Using and Improving NEI Data for Residual Risk and Technology Review (RTR) Projects

Karen Schaffner, RTI, Ted Palma, U.S. EPA
Anne Pope, EPA
David Burch, ICF

Paula Hirtz, EPA
Darcie Smith, EC/R
Darcy Wilson, ERG
Chris Holder, ICF
David Reeves, RTI

4 June 2008
Objectives

- Review statutory background – section 112 of CAA
- General approach and review the RTR process
- Identify data issues
- Review source category examples
- Summary of overall data changes
- Data change effects on residual risk
Statutory Background –
Section 112 MACT Program

- Residual risk assessment under CAA section 112(f)(2)
 - Assess the risk remaining (residual risk) after application of MACT standards and promulgate more stringent standards for a source category if necessary to protect public health with an ample margin of safety or to prevent adverse environmental effects, 8 years after promulgation of original MACT

- Technology review under CAA section 112(d)(6)
 - Review and revise MACT standards as necessary taking into account developments in practices, processes, and control technologies, every 8 years
Background on Approach

- NEI database – used as the starting point for inputs to the risk modeling, using HEM-3
- Currently conducting analysis for source categories with MACT compliance dates of 2002 and earlier
- Source categories divided into phases (Phase I and Phase II); and Phase II further divided into groups (Groups 1, 2, 3)
<table>
<thead>
<tr>
<th>Phase I - Completed</th>
<th>Phase II, Group 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coke Ovens</td>
<td>Gasoline Distribution</td>
</tr>
<tr>
<td>Dry Cleaning</td>
<td>Ethylene Oxide Sterilizers</td>
</tr>
<tr>
<td>Industrial Cooling Towers</td>
<td>Magnetic Tape</td>
</tr>
<tr>
<td>HON</td>
<td>Halogenated Solvents</td>
</tr>
<tr>
<td>Phase II, Group 3</td>
<td></td>
</tr>
<tr>
<td>Acrylic and Modacrylic Fibers</td>
<td>Primary Lead Smelting</td>
</tr>
<tr>
<td>Chrome Electroplating (3 subcategories)</td>
<td>Publicly Owned Treatment Works</td>
</tr>
<tr>
<td>Ferroalloys Production</td>
<td>Pulp and Paper Production</td>
</tr>
<tr>
<td>Flexible Polyurethane Foam</td>
<td>Secondary Aluminum Production</td>
</tr>
<tr>
<td>Off-site Waste and Recovery</td>
<td>Secondary Lead Smelting</td>
</tr>
<tr>
<td>Phosphoric Acid/ Phosphoric Fertilizer Prod</td>
<td>Steel Pickling—HCl Process</td>
</tr>
<tr>
<td>Polycarbonates Production</td>
<td>Wood Furniture</td>
</tr>
<tr>
<td>Polyether Polyols Production</td>
<td>Wool Fiberglass</td>
</tr>
<tr>
<td>Group 2B</td>
<td></td>
</tr>
<tr>
<td>Group 2C</td>
<td></td>
</tr>
<tr>
<td>Primary Aluminum Reduction</td>
<td></td>
</tr>
</tbody>
</table>
RTR Data Process – Show Me the Data!

- Conduct engineering review of NEI data
 - Included additional project data, if available and appropriate
 - Create ANPRM* data set
- Release of ANPRM to request public comments
 - Comments from State/local agencies and industry
 - Received revisions to emissions, facilities and facility names, MACT codes, stack parameters, and coordinates
 - Create NPRM data set
- Proposal and Promulgation of risk determination and standards
 - Residual risk analysis based on NPRM data set

(*ANPRM: Advanced Notice of Proposed Rule Making)
ANPRM Data Requests

Input on Source Category Representation
Names and addresses for facilities
- Which should be included but are not
- Which should not be included
- Identify area sources and provide documentation

Facility-Specific and Emissions-Point-Specific Data
Facility location and identification
- Facility name
- Facility address
- Facility category code (major or area source)

