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ABSTRACT 
 

Air quality modeling is performed at EPA for future-year time periods in support of regulatory 
analyses to assess the likelihood that areas will be in attainment with the National Ambient Air Quality 
Standards (NAAQS) after the application of proposed emissions controls.  Typical years that are 
modeled include 2009, 2014, 2020, and 2030. Currently, changes in land use are not considered when 
the emissions for these future-year scenarios are generated. A premise of our research is that 
representing the impacts of land use changes on the geographic allocation of emissions may provide 
more realistic modeling results, especially in areas in which rapid development is underway. In this 
paper, we investigate using population and housing projections from the Integrated Climate and Land 
Use Change Scenarios (ICLUS) project, which includes outputs from the Spatially Explicit Regional 
Growth Model (SERGoM), to spatially allocate future-year emissions. We compare the results of this 
approach with a baseline set of emissions and present observations and preliminary conclusions 
regarding the utility of this approach for modeling applications involving different grid sizes.  

INTRODUCTION 
 

Future-year air quality is frequently modeled by both the EPA’s Office of Air Quality Planning 
and Standards and Office of Research and Development.  Examples of reasons for future-year air quality 
modeling include evaluating the impact of control strategies when performing the Regulatory Impact 
Analyses for proposed regulations.  Future years that are commonly modeled include 2014, 2020, and 
2030.  States also perform future-year modeling when developing state implementation plans (SIPs) to 
demonstrate their projected compliance with existing regulations. One potential weakness of current 
modeling techniques is that location of emissions sources, and sometimes even the emissions amounts 
for some source types, are not updated when modeling future years.  Population growth and 
development patterns make it unrealistic to assume that emissions in future years will be spatially 
distributed according to the same pattern that they are in the current day.  Evidence of urbanization and 
suburban sprawl increasing is all around us.  With these changes, residential, commercial, and 
transportation-related emissions likely will increase in the newly developed areas over current day levels, 
even if process improvements are successful at reducing per-capita emissions.  As the residential and 
commercial emissions increase, agricultural and biogenic emissions in the newly developed areas will 
decrease.  

The methods for spatially allocating emissions vary based on the type of emissions source. The 
emissions, as described in the emission inventories, need to be placed into the rectangular grid cells used 
by an air quality model such as the Community Multiscale Air Quality (CMAQ) model. Emissions 
processing systems such as the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system 
are used for this purpose. Point sources are allocated by determining the grid cell containing the location 
indicated by the x and y coordinates in the emissions inventory. Biogenic sources are allocated based on 
land use data. Area, nonpoint, and nonroad mobile sources are allocated using spatial surrogates, which 
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are discussed in more detail below. Onroad mobile sources are allocated using spatial surrogates for 
regional scale modeling, or road links for urban scale modeling.   

Opportunities to refine the spatial allocation of emissions for future-year modeling exist if the 
spatial surrogates and land use data can be updated based on information about the location and amount 
of growth expected. The goals of this study are to: (1) define procedures by which the spatial allocation 
of emissions in future years can be made more realistic, and (2) assess the impact that updating the 
spatial allocation of emissions would have on future-year air quality model results.  

 
APPROACH 
 

To spatially allocate emissions in future years more realistically, it is important to anticipate 
where growth in population and housing will occur. The EPA’s Integrated Climate and Land Use 
Scenarios (ICLUS) project provides such information.  ICLUS includes two primary components: an 
algorithm that projects population growth at the county-level, and the Spatially Explicit Regional 
Growth Model (SERGoM), which uses population data to project housing density.  

The ICLUS population forecasts grow county-level population using a cohort model that takes 
into account demographics and associated birth and death rates. Within the 2007 calendar year, the 
ICLUS population projections are expected to be updated, accounting for population migration. 
SERGoM estimates future-year housing density nationwide in 100m x 100m pixels across multiple 
decades. SERGoM inputs include housing data for the current time-step, future-year population 
forecasts by county, road networks, water bodies, local growth rates, and information about developable 
and undevelopable land. This information is then used to develop estimates of housing density at the 
next time step (Theobold, 2006). Typically, SERGoM is run at 10-year intervals to provide estimates of 
housing density each decade. The information about future-year housing density can be used to update 
the spatial surrogates related to housing that are used by SMOKE.   

