Converting Gridded Inventories to ORL Format for Processing with SMOKE

Zachariah Adelman, Alison Eyth, and Limei Ran
Center for Environmental Modeling for Policy Development
University of North Carolina Institute for the Environment

Athanasios Sfetsos
Environmental Research Laboratory
Institute of Nuclear Technology and Radiation Protection
National Center for Scientific Research “Demokritos”

Presented at the 17th International Emission Inventory Conference
June 2-4, 2008 Portland, OR
SMOKE Processing Approaches

- SMOKE is optimized for source-based processing
- Gridded inventory data are allowed but not ideal
 - Inefficient
 - Limited flexibility for spatial allocation
Objectives

• Streamline the processing of gridded inventories in SMOKE
• Overcome the limitations of using coarse grid inventories for regional/urban modeling
• Use only open-source software to prepare and process the gridded inventory data
Approach

- Use a GIS to extract administrative unit (AU) totals from gridded inventories
- Format the AU totals to a SMOKE area source inventory
- Develop spatial surrogates to re-grid the AU inventories to different modeling grids
- Compare the native gridded inventories to the re-gridded emissions
Tools and Utilities

- **Spatial Allocator**
 - ALLOCATE mode
 - Surrogate tool

- **Fortran Utilities**
 - GEIA2NCF, EDGAR2NCF, EMEP2NCF
 - CSV2ORL
Datasets

• Inventories
 – GEIAv1, EDGAR32FT2000, EMEP

• Administrative Unit Shapefile
 – Global year 2000 country boundaries (1:1,000,000)

• Global Population Shapefile
 – SEDAC 2.5’ 2005 population
Results

• 5-10% loss of total emissions from gridded inventory relative to extracted inventory
 – AU Shapefile did not contain marine areas as a polygon, resulted in loss of offshore emissions
• 1-10% difference in emissions at the AU level between EMEP country totals and extracted inventory
 – Coarse resolution AU Shapefile does not resolve the country boundaries well; differences in country boundary definitions between EMEP database and this application
 – Loss of offshore and coastal emissions (small islands and countries with long coastlines have largest losses)
Results

• GEIA 1985 NOx on the native 1° grid vs. US 12-km grid allocated by population
Results

- GEIA 1985 NOx on the native 1° grid vs. India 24-km grid allocated by population
Results

- GEIA 1985 NOx on the native 1° grid vs. Rio/Sao Paulo 12-km grid allocated by population
Results

• GEIA 1985 NOx on the native 1° grid vs. Nile Delta 4-km grid allocated by population

![Map of GEIA 1985 NOx](image1.png)

![Map of Nile Delta NOx](image2.png)
Conclusions and Future Work

• This approach is a way to make preparing gridded inventories for air quality modeling more accessible and efficient for areas of the world where only gridded emissions estimates are available.
• Dependent on the availability of AU Shapefiles
• Areas of the world that lack detailed inventories also lack detailed ancillary data
• Future work will confirm why some emissions are being lost in the conversion from the gridded to AU total inventories
• The approach can shift resources away from tedious SMOKE processing tasks to focusing on the improvements of the emissions data, collection ancillary data, etc.