Improving the Transportation Component of State Greenhouse Gas Emissions Inventories

International Emissions Inventory Conference
June 4, 2008

Frank Gallivan and Michael Grant
ICF International

John Davies
U.S. Environmental Protection Agency
Overview

- History of state inventories and current practice
- Potential Methodological improvements
  - Disaggregation by mode / vehicle category / activity
  - Refinement of disaggregated estimates
- Challenges
  - Technical issues
  - Engaging relevant policies
- Recommendations
GHG Emissions Inventory - History

- National greenhouse gas inventories established under the United Nations Framework Convention on Climate Change (Ratified in 1992 by U.S.)
- Reporting guidelines established under Working Group I of Intergovernmental Panel on Climate Change in 1996
  - Ensure that emissions inventories submitted to UNFCCC are consistent and comparable
Beginnings of State Inventories

- EPA initiated the State and Local Climate Change Program (SLCCP) in 1992
  - Objective of building capacity in state and local governments and encourage them to take action to reduce GHG emissions
  - Encouraged states to prepare their own GHG inventories
- Through the SLCCP, the EPA has developed and published guidance for states to produce GHG inventories.
  - Guidance was first issued in 1992 and is updated regularly to be consistent with methodologies for the U.S. Inventory
  - EPA methods conform to international guidance issued by IPCC
  - EPA has also issued spreadsheet-based tools to assist states with the development of inventories
History of State Inventories cont’d

- First state inventories were completed in the 1990s
- Since then, 44 states have completed inventories, and one more is presently completing an inventory
- State environmental agencies lead the development of the GHG inventories, using the guidance and tools provided by EPA
Transportation in GHG Inventories – National Level

Transportation sources account for 29% of total U.S. GHGs (28% excluding bunkers)
Transportation in state inventories

- In 14 states, the transportation sector constitutes the largest source of CO₂ emissions.

Source: various state inventory reports, available through www.climatestrategies.us.
Development of Transportation Emissions Estimates in State Inventories

- Top-down approach is the standard (approach followed by EPA’s State Inventory Tool)
- State fuel sales used as a proxy for fuel consumption
Characterization of Transportation Sources in State Inventories

Projected transportation emissions by source in various states, 2010.

Further disaggregation of on-road would greatly improve utility of information

- On-Road
  - Light-Duty
  - Med & Heavy-Duty
- Off-Road
  - Passenger Cars
  - Light-Duty Trucks
  - Motorcycles
  - Buses
  - Med & HD Trucks

Million Metric Tons CO2 equivalent

CO | MN | VT | WA
Disaggregating CO2 by Mode: Top-Down Approach

Motor Gasoline purchased in-state

In-state VMT by vehicle type (typically available from state DOTs)

Fuel efficiency by vehicle type (national estimates available from MOBILE6 or EIA’s Annual Energy Outlook)

Light-Duty gasoline consumption

Heavy-Duty gasoline consumption

Emissions factor

Light-Duty gasoline emissions

Heavy-Duty gasoline consumption

Problem: Lack of accuracy - fuel may not be used in the state where it is purchased
Disaggregating CO$_2$ by Mode: Bottom-Up Approach

- In-state VMT by vehicle and fuel type (typically available from state DOTs)
- Fuel efficiency by vehicle type (national estimates available from MOBILE6 or EIA’s Annual Energy Outlook)
- Gasoline consumption by vehicle type
- Diesel consumption by vehicle type
- Emissions factors
  - LDGV emissions
  - HDGV emissions
  - LDDV emissions
  - HDDV emissions
Benefits of Bottom-Up CO$_2$ Calculations

- Better suited to producing greater level of detail
- Can be used more easily to estimate CO$_2$ emissions at a range of geographic levels (state, metropolitan area, or municipality)
- Fits naturally with transportation modeling activities, which estimate VMT at the regional or local level

Challenge of Bottom-Up CO$_2$ Calculations

- Estimating fuel efficiency, since comprehensive fuel efficiency data is maintained at the national level (California and New York are rare example of a state with its own fuel efficiency estimates)
Using MOVES for bottom-up estimates