An evaluation of how the spatial surrogates are mapped to the emissions inventory, however, 
revealed that only a very small amount of the inventory emissions are currently allocated using housing-
related surrogates.  A much larger fraction of the emissions are allocated using population-related 
surrogates.  Since county-level population projections are inputs to SERGoM, this information can also 
be used in developing population-related surrogates by using SERGoM housing outputs are used to map 
population data to grid cells. In addition, the onroad emissions are allocated according to surrogates that 
consider the urban and rural boundaries. These boundaries can be estimated in future years from 
SERGoM outputs by analyzing population densities. 

 
The Role of Spatial Surrogates in Air Quality Modeling 

Spatial surrogates are used to allocate county level emissions that appear in emission inventories 
into the rectangular grid cells used by urban and regional scale air quality models.  Spatial surrogates are 
based on data at resolutions different from county-level, such as census tracts or road locations, and can 
therefore be used to allocate the emissions more specifically than assuming they are uniformly 
distributed through out the county.  For example, motor vehicle emissions from interstate highways can 
be placed into the grid cells that intersect the highways themselves, and dry cleaning emissions can be 
allocated to parts of the county that have higher population, or the parts that have more dry cleaners – if 
data is available on specific locations of dry cleaners.  Spatial surrogates consist of values between 0 and 
1 that specify the fraction of the county emissions that should be allocated to each grid cell that 
intersects the county.  The spatial surrogate fractions for each county sum to 1, except the sum may be 
less than 1 for some counties that intersect the edge of the modeling domain.  The emissions for a 
specific county within a grid cell are computed by multiplying the surrogate fraction for that county and 
grid cell by the total emissions for the county. A diagram illustrating how spatial surrogates impact the 
emissions levels within the grid cells of a county is shown in Figure 1. 



 
Figure 1. The impact of a spatial surrogate on emissions allocation within a county. 
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Currently, EPA OAQPS uses 65 different spatial surrogates for their modeling.  Some examples 

of these surrogates are: population, urban population, housing, urban primary road miles, and rural 
secondary road miles.  EPA computes the spatial surrogates using the Surrogate Tool, a free tool that is a 
component of the Emissions Modeling Framework, based on data in about two-dozen shapefiles. Within 
the 65 surrogates is a set of five surrogates based on the use of different fuels for residential heating, and 
another set of over 17 surrogates that are based on building square footages, broken down into several 
types of residential, commercial, institutional, and industrial uses within each census tract.  The 65 
surrogates must be generated separately for each modeling grid.   

 
Selection of the Study Domain and Input Data Sets 

Currently, the same surrogate datasets are used for present-day and future-year modeling.  
Therefore, no changes due either to population growth and migration or to housing changes are 
considered when spatially allocating emissions in future years.  While this strategy simplifies emissions 
modeling, it ignores potentially important redistributions of emissions, which in turn can affect air 
quality.   

During this project, we examined using SERGoM to update spatial surrogates for future-year 
modeling. To illustrate the potential impacts on a previously studied case, we selected a modeling 
domain modeled by the North Carolina Department of Environment and Natural Resources (NC DENR). 
A map of this modeling domain is shown as the shaded area in Figure 2.  The major urban areas covered 
in this study in North Carolina are the Raleigh-Cary-Durham-Chapel Hill region, Greensboro and 
Winston-Salem, Charlotte, Fayetteville, and a portion of Wilmington. The modeling domain also 
includes the Greenville-Spartanburg area of South Carolina. We studied this domain using grids 
comprised of 4km x 4km grid cells, as well as 12km and 36km cells.  