Emission point data
- SCC and MACT codes
- Emissions of each HAP, ton per year (tpy)
- Emissions-release point type (e.g., fugitive, vertical, horizontal, gooseneck, vertical with raincap, downward facing vent)
- Emissions-release characteristics (e.g., stack height, stack diameter, exist gas temperature, velocity, flow rate)
- Emissions point latitude and longitude coordinates

Data characteristics
- Acute emissions factors
- Speciation of metal HAPs and polycyclic organic matter
- HAP emissions performance level (i.e., actual, allowable, maximum)
Data Issues

- Are the correct facilities included in the source category and can Industry identify their facilities in the dataset?
- Are the correct emissions units included in the source category and can Industry identify emissions units within their facilities?
- How are data handled for facilities subject to multiple MACT rules?
- Are assumptions for HAP speciation correct?
- Do the emissions represent actuals or allowables?
- How will data be augmented when facilities are missing and when anticipated HAP are missing from units within a facility?
- How will EPA address incomplete control technique information?
- How to group SCCs together under source category emissions units?
Are the correct facilities included in the source category?

Petroleum Refineries

Petroleum Refining Source Category MACT1 – Dropped Facilities

<table>
<thead>
<tr>
<th>NEISiteID</th>
<th>FacilityName</th>
<th>City</th>
<th>State</th>
<th>Reason for Deleting</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEI12419</td>
<td>NEDERLAND MARINE TERMINAL</td>
<td>NEDERLAND</td>
<td>TX</td>
<td>Terminal</td>
</tr>
<tr>
<td>NEI21174</td>
<td>CENCO OIL</td>
<td>SANTA FE SPRINGS</td>
<td>CA</td>
<td>Closed 1995</td>
</tr>
<tr>
<td>NEI24425</td>
<td>CONOCOPHILLIPS - SANTA MARIA</td>
<td>SANTA MARIA</td>
<td>CA</td>
<td>Not a Refinery</td>
</tr>
<tr>
<td>NEI39879</td>
<td>RIVERHEAD TERMINAL-CONOCOPHILLIPS</td>
<td>RIVERHEAD</td>
<td>NY</td>
<td>Terminal</td>
</tr>
<tr>
<td>NEI40622</td>
<td>BP WEST COAST PRODUCTS, LLC</td>
<td>PORTLAND</td>
<td>OR</td>
<td>Not a Refinery</td>
</tr>
<tr>
<td>NEI46497</td>
<td>CHEVRON PHILLIPS CHEMICAL PUERTO RICO CORE INC.</td>
<td>GUAYAMA</td>
<td>PR</td>
<td>p-xylene manuf; closed 2002</td>
</tr>
<tr>
<td>NEIAR1070110</td>
<td>TE PRODUCTS PIPELINE COMPANY</td>
<td>HELENA</td>
<td>AR</td>
<td>Terminal</td>
</tr>
<tr>
<td>NEICA03713</td>
<td>ARCO PRODUCTS CO. MARINE TERMINAL</td>
<td>LONG BEACH</td>
<td>CA</td>
<td>Terminal</td>
</tr>
<tr>
<td>NEIDE0050093</td>
<td>MARITRANS</td>
<td>DELAWARE BAY</td>
<td>DE</td>
<td>Not a Refinery</td>
</tr>
<tr>
<td>NEIN371</td>
<td>MARATHON ASHLAND PET., CLARKSVILLE TERM.</td>
<td>CLARKSVILLE</td>
<td>IN</td>
<td>Terminal</td>
</tr>
<tr>
<td>NEILA13809</td>
<td>UNION CARBIDE/TAFT & STAR</td>
<td>HAHNVILLE</td>
<td>LA</td>
<td>Chemical Plant</td>
</tr>
<tr>
<td>NEINY2640500</td>
<td>EXXONMOBIL - PORT MOBIL TERMINAL</td>
<td>STATEN ISLAND</td>
<td>NY</td>
<td>Terminal</td>
</tr>
<tr>
<td>NEIPA2125</td>
<td>GULF OIL LIMITED PARTNERSHIP NEVILLE IS</td>
<td>PITTSBURGH</td>
<td>PA</td>
<td>Not a Refinery</td>
</tr>
<tr>
<td>NEIPA2136</td>
<td>MOTIVA ENTERPRISES LLC</td>
<td>CORAPOPOLIS, PA</td>
<td>PA</td>
<td>Terminal</td>
</tr>
<tr>
<td>NEIWV0730002</td>
<td>ST. MARYS REFINING COMPANY</td>
<td>ST. MARYS</td>
<td>WV</td>
<td>Terminal</td>
</tr>
</tbody>
</table>
Are the correct facilities included in the source category?