- Best upcoming tool for developing bottom-up GHG emissions estimates (fuel consumption / CO₂, CH₄ and N₂O)
- Simulates actual vehicle drive cycles – provides greater sensitivity to effect of travel conditions (congestion) and travel speeds
- Inputs include vehicle population, fuel efficiency and VMT
Inventory Challenge #1: Fuel Efficiency and Vehicle Activity Impacts on Fuel Consumption

- Uncertainties in fuel efficiency
  - Fuel efficiency depends on fleet characteristics, age of vehicles, and driving conditions
  - Fleet mix and fuel efficiency may vary substantially from national averages

- Uncertainties in vehicle activity / VMT
  - MPO estimates generally more reliable than statewide
  - Challenge of reconciling different MPO methodologies and achieving a reliable statewide figure
Inventory Challenge #2: On-Road Boundary Issues

- Problem arises when fuel sales do not correspond with geographic area of emissions
- Problem most commonly arises because of commuting across state lines
- Common in smaller states and states where metropolitan areas that cross state borders and have substantial cross-state commuter traffic
  - New Jersey: FHWA 19% > MOVES
  - New Hampshire: FHWA 23% > MOVES
- Problem less significant for heavy-duty vehicles because of International Fuel Tax Agreement, which reallocates fuel taxes to states where fuel is used rather than sold
Addressing On-Road Boundary Issues - New York / New Jersey Example

- New York: VMT had grown by 20 percent from 1990 to 2000 while fuel sales had declined by 4 percent
- New Jersey: fuel sales were overstating implied VMT at an increasing rate
- Solution: New York combined fuel sales in the two states, calculated average fuel economy and then applied these figures to New York VMT to calculate fuel consumption
Inventory Challenge #3: Non-Road Boundary Issues

- Aircraft, rail and ships - location of fuel sales versus fuel consumption
  - Impact of major port and airports
- International bunkers
  - Fuel sold to aircraft and ships for international travel
  - According to reporting guidelines, these emissions should be deducted, but states often lack data to make this distinction
Inventory Challenge #4: Characterizing Upstream Emissions

- Relevance to biofuels analysis
  - State Inventory Tool removes CO$_2$ emissions from ethanol on the basis that ethanol is a carbon-neutral fuel (carbon burned is the same as carbon sequestered when corn is growing)
- Problem: Ignores upstream emissions from the cultivation of corn and the production and distribution of ethanol
- While policy analysis of biofuels will include the impact of production and distribution, the state inventory baselines will not include these emissions
Inventory Challenge #5: Characterizing Trends

Change in U.S. GHG Emissions since 1990

- Minimal attention to time-series trends and factors affecting emissions output
- Light-duty sources are treated as largely synonymous with the transportation sector
Recommendation #1 - Disaggregate emissions by mode / major vehicle category

- More intuitive and provides a more transparent baseline
- Shifts responsibility to state and regional transportation experts, who are most familiar with the best available local datasets
Recommendation #2: Examine All available datasets and consider developing new datasets

- Will help address sources of error in state fuel consumption estimates
- Will help in the creation of disaggregate emissions estimates
- California developed its own model to forecast fleet mix and fuel efficiency
Recommendation #3: Consider Implementing Bottom-Up Estimation Techniques

- Better suited to detailed / disaggregate estimates
- More accurate than top-down estimates
- Not presently integrated into standard inventory tools
- MOVES will be valuable when it come online
Recommendation #4: Bridge the Gap between Biofuels Policy Analysis and Inventory Accounting Methods

- Current methods of accounting for biofuels are sufficient at the national level, but create problems for state-level biofuels analysis.
- While state policy analysis of biofuels will include the impact of production and distribution, the state inventory baselines will not include these emissions.
- Addressing this problem may require federal guidance.
Change in U.S. GHG Emissions since 1990

Recommendation #5: Improve Characterization of Trends and Key Factors to better inform Policy Analysis and Policy Making
Inventory Recommendation #6: Providing Sufficient Detail for Policy Analysis

On-Road

Light-Duty
- Passenger Cars
- Light-Duty Trucks
- Motorcycles

Med & Heavy-Duty
- Buses
- Med & HD Trucks

Household vehicles
- To / from work
- Work-related business
- Shopping
- Family / personal business
- Social / recreational

In-use - freeflow
In-use - congested
Idling