SERGoM output data for the years 2000, 2010, 2020, and 2030 was supplied in ArcGIS grid 
format by Dr. David Theobold of Colorado State University, along with the projected county-level 
population data that was used as input to SERGoM for each of the study years.  We compared the 2000 
population data to independently obtained census data and found minor differences of less than 1%.  We 
also noted that population data was missing for 12 counties in Virginia that were within our modeling 
domain. We filled in the data for these twelve counties with our independently obtained 2000 census 
data.  The shapefiles used as the basis for creating the EPA spatial surrogates provided the other major 
source of input data for this project (www.epa.gov/ttn/chief/emch/spatial/newsurrogate.html).  Plots of 
the 2000 and 2030 housing density data output from SERGoM are shown in Figures 3 and 4. In these 
plots, the red portions represent urban areas (< 0.6 acres / unit), orange are suburban (0.6-1.7 acres/unit), 
yellow are exurban (1.7-40 acres/unit), light green are rural (> 40 acres/unit), and white and dark green 
are undeveloped private land and water bodies. Notice the enlargement of the red and orange urban and 
surburban areas, and the relative disappearance of the light green rural areas over the thirty years.  

http://www.epa.gov/ttn/chief/emch/spatial/


Figure 2. The modeling domain used for this study 

 

Figure 3. SERGoM Housing Density Outputs in the Year 2000 

 

Figure 4. SERGoM Housing Density Outputs in the Year 2030 

 



Using SERGoM Outputs to Create Input Files for Spatial Surrogate Generation 
As preparation for creating updated spatial surrogates, the goal was to use the SERGoM outputs 

to create shapefiles that contained housing units, population counts, and urban-rural boundaries for at 
least the years 2000 and 2030.  These shapefiles could then be input to the Surrogate Tool to create 
revised spatial surrogates that could be input to SMOKE to create gridded emissions.  We would then be 
able to compare the gridded emissions for 2000 with those from 2030 to determine the impact of 
incorporating the population and housing growth information into the spatial allocation process. The 
process used to develop the new shapefiles was the following: 

 
1. A shapefile that represented the modeling domain as a 4km grid using its Lambert Conformal 

conic map projection and a spherical earth was developed using ArcInfo. 

2. The grid shapefile and the US county shapefile were projected into the Albers map projection 
with a NAD83 datum, which was the map projection of the SERGoM output data. 

3. Using ArcMap, the US county shapefile in the Albers projection was clipped using the 
Albers projection shapefile for the modeling domain.  This resulted in a shapefile that 
contained only the counties that intersected the modeling project grid.  A plot of this 
shapefile that also shows the difference between the SERGoM population data for 2000 and 
US census data for 2000 is shown in Figure 5. 

4. The shapefile of counties overlapping the modeling domain output from Step 3 was used to 
clip the housing density files output from SERGoM.  This resulted in 100m raster files for 
the counties that overlapped the modeling domain. 

5. Because the Surrogate Tool can take only shapefiles as input, the raster files were converted 
into polygon-based shapefiles of housing density in an Albers projection. This resulted in a 
shapefile that contained regions of constant housing densities. 

6. The housing density shapefiles in the Albers projection using the NAD83 datum were re-
projected into a Lambert conformal conic projection with a spherical earth so that they could 
be input to the Surrogate Tool, which can handle various map projections, but requires input 
files to use a Spherical earth.   

7. The population data used as input to SERGoM was incorporated into the county shapefile as 
attributes, and the resulting shapefile was converted back into the Lambert conformal 
projection using a spherical earth. 

8. The total housing units in each county were determined by aggregating the housing density 
over the county using an ArcGIS statistics function. This allowed us to compute the fraction 
of the housing in the county that was found in each county subregion.   

9. In order to compute the population of each area within a county, the county shapefile of the 
study region was overlaid with each housing density shapefile using the ArcGIS Identity 
command.  Housing units in each area were computed using the equation:  
GRID-VALUE * area in square meters / 1000000.0.  The division was needed because the 
housing density grid files had values equal to housing units * 1000 per square hectare.   

10. The population for each subregion within the county was then computed using the function: 
population[subregion]=county population * housing units [subregion] / county housing units.  
The subregion population density per square mile was then computed using the function: 
population density [subregion] = (population / subregion area) * 100000000.0  / 
3.86102159 .Note: 1 square meter=3.8610x10E-7 square miles.  As a result, we now have a 
shapefile that contains both housing units and population for each subregion within each 
county. Plots of the computed population density in 2000 and 2030 are shown in Figures 6 
and 7, respectively.  