Marine Vessel Loading

- Public comment: “San Bernard Terminal Dock No. 1” with NEI number “NEI3TX48039San” in Sweeny, TX, address of “CR 372 at San Bernard River” renamed to “ConocoPhillips San Bernard Terminal Dock No. 1”
 - Looked at all facilities in ANPRM dataset in Brazoria Co. TX: Not in ANPRM dataset?
 - NEITXT$11613—ConocoPhillips San Bernard Terminal; Sweeny, TX; CR 372
 - NEI2TX139—San Bernard Terminal; Sweeny, TX; end of CR 321, on Ave. A (CR 372) 2
 - NEI6519—ConocoPhillips Sweeny; Old Ocean, TX; Hwy 35 and 524 at Old Ocean
How are data handled for facilities subject to multiple MACT rules?

Petroleum Refineries

- Petroleum Refining MACT 1 (MACT Code 0503)
 - Thermal cracking
 - Vacuum distillation
 - Crude distillation
 - Hydrotreating
 - Hydrorefining
 - Isomerization
 - Polymerization
 - Lube oil processing
 - Hydrogen production
 - Fugitive emissions and Equipment Leak emissions from FCCU, CRU, and SRU would be covered here
 - etc.

- Petroleum Refining MACT 2 (MACT Code 0502)
 - Catalytic cracking units (FCCU)
 - Catalytic reforming units (CRU)
 - Sulfur plant units (SRU)
Are assumptions for HAP speciation correct?
Wool Fiberglass

- Cr emitted from deterioration of Cr refractories
- Cr test data available from state agency showed 100% Cr 6+
- Used worse case speciation profile at 100% Cr 6+ (applied for generically-reported Cr cpds)
- Currently preparing ANPRM dataset
Are assumptions for HAP speciation correct?
Aerospace Manufacturing and Rework

- Cr emitted from source category; 61 facilities of 137 facilities reported Cr or Cr cpds emissions
- In ANPRM, assumed 25% Cr 6+ (based on information from 1 facility)
- Public comments ranged from 0% to 100% Cr 6+
- EPA reviewed and confirmed the 25% Cr 6+ (applied for generically-reported Cr cpds)
Do the emissions represent actuals or allowables?

Mineral Wool Production

- MACT std has Emissions Factor format:
 - 0.1 lb PM/ton melt
 - 0.06 lb Formaldehyde/ton melt

- Emissions test data available; calculated “average” emissions levels for the industry
 - 0.044 lb PM/ton melt
 - 0.038 lb Formaldehyde/ton melt

- Compared the average “actual” emissions levels for the industry to the MACT limits.
 - PM: 0.1 / 0.044 = 2.3; so MACT allowable PM emission rate is $2.3x$ higher than avg emissions
 - Formaldehyde: 0.06 / 0.038 = 1.6; so MACT allowable Formaldehyde emission rate is $1.6x$ higher than avg emissions

- Estimate allowables at ~$2x$ higher than actuals
Do the emissions represent actuals or allowables?

Aerospace Manufacturing and Rework

- One facility with markedly higher emissions – \(40\times\) higher than next closest facility
- Reviewed permit, TRI data, and contacted the facility
- “Allowable,” but back-calculated from a fenceline ambient concentration limit by modeling – gave an unrealistic even implausible allowable level
 - At maximum production, 365 d/yr, not reach these levels
- Worked with facility to provide more realistic emissions levels
What to do about missing data or missing HAP?

