different regression-based statistical models in an 
attempt to develop an extensible model of RWC temporal patterns using a fairly limited amount of tracer 
data.  We developed a model of RWC temporal variability in two phases.  In the first phase, we sought 
ambient wood smoke tracer data that we could identify as being from RWC sources.  In the second 



phase, after selecting the ambient data and monitors, we explored several different model formulations 
given the available data. 

The objectives of the first phase of this research were to find an observed chemical tracer that 
could definitely identify wood combustion sources and to find monitoring locations that were dominated 
by RWC emissions.  To satisfy the first objective, we initially focused on the particulate organic 
compound levoglucosan (LG) because it is widely cited in the literature as a conservative tracer of wood 
smoke emissions that has been used in several chemical mass balance studies to attribute observed PM2.5 
concentrations to wood combustion6,2,3.  Although LG is collected on all PM filters impacted by wood 
combustion sources, observed LG concentrations are only available from monitoring campaigns that 
employed specific analytical techniques to extract it from the filters7,8.  We analyzed LG data collected 
in the Southeast U.S. in 20079 and data collected in the Puget Sound region of Washington from 2005-
20076.  To satisfy the second objective of this phase of our research, we sought monitoring sites and 
periods that were isolated from the impacts of non-RWC biomass burning, such as prescribed fires, 
agricultural fires, and wildfires. We employed an ad hoc assumption of using a 10° C (50° F) daily 
minimum temperature cutoff for filtering the analysis periods for the LG observations. With this 
assumption, we excluded the observations from all sites/days with daily minimum temperatures greater 
than 10° C.  This was an arbitrary temperature cutoff that we used to exclude warm periods when we 
expected that either the likelihood of RWC use was low or when the likelihood of wildfires was high.  
We then compared the filtered LG measurements to the observed daily minimum temperatures at the 
monitoring locations to look for relationships in the data.  

We also explored using more conventional ambient measurements, such as elemental carbon 
(EC), organic carbon (OC), and PM2.5 nephelometer (PM2.5-neph) data to identify RWC monitors.  We 
looked at OC/EC ratios from measurements in the Chemical Speciation Network (CSN) as an approach 
to select sites impacted by RWC sources. We calculated ratios of the CSN species OC (Oc Csn 
Unadjusted Pm2.5 Lc Tot) and EC (Ec Csn Pm2.5 Lc) based on evidence that higher OC/EC ratios 
indicate a biomass burning signal10.  After reducing the year 2004 CSN data set to 16 sites by selecting 
the top 80th percentile of the OC/EC ratios and only using sites showing negative correlations between 
observed temperatures and OC concentrations, we explored the relationship between OC observations at 
these sites and different meteorology predictors.  Similar to the LG analysis, we used a 10° C 
temperature cutoff before comparing the selected OC observations to simulated daily minimum 
temperatures, daily average wind speeds, and daily average planetary boundary layer (PBL) heights in 
36-km and 12-km grid resolution meteorology data provided by the U.S. EPA.  We chose to use 
simulated, rather than observed meteorology predictors for these analyses because we suspected that 
atmospheric stability, for which wind speeds and PBL heights can be a proxy, along with temperatures 
influence ambient PM concentrations.  Only modeled data allowed the estimation of PBL heights and 
wind speeds at all of the monitoring locations in our analysis.  

Finally, in addition to analyzing OC/EC ratios to select RWC monitoring locations, we focused 
on PM data collected at sites identified by Onstadt and Simpsons (2008) and the Puget Sound Clean Air 
Agency (PSCAA) as locations strongly influenced by RWC emissions.  Three of the PSCAA monitors 
in particular, Darrington, Marysville, and Tacoma South, Washington were identified as locations with a 
high potential for influence from RWC sources.  Since the number of LG observation points at these 
monitors was limited to only a short period (non-consecutive days over a 12-18 month period), we 
explored using other PM2.5 observations at these sites that were available for several years. The PSCAA 
has been collecting PM2.5-neph data throughout its ambient monitoring network since 2004.  While 
PM2.5-neph is not specific to wood smoke sources, PM2.5-neph collected at sites impacted by smoke 
sources will be proportional to PM from wood combustion. Figure 1 shows that there is a strong 
relationship between LG and PM2.5-neph at the three PSCAA monitors identified above, indicating that 
these sites are strongly influenced by wood smoke sources and that PM2.5-neph is a good alternative to 
LG as a wood smoke tracer at these locations.  



