Emissions Inventory Lessons Learned by Southeastern Air Agencies and Future Plans for PM$_{2.5}$, Haze, and Ozone

RPO/MJ O Panel

Prepared by Sheila Holman, NC DENR
Presented by Bob Betterton, WV DEP

18th International Emissions Inventory Conference
Baltimore, Maryland
April 14, 2009
Lessons Learned

- Class I areas in the Southeast are not remote. They are located near PM$_{2.5}$ and ozone non-attainment areas
 - Urban and Class I areas have common regional pollutant contributions (SO$_4$, carbon)
 - Urban areas have additional local increment (NO$_3$, OC, EC, metals)
 - Emissions controls to address PM$_{2.5}$ nonattainment areas will improve visibility in Class I areas
 - Integrated air quality management approach needed for ozone, PM$_{2.5}$, and haze
PM$_{2.5}$ constituents are similar at urban and nearby Class I Areas.
Lessons Learned

- SO$_2$ most important contributor to PM$_{2.5}$ and haze in the Southeast
 - Fortunately, high confidence in SO$_2$ inventory
 - In VISTAS states, point sources are 96% of total SO$_2$ inventory
 - Even assuming EGU controls under CAIR, in 2018 EGU are still largest contributors to SO$_4$
 - Second largest source category is coal-fired industrial boilers
Lessons Learned

- Organic carbon is major contributor to PM$_{2.5}$ and haze in the Southeast
 - Higher OC at urban monitors than Class I areas
 - Primary PM$_{2.5}$ from biomass or fossil fuels
 - Secondary organic aerosol, mostly biogenic

- Elemental carbon is important in PM$_{2.5}$ non-attainment areas, less so at Class I areas
 - Primary PM$_{2.5}$ from incomplete combustion of biomass or fossil fuels
Lessons Learned

- Carbon inventory needs improvement!
 - Improved profiles for mobile, nonroad, point, and area sources
 - LADCO-NREL project to improve mobile profiles
 - Speciation of PM$_{2.5}$ from point sources
 - Fire activity and emissions
 - Significant impacts to ozone, daily PM$_{2.5}$ and haze
 - Biogenic emissions are by far the largest source of VOCs in the Southeast
CMB-C14 Apportionment of Total Carbon

Largest contributions from biomass burning, mobile, and unidentified modern carbon attributed to biogenic emissions

Cape Romain, SC

Raleigh, NC
Lessons Learned

- NO_x small contributor to $\text{PM}_{2.5}$ in Southeast
 - NO_x and NH_3 contribute to NH_4NO_3
 - NH_4NO_3 may be elevated on some winter days
 - NO_x fairly good inventory
 - NO_x emissions important for ozone
- NH_3 inventory needs improvement!
 - Primarily from livestock and fertilizers, also human waste management systems
 - Large uncertainty in current assumptions
Lessons Learned

- “Soil” or “Crustal” minor contributor to PM$_{2.5}$ in Southeast except in local nonattainment areas
 - Need better PM$_{2.5}$ profiles
 - Industrial PM profiles include metals in “soil” category with crustals, results in model over predicting “soil”
 - Fugitive dust is issue for West, not populated East
Lessons Learned

- Emissions Inventories need to support Air Quality Modeling
 - Speciation of primary PM$_{2.5}$
 - Temporal allocation: how much simplification is too much?
 - Utility daily and annual profiles
 - Mobile profiles
 - NH$_3$
 - Improve spatial resolution of inventory data for modeling
 - E.g. fire, agricultural emissions, rail yards as point source emissions
Lessons Learned

- Process and Policy
 - RPOs shared methods and inventories, but schedules didn’t align across RPOs
 - Eastern RPOs used different utility projections
 - Range of 2018 forecasts reflects future uncertainties; we won’t know which is most accurate until 2018
 - GA and NC have state rules for EGU controls
 - Consent decrees and federal court order require additional controls in AL, FL, KY, SC, TN, VA, WV
 - Eastern RPOs need to coordinate inventories better for next SIPs
Prospective View - Planning for Next SIPs

- One-atmosphere modeling for ozone, PM$_{2.5}$ and haze SIPs
 - One emissions inventory supporting all SIPs
 - VISTAS has selected contractors for emissions inventory development
 - Contractor to support state inventory staff
 - Currently developing contracts
 - Working with ERTAC to define improvements for base year inventory and projection methods
 - Expect to follow ERTAC recommendations unless issues arise that preclude
Prospective View - Planning for Next SIPs

- Southeastern inventory priorities
 - EGU projections: what requirements, what controls, where, when
 - Fire: how much can we afford to do?
 - NH$_3$ emissions from agricultural sources
 - Mobile emissions improvements
 - Rail improvements per ERTAC
 - ERTAC recommendations re area source methods
 - Better international emissions
 - Cuban emissions added?
 - Work with EPA to benefit from their improvements
Important Issues Being Resolved

- No one modeling base year will be representative for all Southeastern states
 - 2005 hurricanes in Gulf, more typical for NC, VA
 - 2007 record drought, large fires in GA and FL
 - 2008 still drought, large fire in eastern NC affected VA

- Assume that 2008 is focus for emissions development
 - 2008 inventory will not be available until 2010
 - Expect to do preliminary modeling with an initial 2005 inventory
 - Evaluate 2005 LADCO and NEI inventories for initial modeling
 - May use meteorology from more than one base year for modeling demonstrations, still to be evaluated
June 2008 fires in eastern NC
Models for the Future

- Mobile emissions plans
 - EPA recommends MOVES model but model is not yet available
 - MOVES will project inventory but will not be integrated with emissions models (why?)
 - Intend to continue to use MOBILE 6 for emissions modeling

- Biogenic emissions: still evaluating options
 - MEGAN has additional secondary organic aerosol formation
 - EPA updated SOA formation in CMAQ v4.7

- CONCEPT emissions model
 - Open source model
 - Conceptually more transparent than SMOKE model
 - But...need better documentation for other users
 - VISTAS states will continue to use SMOKE
Success for the Future

- Coordination with other regions
 - Need to do better than regional haze experience
 - Already cooperating to improve and standardize methods through ERTAC ad-hoc group
 - NH₃, EGU projections methods in 2009
 - Already cooperating through State Collaborative effort on common modeling platform
 - Build success through existing technical efforts

- Making do with less
 - Budgets are much tighter
 - Need take advantage of all resources available