Figure 5. SERGoM county population minus 2000 US census population  
for counties overlapping the modeling domain 

                       

Figure 6. Computed population density for the year 2000 (people/square mile) 

   

Figure 7. Computed population density for the year 2030 (people/square mile) 

   



With the housing and population shapefiles now available, we still would like to revise the urban 
area boundaries based on the changing population density.  A new shapefile containing the boundaries 
of urban areas in 2000 and 2030 was derived by classifying as urban any subregions of counties for 
which the population density exceeded 1000 people per square mile. This was consistent with the US 
Census Bureau’s urban definition, in which each urban area has a population density generally 
exceeding 1000 people per square mile with a surrounding densely settled territory that has a total 
population of 50,000 or more.  We did not take any currently defined city boundaries into account when 
we classified subregions as urban or rural.  Plots of the computed urban boundaries in 2000 and 2030 are 
shown in Figures 8 and 9, respectively.  Now with the urban boundaries available, it was possible to 
compute the values for an urban population attribute and add it to the population shapefile. The revised 
urban boundaries were also overlaid with 2000 road network shapefile to revise the classifications of the 
roads into urban and rural categories.  The resulting shapefile was used as an input to the Surrogate Tool.  
Note that we did not incorporate any changes to the road network itself, but planned changes to the 
road network could be incorporated for increased accuracy in the future year. 

Figure 8. Computed urban areas in 2000 

 

Figure 9. Computed urban areas in 2030 

 
 

 



Computing Revised Surrogates for 2000 and 2030 
The Surrogate Tool (see http://www.epa.gov/ttn/chief/emch/spatial/spatialsurrogate.html for 

more details) was used with the revised shapefiles to generate 11 revised spatial surrogates based on the 
shapefiles generated from SERGoM data.  These calculations were performed for 4km, 12km, and 36km 
grids that covered the modeling domain. The revised surrogates are listed in Table 1.  The standard 65 
spatial surrogates used by EPA were also generated for each grid, so that a complete set of surrogates 
was available as input to SMOKE.  SMOKE was then used to spatially allocate the emissions on the 
4km, 12km, and 36km grids.   
 

Tab le 1. Surrogates that were revised based on SERGoM outputs 

SURROGATE NAME SURROGATE CODE 
Population 100 
Housing 110 
Urban Population 120 
Rural Population 130 
Urban Primary Road Miles 200 
Rural Primary Road Miles 210 
Urban Secondary Road Miles 220 
Rural Secondary Road Miles 230 
Total Road Miles 240 
Urban Primary plus Rural Primary 250 
0.75 Total Roadway Miles plus 0.25 Population 255 

 
Several of the revised surrogates for 2000 and 2030 were compared with one another to evaluate 

the impact of accounting for the growth in population and changes in housing density on the surrogates.   
The percent difference in the population surrogate between 2030 and 2000 is shown for the 4km and 
12km grids in Figures 10 and 11, respectively.  Substantial differences can be seen at the 4km resolution.  
Note that when the surrogate fractions in one part of a county increase, they must decrease in another 
part of the county in order for the sum of the fractions to remain equal to 1. For example, in the Raleigh 
area, shifting of the relative allocation of emissions from the original urban area to new suburban and 
urban portions of the county is evident. The changes between 2000 and 2030 are not as noticeable at the 
12km resolution.  At both resolutions, most of the changes are between -25% and +25%, but larger 
differences are noted in some areas.  The 36km differences are not shown because they are less evident 
than those at the 12km resolution. 