 

Figure 1. Levoglucosan vs. PM2.5 nephelometer observations at the three PSCAA 
monitoring locations used to develop the RWC temporal variability model 

 

 

 

For the second phase of our research, we explored both linear and conditional regression models 
to predict the concentrations of ambient PM tracers as a function of daily meteorology data.  For the 
linear regressions we compared ambient wood smoke PM tracer concentrations to simulated daily 
minimum temperatures, daily average wind speeds, daily average PBL heights, and the daily ventilation 
index (PBL x 10-m wind speed) for model grid cells containing ambient monitors.  For the conditional 
regressions, we compared ambient tracer concentrations to predicted daily minimum temperatures at 
different ventilation index values.  The rationale for integrating ventilation index into the model was that 
while temperatures may influence when RWC sources are used, atmospheric stability influences the 
dilution rate of the emissions and hence the observed concentrations of the RWC tracers.  For the OC-
based models, which were based on a national monitoring network, we explored aggregating the 
observations spatially to increase the extensibility of the model.  In addition to developing a series of 
monitor-specific models, we created state models, in which we aggregated the observations for all sites 
in a given state, and regional models, in which we divided the U.S. into quadrants and aggregated the 
observations for all sites in each region. 

With none of the meteorology predictors providing statistically significant estimates of the PM 
tracers, we decided to simplify the model to use only daily minimum temperatures for estimating PM.  
As the objective of the model was to predict the temporal variability in RWC emissions and not ambient 
PM tracer concentrations, we were less concerned with the ability of the model to predict PM 
magnitudes as we were in its ability to capture day-to-day variability in the observations.  We ultimately 
developed regression equations to calculate day-of-year, week-of-year, and month-of-year temporal 
profiles using daily minimum temperatures, weekly averaged temperatures, and monthly averaged 



temperatures, respectively, using the PM2.5-neph data available from the PSCAA monitors.  We 
computed the temporal profiles as the ratio of the daily/weekly/monthly PM estimate to the annual total 
of all PM estimates.  Equation 1 is an example of the day-of-year temporal profile calculation. 

Equation (1) 

€ 

PEi,d =
(Ei,d )

(Ei,d )
d=1
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where, 

PEi,d = Percentage of annual emissions at monitor i on day d. 
Ei,d = Daily average observation of RWC tracer at monitor i on day d. 

 
As an initial evaluation of the modeled temporal profiles, we qualitatively compared the modeled 

temporal profiles at different monitor locations to the static temporal profiles currently being used to 
simulate RWC source emissions. 

Results 

Results are first presented for the site selection phase and then for the model development and 
validation phase of this research. Site selection involved the analysis of both observed LG data and 
OC/EC ratios to identify monitoring sites that were observing PM that was predominantly emitted by 
RWC sources. Figure 2 shows the locations of the Southeastern U.S. monitors analyzed for this study 
along with scatter plots comparing LG to daily minimum temperatures at these sites.  Note that the plots 
in Figure 2 include all observations at these sites (i.e., these plots do not show the 10° C temperature 
cutoff).  Figure 3 is a similar plot for the Puget Sound, Washington sites.  Although the relationships 
between LG and temperatures at some of the monitoring sites (Darrington/Marysville/Tacoma, WA and 
Augusta/Macon, GA) appeared compelling, our site filtering approach left us with too few samples 
(number of LG-temperature pairs < 60) to develop a valid statistical model. 

Figure 4 shows a time series of temperatures and PM2.5-neph observations at eight PSCAA 
monitors from the year 2004 to the present. The pattern shows the intuitive inverse relationship between 
temperature and PM2.5-neph observations that we would expect from RWC sources. Following from 
Figure 1, which illustrates that PM2.5-neph can be used as a proxy tracer for wood combustion at sites 
that are dominated by wood smoke, we collected daily PM2.5-neph observations for the Darrington, 
Marysville, and Tacoma South, WA sites to expand the sample size for developing a regression model to 
over 2000 PM-temperature data pairs. 

 
 
 
 
 
 
 
 
 
 



 
 

Figure 2. Levoglucosan versus daily minimum temperatures for the Southeastern U.S. sites 
analyzed for this study. 

 
 

  

  

 



Figure 3. Levoglucosan versus daily minimum temperatures for the Puget Sound sites 
analyzed for this study. 