Pulp and Paper MACT II

- Expect Cd and Hg emissions from all facilities but only reported from a few facilities
- Power boilers, recovery furnaces, smelt dissolving tanks (SDT), lime kilns, and other combustion sources
- Identified units by SCCs that were missing Cd and Hg
- Used AP-42 emissions factors, NCASI emissions factors along with activity levels to estimate emissions.
- Used average EF and worse-case EF depending on information on specific type of source
What to do about missing data or missing HAP?

Wool Fiberglass

- Expect HAP metals emissions (As, Cr, etc.) and MeOH emissions from all facilities but only reported from about half of facilities
- Developed overall source category factors based on those facilities that did report specific HAP
 - Summed emissions and developed ratio
 - Cr: 0.35 ton Cr/3,434 ton PM10: 0.0001019 ton Cr/ton PM10
 - MeOH: 1,132 ton MeOH/337 ton Formald. = 3.36 ton MeOH/ton Formald.
What to do about incomplete control technique information?

Marine Vessel Loading

- Question about control level at St. Linden Terminal in Linden, NJ:
 - NEI facility ID of NEINJ030093
 - Address of “South Wood Avenue”
 - APC_ID field is “Unknown”
- No facility contact information given in NEI
- No listing of facility found; Looked at state permit site for NJ DEP for all facilities in Union County
- Contacted facility and they confirmed “Controlled”
All facilities in Union County NJ – Find St. Linden MVL Terminal

<table>
<thead>
<tr>
<th>PI Number</th>
<th>Facility Name</th>
<th>Facility Address</th>
<th>Facility City</th>
</tr>
</thead>
<tbody>
<tr>
<td>40192</td>
<td>NEW YORK TERMINALS LLC</td>
<td>534 SOUTH FRONT ST</td>
<td>ELIZABETH</td>
</tr>
<tr>
<td>40608</td>
<td>PORT AUTHORITY OF NEW YORK & NEW JERSEY</td>
<td>NEWARK INTERNATIONAL AIRPORT</td>
<td>NEWARK</td>
</tr>
<tr>
<td>41738</td>
<td>SUPPORT TERMINAL OPERATING PARTNERSHIP LP</td>
<td>EXXONMOBIL REFINING & SUPPLY COMPANY</td>
<td>LINDEN</td>
</tr>
<tr>
<td>41766</td>
<td>TUSCAN DAIRY FARMS</td>
<td>750 UNION AVE</td>
<td>UNION</td>
</tr>
<tr>
<td>41767</td>
<td>INFINEUM USA LP - BAYWAY CHEMICAL PLANT</td>
<td>Corner of Park & Brunswick Avenues</td>
<td>Linden</td>
</tr>
<tr>
<td>41780</td>
<td>BUCKEYE PIPE LINE CO LINDEN STATION</td>
<td>BUCKEYE PIPE LINE COMPANY LP</td>
<td>LINDEN</td>
</tr>
<tr>
<td>41799</td>
<td>ST LINDEN TERMINAL LLC INLAND FACILITY</td>
<td>4501 TREMLEY PT RD</td>
<td>LINDEN</td>
</tr>
<tr>
<td>41800</td>
<td>ST LINDEN TERMINAL LLC SHORESIDE FACILITY</td>
<td>4501 TREMLEY PT RD</td>
<td>LINDEN</td>
</tr>
<tr>
<td>41801</td>
<td>GULF OIL LTD PARTNERSHIP LINDEN TERMINAL</td>
<td>2600 MARSHES DOCK RD</td>
<td>LINDEN</td>
</tr>
<tr>
<td>41802</td>
<td>INTERBAKE FOODS INC</td>
<td>891 NEWARK AVE</td>
<td>ELIZABETH</td>
</tr>
<tr>
<td>41803</td>
<td>CITGO PETROLEUM CORP LINDEN TERMINAL</td>
<td>4801 SOUTH WOOD AVE</td>
<td>LINDEN</td>
</tr>
<tr>
<td>41805</td>
<td>CONOCO PHILLIPS</td>
<td>1400 Park Ave</td>
<td>Linden</td>
</tr>
</tbody>
</table>
Overall Summary of ANPRM Data Changes – Phase II, Group 1

