The trend of sulfur dioxide emissions in China after 2000

Zifeng Lu, David G. Streets
Decision and Information Sciences Division, Argonne National Laboratory

Qiang Zhang, Siwen Wang
Department of Environmental Science and Engineering, Tsinghua University

Gregory R. Carmichael, Yafang Cheng, Chao Wei
Center for Global and Regional Environmental Research, University of Iowa

Mian Chin, Thomas Diehl, Qian Tan
Laboratory for Atmospheres, NASA Goddard Space Flight Center

19th International Emission Inventory Conference
San Antonio, Texas
2010.9.29
Outline

- Introduction
- Method and data sets
- SO$_2$ emission in East Asia after 2000
 - SO$_2$ emission in China
 - SO$_2$ emission in Japan and South Korea
- Comparison of SO$_2$ emission and sulfur related quantities
 - SO$_2$ emission vs. SO$_2$ concentration in China
 - SO$_2$ emission vs. acid rain in China
 - SO$_2$ emission vs. SO$_2$ and SO$_4^{2-}$ in Japan and South Korea
 - SO$_2$ emission vs. SSR in East Asia
 - SO$_2$ emission vs. AOD in East Asia
- Summary
Introduction

- SO$_2$ emission in China contributes to about one-fourth of the global emission and more than 90% of East Asia emission since 1990s.

 e.g. Streets et al., 2006, 2009; Ohara et al., 2007

- Sulfur-contained air pollutants are reported to be transported long distances from Asia continent to Northwestern Pacific, North America and the rest of northern hemisphere.

 e.g. Aikawa et al., 2010; Lin et al., 2008; Huebert et al., 2003; Jacob et al., 2003

- The SO$_2$ emission in China changed dramatically since 2000. However few works focused on the year-by-year trends during this period.

 e.g. REAS up to 2003; TRACE-P 2000; INTEX-B 2006; GAINS 2005

Purpose

I. Estimate the historical SO$_2$ emission from China based on the dynamic technology penetration and the dramatic activity growth after 2000

II. Compare the SO$_2$ emission data with a variety of sulfur related quantities to provide a better understanding of the impact of SO$_2$ emission in China across the East Asian region
Method and data sets

- Estimation of anthropogenic \(\text{SO}_2\) emission in China
 - A detailed technology-based methodology specifically for China
 - 4 major sectors: power, industry, domestic and transportation
 - Provincial activity data, fuel properties, and control strategies

![Graph showing coal consumption and FGD penetration from 2000 to 2008]

- Coal consumption
 - \(1271 \rightarrow 2689\) Mt
 - AGR 9.8%
- FGD penetration of power sector
 - 0 \(\rightarrow\) 54 %
- Net EF of power sector
 - 16 \(\rightarrow\) 8 g \(\text{SO}_2\)/kg-coal
The SO₂ emission in China increased by 53% from 2000 to 2006 with an AGR of 7.3%.

The national SO₂ emission decreased after 2006 due to the application of pollution control technologies (e.g. FGD) and the phaseout of small highly emitted power generation units.

Power plants are the main sources of SO₂ (> 50 %), and dominate the national SO₂ emission (R=0.95).

The change of SO₂ emission is nationwide.

However, the extent of the increase is different. From 2000 to 2006:

- North China increased by 85%
- South China increased by 28%
SO$_2$ emission in Japan and Korea after 2000

- The estimated SO$_2$ emission in Japan and South Korea shows a steady decrease trend after 2000.

- Although there is some variability of volcanic emission from 2000 to 2006, the variation is quite small (±8% of the average value of 1.1 Tg per year), showing a small decreasing tendency during this period.
This work vs. previous studies

- Aikawa et al. compared the measured sulfate (SO_4^{2-}) concentration with CMAQ simulation at multiple sites over the East Asia Pacific Rim region.

- The SO_2 emissions: REAS and China MEP.

- The comparisons suggest that the REAS inventory overestimates, whereas the China MEP inventory underestimates the SO_2 emission from China.

Aikawa et al., 2010

Lu et al., The trend of SO_2 emissions in China after 2000, 19th IEIC, San Antonio, TX, 2010.9.29
SO₂ emission in China after 2000 --- Seasonality variations

- Month-specific SO₂ emissions during 2000-2008 are developed:
 - **Residential:** a dependence of stove operation on monthly mean temperatures
 - **Power:** monthly power generation
 - **Industry:** monthly industry GDP, H₂SO₄ and coke production
 - **Transport:** monthly volume of passenger and freight transported by ship, railway and aviation

- Weak seasonality variations
- High in December due to the increasing coal consumption in residential sector
- Low in February since the reduced industrial activity during the Chinese Spring Festival holiday
SO₂ emission in China after 2000 --- Gridded emissions

- **Spatial proxies:**
 - **Year-specific:** total, urban and rural population, industrial GDP, crop land cover, and railroad and road network
 - **Power plants:** bottom-up unit-based inventory

Since this area is to the windward of Japan and Korea, the dramatic change of SO₂ emission after 2000 may influence SO₂, SO₄²⁻ and AOD not only in China, but also in other parts of East Asia.
Method and data sets