 
 

  

  

 



Figure 4. PM2.5-neph and temperature time series at several sites in the PSCAA monitoring 
network 

 

In addition to the LG data from the Puget Sound monitors, we explored the CSN as a potential 
monitoring network for developing a RWC temporal variability regression model. The CSN was 
appealing because it has national coverage, as opposed to the PSCAA sites, which are located in only a 
limited area around the Puget Sound. Table 1 shows the CSN monitors that we identified as RWC sites.  
These sites were identified by first excluding all days with daily minimum temperatures higher than 10° 
C, calculating the 80th percentile of the observed OC/EC ratio, and excluding all sites with a positive 
correlation between observed temperatures and OC.  Table 1 also shows the rank of the counties that 
contain the selected monitors in terms of total RWC PM2.5 emissions in the 2005 National Emission 
Inventory.   

Table 1. Top 80% percentile of CSN sites for OC/EC ratio; observations filtered by a 10° C 
temperature cutoff and negative correlations between temperatures and OC concentrations 

Obs State_name County_name Unique_ID Mean Median 
No. of 
Obs Corr 

NEI05 Annual PM2.5 
RWC, TPY (Rank) 

1 California Plumas Co 6-63-1009 16.4542 15.0000 58 -0.66155 680 (90) 
2 Oregon Lane Co 41-39-60 22.6467 8.4076 38 -0.65874 3068 (5) 
3 California Butte Co 6-7-2 12.9292 10.8000 36 -0.62111 967 (57) 
4 Oregon Jackson Co 41-29-133 14.6109 13.0085 41 -0.61450 2667 (7) 
5 Montana Lincoln Co 30-53-18 63.9475 12.5759 48 -0.41110 97 (866) 
6 Idaho Canyon Co 16-27-4 63.1415 9.9390 47 -0.39716 9 (2819) 
7 Oregon Union Co 41-61-119 15.3529 13.4674 43 -0.37476 469 (150) 
8 North Carolina Buncombe Co 37-21-34 11.2095 9.4103 33 -0.27715 168 (487) 
9 Montana Missoula Co 30-63-31 12.1630 9.0000 81 -0.18745 207 (397) 
10 South Carolina Greenville Co 45-45-9 44.5487 9.4490 48 -0.18711 696 (89) 
11 Massachusetts Hampden Co 25-13-8 14.2456 9.2365 34 -0.15018 801 (74) 
12 Georgia Floyd Co 13-115-5 19.9213 9.5082 30 -0.12476 49 (1575) 
13 Virginia Henrico Co 51-87-14 31.5479 8.7162 45 -0.08493 208 (394) 
14 Indiana Vanderburgh Co 18-163-12 17.6479 8.1405 34 -0.06512 24 (2776) 
15 Minnesota Hennepin Co 27-53-963 11.5916 8.1673 66 -0.04818 1036 (53) 
16 Tennessee Lawrence Co 47-99-2 32.6421 11.1330 31 -0.01946 114 (737) 

 

Once we identified potential monitors for developing a regression model, we used the ambient 
data from the selected monitors to develop and test regression models of RWC emissions. Figure 5 
shows the results of linear regressions between PM2.5-neph and daily minimum temperatures at eight 



PSCCA monitors.  These sites include the three monitors that we identified as wood combustion sites 
through our comparisons between LG and PM2.5-neph observations.  Two sets of regressions are shown 
in Figure 5.  The unrestricted results on the left show all PM2.5-neph data available for the selected 
monitoring sites.  The restricted results on the right exclude the top 10% of observations and include 
only days with minimum temperatures below 10° C.  Table 2 summarizes the restricted results by 
displaying the R2 values at selected PSCAA monitors. 

Table 3 summarizes the results of regressions between OC observations at the selected CSN sites 
and various meteorology predictors. These results show that site location was the only significant 
predictor in the models developed from these data. 