<table>
<thead>
<tr>
<th>MACT Code</th>
<th>MACT Source Category</th>
<th>Original Number of Facilities</th>
<th>Revised Number of Facilities</th>
<th>Original Emissions (total tons)</th>
<th>Revised Emissions (total tons)</th>
<th>Percentage of Change in Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1301</td>
<td>GMACT—Acetal Resins Production</td>
<td>3</td>
<td>3</td>
<td>38.48</td>
<td>38.48</td>
<td>0.00%</td>
</tr>
<tr>
<td>1307</td>
<td>Polymers and Resins I—Butyl Rubber Production</td>
<td>2</td>
<td>2</td>
<td>502.0</td>
<td>502.0</td>
<td>0.00%</td>
</tr>
<tr>
<td>1312</td>
<td>Polymers and Resins II—Epoxy Resins Production</td>
<td>3</td>
<td>4</td>
<td>15.47</td>
<td>15.59</td>
<td>0.77%</td>
</tr>
<tr>
<td>1313</td>
<td>Polymers and Resins I—Ethylene–Propylene Rubber Production</td>
<td>5</td>
<td>5</td>
<td>1,067</td>
<td>1,062</td>
<td>-0.47%</td>
</tr>
<tr>
<td>1409</td>
<td>GMACT—Hydrogen Fluoride Production</td>
<td>2</td>
<td>2</td>
<td>5.48</td>
<td>5.48</td>
<td>0.00%</td>
</tr>
<tr>
<td>1320</td>
<td>Polymers and Resins I—Neoprene Production</td>
<td>1</td>
<td>1</td>
<td>289.1</td>
<td>138.9</td>
<td>-52%</td>
</tr>
<tr>
<td>1322</td>
<td>Polymers and Resins II—Non-Nylon Polyamides Production</td>
<td>4</td>
<td>4</td>
<td>6.37</td>
<td>6.37</td>
<td>0.00%</td>
</tr>
</tbody>
</table>
Overall Summary of ANPRM Data Changes – Phase II, Group 2

<table>
<thead>
<tr>
<th>MACT Code</th>
<th>MACT Source Category</th>
<th>Original Number of Facilities</th>
<th>Revised Number of Facilities</th>
<th>Original Emissions (total tons)</th>
<th>Revised Emissions (total tons)</th>
<th>Percentage of Change in Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0701</td>
<td>Aerospace Industries</td>
<td>301</td>
<td>267</td>
<td>2,337</td>
<td>1,509</td>
<td>-35%</td>
</tr>
<tr>
<td>0603</td>
<td>Marine Vessel Loading</td>
<td>126</td>
<td>135</td>
<td>256.0</td>
<td>248.1</td>
<td>-3.1%</td>
</tr>
<tr>
<td>0409</td>
<td>Mineral Wool Production</td>
<td>12</td>
<td>8</td>
<td>509.1</td>
<td>430.8</td>
<td>-15%</td>
</tr>
<tr>
<td>0504</td>
<td>Natural Gas Transmission and Storage</td>
<td>123</td>
<td>123</td>
<td>273.2</td>
<td>330.5</td>
<td>21%</td>
</tr>
<tr>
<td>0501</td>
<td>Oil and Natural Gas Production</td>
<td>2,823</td>
<td>5,463</td>
<td>10,515</td>
<td>13,737</td>
<td>31%</td>
</tr>
<tr>
<td>0503</td>
<td>Petroleum Refineries</td>
<td>153</td>
<td>152</td>
<td>8,510</td>
<td>5,717</td>
<td>-33%</td>
</tr>
<tr>
<td>1201</td>
<td>Pharmaceutical Production</td>
<td>222</td>
<td>27</td>
<td>2,465</td>
<td>1,051</td>
<td>-57%</td>
</tr>
<tr>
<td>1311</td>
<td>Polymers and Resins I—Epichlorohydrin Elastomers Production</td>
<td>1</td>
<td>1</td>
<td>105.5</td>
<td>105.5</td>
<td>0.00%</td>
</tr>
<tr>
<td>1315</td>
<td>Polymers and Resins I—Hypalon Production</td>
<td>1</td>
<td>1</td>
<td>32.00</td>
<td>30.60</td>
<td>-4.4%</td>
</tr>
<tr>
<td>1321</td>
<td>Polymers and Resins I—Nitrile Butadiene Rubber Production</td>
<td>4</td>
<td>5</td>
<td>82.91</td>
<td>50.57</td>
<td>-39%</td>
</tr>
<tr>
<td>1325</td>
<td>Polymers and Resins I—Polybutadiene Rubber Production</td>
<td>5</td>
<td>4</td>
<td>2,311</td>
<td>1,992</td>
<td>-14%</td>
</tr>
<tr>
<td>1339</td>
<td>Polymers and Resins I—Styrene-Butadiene Rubber/Latex Production</td>
<td>15</td>
<td>14</td>
<td>351.8</td>
<td>306.9</td>
<td>-13%</td>
</tr>
</tbody>
</table>
Risky Business