<table>
<thead>
<tr>
<th></th>
<th>Monitoring data</th>
<th>Satellite data</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO$_2$</td>
<td>A variety of statistical yearbooks (China)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environmental Bulletins of a variety of provinces and cities (China)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EANET (Japan and South Korea)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NIES (Japan)</td>
<td></td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>EANET (Japan and South Korea)</td>
<td></td>
</tr>
<tr>
<td>Acid rain</td>
<td>A variety of statistical yearbooks (China)</td>
<td></td>
</tr>
<tr>
<td>AOD</td>
<td></td>
<td>MODIS MISR</td>
</tr>
<tr>
<td>SSR</td>
<td>Subset of SSR observations reported by Wild et al. (2009) (East Asia)</td>
<td></td>
</tr>
</tbody>
</table>

For ease of comparison between the trends of multifarious data sets, the data sets are normalized based on the following equation:

$$x_{i,j}' = \frac{x_{i,j} - \bar{x}_j}{\sigma_j}$$

Normalized value, average value, standard deviation
Comparison of SO₂ emission and sulfur related quantities

SO₂ emission vs. SO₂ concentration in China

The percentage change of SO₂ emission (provinces) and SO₂ concentrations (cities) in China.

Lu et al., The trend of SO₂ emissions in China after 2000, 19th IEIC, San Antonio, TX, 2010.9.29
Comparison of SO_2 emission and sulfur related quantities

SO_2 emission vs. SO_2 satellite observations

The changes of SO_2 columns before and after 2007 are observed by both the SCIAMACHY and the OMI instruments.

Lu et al., *The trend of SO_2 emissions in China after 2000*, 19th IEIC, San Antonio, TX, 2010.9.29
Comparison of SO$_2$ emission and sulfur related quantities

SO$_2$ emission vs. acid rain in China

Although NO$_x$, PM, NH$_3$ and other acidifying species also contribute to the acidification, SO$_2$ emission is believed to be the major cause of the acid rain in China.

The proportion of cities experiencing acid rain with a frequency of $>50\%$ and $>75\%$ was increasing between 2000 and 2005; meanwhile the proportion of cities experiencing moderate and heavy acid rain increased too.

The acid rain problem in Chinese cities was alleviated after 2005.
Comparison of SO\textsubscript{2} emission and sulfur related quantities

SO\textsubscript{2} emission vs. SO\textsubscript{2} and SO\textsubscript{4}2- in Japan and Korea

- Not like China, the SO\textsubscript{2} concentrations in most cities of Japan tend to continuously decrease after 2000.
- There is a longitudinal gradient in the percentage change of urban SO\textsubscript{2} concentration in Japan during 2000-2007.
- In spite of the relatively short lifetime of SO\textsubscript{2}, the transport of increasing SO\textsubscript{2} from the Asian continent can partially counteracts the local reduction of SO\textsubscript{2} emission downwind, and even overrides it in some southwest areas of Japan.

Percentage SO\textsubscript{2} changes during 2000-2007

Japan NIES sites
Comparison of SO$_2$ emission and sulfur related quantities

SO$_2$ emission vs. SO$_2$ and SO$_4^{2-}$ in Japan and Korea

Interannual SO$_2$ trends (EANET sites)

Decrease in urban and rural sites

Increase in remote sites
Comparison of SO$_2$ emission and sulfur related quantities

SO$_2$ emission vs. SO$_2$ and SO$_4^{2-}$ in Japan and Korea

Interannual SO$_4^{2-}$ trends (EANET sites)

Increase in all sites (expect for Kanghwa)
Comparison of SO_2 emission and sulfur related quantities

SO$_2$ emission vs. SSR in East Asia

- The continuous dimming in China is consistent with the dramatic increase in SO$_2$ emission in East Asia after 2000.

- It further confirms the hypothesis that changes in AOD over time, particularly the regional transitions from dimming to brightening, are caused by the changing patterns of anthropogenic emissions of aerosols and aerosol precursors.
Comparison of SO_2 emission and sulfur related quantities

SO$_2$ emission vs. AOD in East Asia

- AOD trends: increase
- The contribution of sulfur to total AOD peaks in the second half year.
- AOD trends agree much better with SO_2 emission in China during the period of July to December, indicating the effect of emission in China on AOD is more pronounced during the second half of the year.
Summary

- Using a detailed technology-based methodology, we estimated the SO$_2$ emission in China increased by 53% from 2000 to 2006 with an annual growth rate of 7.3%.

- The growth of national SO$_2$ emission slowed down around 2005, and tends to decrease after 2006.

- Comparison of SO$_2$ emission and sulfur related data sets over East Asia.

 - The change of SO$_2$ emission in China after 2000 is generally in line with the change of SO$_2$ concentration and acid rain pH and frequency in China, as well as with the increasing trends of background SO$_2$ and sulfate concentration in East Asia.

 - The SO$_2$ concentrations in most cities of Japan tend to continuously decrease after 2000. A longitudinal gradient in the percentage change of urban SO$_2$ concentration in Japan is found during 2000-2007.

 - Both SSR measurements and satellite AOD products show that China and East Asia excluding Japan underwent a continuous dimming after 2000.
Acknowledgements

NASA's ARCTAS mission No. 07-ARCTAS07-0023
Jay Al-Saadi, Jim Crawford, and Hal Maring

David G. Streets
Decision and Information Sciences Division
Argonne National Laboratory

Qiang Zhang, Siwen Wang
Department of Environmental Science and Engineering
Tsinghua University

Gregory R. Carmichael, Yafang Cheng, Chao Wei
Center for Global and Regional Environmental Research
University of Iowa

Mian Chin, Thomas Diehl, Qian Tan
Laboratory for Atmospheres
NASA Goddard Space Flight Center
Thank you for your attention!

Questions?

Contact:

Zifeng Lu
zlu@anl.gov

David G. Streets
dstreets@anl.gov