Figure 5. Regressions between PM2.5-neph and temperatures at eight PSCAA monitoring 
locations; unrestricted (left) and with temperature and magnitude restrictions (right)  

  

Table 2. PM2.5-neph RWC model predictors and powers from three PSCAA sites 

Site Controlled Predictor  R2 

All 8 sites Temperature, site, month, and weekday 0.20 
All 8 sites Temperature, site, year, month, and weekday 0.21 
Darrington Temperature and month 0.40 
Marysville Temperature and month 0.15 
Tacoma Temperature and month 0.15 

Table 3. OC RWC model predictors and powers from sixteen CSN sites 

Controlled Predictor  R2 

[1] Date, temperature, PBL height, wind speed and all possible interactions 
among these variables 

0.15 

[2] Same as [1] and control for month 0.16 
[3] Same as [1] and control for site 0.35 
[4] Same as [1] and control for location, where location is one of four quandrants 
used to subdivide the U.S. 

0.20 

[5] Same as [3] and all possible interactions with the site variable among the 
other predictors 

0.51 

 

 



Site location was the only statistically significant predictor of PM2.5 at all of the monitoring 
locations that we analyzed, indicating that any model developed from these data was only statistically 
significant at the site used to develop the model.  In an attempt to develop a few extensible models, we 
explored grouping sites to develop regional or even state-specific models. The ability of these location-
based models to predict the variance in the monitor groups was still not significant.  The inability of the 
meteorology variables to predict the variability in the PM observations coupled to the strength of the site 
location as a predictor indicated that (1) there are other sources of variability in the PM data, such as 
human behavioral patterns, that we aren’t capturing in the model and (2) that the combinations of the 
locations and chemical tracers we were using to develop the model were confounded by sources of 
PM2.5 other than RWC. 

Given that there were sources of variability in the PM2.5 observations that would be difficult to 
parameterize in a model, like human behavioral patterns, we ultimately chose to simplify the RWC 
temporal variability model by developing it with data from monitors that we could definitively identify 
as being strongly impacted by wood smoke and to base it on only the relationship between temperatures 
and PM2.5.  Our rationale for this decision is that while the monitoring data that we analyzed could not 
be used to develop a geographically extensible model, by focusing on monitors that we know are 
observing wintertime wood smoke, we are using data that are representative of locations with high RWC 
emissions.  The combination of LG observations and long-term PM2.5-neph observations at the PSCAA 
sites, in our opinion, provided the best dataset for developing the RWC temporal variability model.  The 
strong correlations between LG and PM2.5-neph at the Darrington, Marysville, and Tacoma South 
monitors provided the best evidence of all of the data that we analyzed of monitors that were dominated 
by wood smoke PM.  The availability of long-term PM2.5-neph observations at these monitors provided 
a large number of data points for developing the RWC temporal variability model. 

The three models that we developed using daily minimum temperatures, weekly averaged 
temperatures, and monthly average temperatures are shown in Equations 2 through 4, respectively.  
These equations were developed by combining all of the PM2.5-neph observations at the Darrington, 
Marysville, and Tacoma South monitors for the period January 2004 – July 2010 into a single dataset, 
excluding all days with daily minimum temperatures above 10°C, and regressing between the 
temperatures and PM2.5-neph observed at the monitors.  

Equation (2) PM2.5 = 42.12 – 0.79Td (n = 2008, R2 = 0.26) 
 
Equation (3) PM2.5 = 38.03 – 0.68Tw (n = 305, R2 = 0.26) 
 
Equation (4) PM2.5 = 36.52 – 0.64Tm

 (n = 71, R2 = 0.35) 
 
 
where, 

 Td = daily minimum temperature (°C) 
 Tw = weekly averaged temperature (°C) 

Tm = monthly averaged temperature (°C) 
 

Figures 6 through 8 compare simulated temporal profiles from these models using year 2006 
meteorology data at several sites around the U.S. to the temporal profiles currently being used to 
simulate emissions from U.S. and Canadian RWC sources.  The general trend of the simulated profiles 
is to allocate more emissions to the spring and fall seasons and less emissions to the winter season than 
the standard profiles.  Figures 6 and 7, the plots of profiles from the daily and weekly models, show that 
for the sites in Montana the burning season runs later into the summer and starts earlier in the late 
summer than the standard profiles.  Figure 7 illustrates that the Buncombe County, NC site, which is in 
the Southeastern U.S., has a much later start to the RWC burning season than the standard U.S. profile. 



The simulated profiles from the daily and weekly models at all sites show an emissions spike in 
February that is also contained in the standard profiles.  Another major difference between the simulated 
and standard profiles is the higher variability in the simulated profiles. 