- How did we perform the risk assessment for RTR?
 - Inhalation Assessment
 - Utilizes Human Exposure Model 3 (HEM3)
 - Multipathway/Ecological Assessment
 - Utilize TRIM Screen Model
Facility HEM-3
Tool for Human Exposure Modeling
Version 1.2.0 Beta

Prepared for:
Risk and Exposure Assessment Group
U. S. Environmental Protection Agency
Research Triangle Park, NC 27711

Prepared by:
EC/R Incorporated
6330 Quadrangle Drive, Suite 326
Chapel Hill, NC 27517

EPA Contract 68-D-01-071

Available at:
http://www.epa.gov/ttn/fera/human_hem.html
RTR: HEM3 Summary

- Based on EPA’s AERMOD (07026)
 - Gaussian plume model

 \[
 C = \frac{Q}{2\pi \sigma_y(x) \sigma_z(x) u} \left[e^{-\frac{y^2}{2\sigma_y(x)^2}} - \frac{(z-h)^2}{2\sigma_z(x)^2} + e^{-\frac{(z+h)^2}{2\sigma_z(x)^2}} \right]
 \]

- Q= emission rate and H is plume release height and X is downwind distance

- Run for each facility in source category to predict both chronic & acute; cancer & noncancer risks
- Receptors based on 2000 census blocks
- Meteorological data selected for each facility

www.rti.org
RTR: Inhalation Assessment Results

- **Chronic**
 - Maximum Individual Risk (MIR) - highest risk at a census block centroid (cancer & noncancer)
 - Cancer incidence
 - Cancer risk distributions

- **Acute**
 - Maximum off-site impact – highest of census block and polar grid receptors

- **Population risk levels**
 - Facility and source category cancer incidence levels
RTR: Multipathway and Ecological Screening

- Iterative process for source categories emitting PBT-HAPS
 - Cadmium compounds
 - Chlordane
 - Chlorinated dibenzodioxins and furans
 - DDE
 - Heptachlor
 - Hexachlorobenzene
 - Hexachlorocyclohexane (all isomers)
 - Lead compounds
 - Mercury compounds
 - Methoxychlo
 - Polychlorinated biphenyls
 - Polycyclic organic matter
 - Toxaphene
 - Trifluralin

- TRIM model (multipathway) in screening mode
- TRIM model in refined mode
How does the inventory effect risk?

- Amount of specific HAP compounds emitted (Q)
 - Concentration (and risk) is directly proportional to the emission rate

- Emission release point/stack coordinates (x)
 - Concentration is inversely proportional to plume travel distance

- Stack parameters: height, diameter, exit gas temperature, exit gas velocity, exit gas flow rate. (h)
 - Concentration is inversely proportional to plume release elevation (physical plume height and plume rise)

- Area Source parameter: width, length, height of area source
 - Concentration is inversely proportional to surface area
Plume concentration as a function of release height and downwind distance

Ground Level Concentration (ug/m³) vs. Downwind Distance (meters)

- Release Height (m)
 - 0
 - 1
 - 2
 - 3
 - 4
 - 5
 - 10
 - 20
 - 30
Source Location Example 1

MIR:
Location A = 100 in a million
Location B = 5 in a million
Source Location Example 2

MIR:
Location A = 1000 in a million
Location B = 4000 in a million