The simulated profiles contain more of both systematic and episodic variability than the standard 
profiles.  The results of these two types of variability are seen in the daily and weekly profile plots in 
Figures 6 and 7, respectively. The variability in the simulated temperatures in the meteorology data 
produces the systemic variability, or noise, observed in the predicted profiles. In addition, the use of a 
10° C temperature cut-off to effectively turn off RWC emissions on warm days causes the episodic 
variability in the predicted profiles.  The daily profile plot in Figure 6 shows a one-day drop in the 
profile for Buncombe County, NC in the spring and a one-day increase in the profile for Lane County, 
OR in the summer.  These spikes are the result of the temperature threshold application at these sites: an 
unseasonably warm spring day at the NC site and an unseasonably cool summer day at the OR site.  The 
episodic variability in the profiles becomes more pronounced in the transition periods around the RWC 
off-season.  

Figure 6. Daily temporal profiles from the PSCAA regression model and the standard 
profiles currently used for US and Canadian RWC sources. 

 



Figure 7. Weekly temporal profiles from the PSCAA regression model and the standard 
profiles currently used for US and Canadian RWC sources. 

 

Figure 8. Monthly temporal profiles from the PSCAA regression model and the standard 
profiles currently used for US and Canadian RWC sources. 

 

Discussion 

The RWC temporal variability models developed in this project are based on the assumption that 
RWC use patterns are a function of temperature and that the three sites in the Puget Sound area of 
Washington are representative of national RWC use patterns.  We chose these sites for developing the 
model because they were the only definitive locations that we could identify as being dominated by 
wintertime wood smoke PM that had a long record of proxy observational PM2.5-neph data. We 
converged on a simple PM2.5 and temperature regression model because our experiments with trying to 
include meteorology indicators of atmospheric stability (i.e. wind speeds, PBL heights, and ventilation 
index) did not improve the performance of the model.  Although these models show that temperature is a 
poor predictor of observed PM2.5, because it cannot account for activity levels, such as the population of 



wood stoves or the total amount of wood burned, they were not intended to simulate PM2.5 directly, but 
rather the daily, weekly, and monthly variability in PM2.5 from RWC sources.   

While there are intuitive trends in the results from the RWC temporal variability models that 
appear to have validity, such as shorter burning seasons at lower latitudes than high latitudes, episodic 
burning periods associated with temperature anomalies, and changes in burning patterns across different 
years, there needs to be additional work to validate the model predictions.  Known issues with the 
models and predicted temporal profiles that warrant further exploration include: 

• The assumption that a daily minimum temperature of 10°C is the point above which RWC ceases 
• The assumption that RWC emissions go to zero above the temperature threshold 
• Episodic spikes in the profiles are reflective of reality, i.e. does a single cold night in the summer 

initiate the use of RWC heating for one day? 
• Does systematic variability, or noise, exist in the day-to-day use of RWC during cold months or 

is a flat profile more representative of use patterns? 
• How well do the model predictions correlate with behavioral surveys of RWC use patterns? 
• The model only considers temporal variability driven by temperatures and does not consider 

behavioral patterns.  Different RWC use patterns during holidays, for example, are not captured 
by the model 
 
As these models were developed to predict the temporal variability in wintertime RWC 

emissions, the resulting profiles should not be applied uniformly to all RWC sources. Charcoal and 
wood grilling sources are not valid applications of these profiles.  It should be restated that the models 
presented here are predicting the temporal variability in RWC emissions.  The actual magnitude of 
emissions, or annual tonnage of emitted pollutants, is reflected in the emission inventory used with these 
data.  

CONCLUSIONS 

The ability to predict the temporal variability in RWC emissions using local meteorology data 
represents a significant improvement over the current methods of using static temporal profiles for these 
sources.  The use patterns of residential heating fuels will become less predictable with changes in 
climate.  The ability to capture these changes along with the more basic simulation of differences in 
RWC use across years and latitudes is powerful new tool for air quality planners in regions where RWC 
is a threat to human health and the environment.  

The Center for Environmental Modeling for Policy Development at the University of North 
Carolina is implementing the daily RWC temporal profile model in a profile generator preprocessor that 
will be distributed with the Sparse Matrix Operator Kernel Emission (SMOKE) model.  The profile 
generator will read in hourly meteorology and Geographic Information System (GIS) spatial surrogate 
data to produce county-based temporal profiles for RWC sources.  These profiles will be written in a 
format that can be directly read in by SMOKE for processing RWC emissions. 
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