 
The differences in the urban population surrogate are more pronounced, due to some grid cells 

changing from rural to urban.  The road surrogates computed from the new road classes defined by new 
urban and rural areas also showed similar change patterns as those shown for the urban population 
surrogate.  

http://www.epa.gov/ttn/chief/emch/spatial/spatialsurrogate.html


Figure 10. Percent difference for the population surrogate at 4km (2030-2000) 

 

Figure 11. Percent difference for the population surrogate at 12km (2030-2000) 

 



Figure 12. Percent difference for the urban population surrogate at 4km (2030-2000) 

        

Figure 13. Percent difference for the urban population surrogate at 12km (2030-2000) 

    
 



Emissions Processing 
The 2002 EPA National Emissions Inventory (NEI) area and mobile source inventories were 

processed using SMOKE using the adjusted surrogates for 2000 and 
2030.( http://www.epa.gov/ttn/chief/eiinformation.html)  Smkinven was used to import the inventories, 
and Grdmat was used to grid the emissions.  Chemical speciation and temporal processing were not 
performed because we were concerned with the spatial allocation of emissions.  Reports of the gridded, 
unspeciated, annual emissions were created for inventory sector-pollutant combinations that made up a 
substantial component of the inventory, based on our analysis. No emissions growth was included in this 
analysis.   

 
The 2002 NEI was evaluated to identify major source categories and their relationship to various 

surrogates. A summary of the area and mobile sources components of the 2002 NEI is shown in Figure 
14.  Notice the large contribution of onroad mobile source emissions to the total NOx, and the large 
contribution of nonpoint area sources to the total PM-related emissions.  Figures 15, 16, and 17 show the 
surrogates that are most used for these pollutant-emissions category combinations. From Figure 15, all 
major surrogates have been updated using the outputs from SERGoM. From Figure 16, that the 
population surrogate has been updated, but the residential heating and other major surrogates were not.  
In Figure 17, the rural population surrogates was updated, but the others were not. 

Figure 14. Summary of the 2002 criteria pollutant inventory 
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Figure 15. Major spatial surrogates used for onroad mobile NOx 
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Figure 16. Major spatial surrogates used for stationary area VOC 
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Figure 17. Major spatial surrogates used for stationary area PM2.5 
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Changes in Emissions Resulting from Including Housing and Population Growth 
Once the emissions were processed through SMOKE, summary plots of the difference in 

emissions, from 2000 and 2030, for key sectors were created.  The onroad mobile NOx emissions at 
36km, 12km, and 4km are shown in Figure 18.  The plots for stationary area VOC emissions are shown 
in Figure 19.  The plots for stationary area PM 2.5 emissions are shown in Figure 20.  Notice that the 
scale for Figure 18 is much broader than the scales for Figures 19 and 20. The impact of the updated 
surrogates on the onroad mobile NOx emissions was larger because all of the major surrogates used for 
those emissions were updated based on SERGoM outputs, whereas only one of the major surrogates was 
updated for the other pollutant-sector combinations. In each of these figures, we notice that the impact of 
updating the surrogates becomes more pronounced at finer grid scales.  Substantial differences in 
emissions can be seen at the 4km resolution, moderate changes can be seen at the 12km resolution, and 
minimal changes can be seen at the 36km resolution.  For example, the downtown Raleigh area has 
substantially less emissions at the 4km resolution in Figures 18 and 19. Currently, EPA typically models 
at 36km and12km resolutions, while states often perform their modeling over smaller regions at a finer 
resolution. 

 
In Figure 20, the changes to stationary area source VOC emissions are due to the updates in the 

rural population surrogate.  The differences between the level of use of the rural population surrogate in 
North Carolina and South Carolina become quite apparent at the 4km resolution. It should be noted that 
there was a spatial distortion that resulted from the changing of map projections, which displaced the 
North Carolina-South Carolina border by approximately 20km from where it should be.  Recall that in 
this study, the housing density data from SERGoM was in the Albers projection with a NAD83 
geographic datum.  However, the Surrogate Tool and SMOKE can only support a spherical earth.  Also, 
all EPA surrogate shapefiles are in the sphere geographic projection.  During the data processing, the 
county shapefile had to be projected into the Albers with a NAD83 geographic datum in order to clip the 
housing density data.  After the county shapefile was projected back to the spherical earth, the 
coordinates were shifted towards southeast.  When generating surrogate shapefiles, we suggest using the 
same sphere projection for all shapefiles because the surrogate tool, SMOKE, and CMAQ only support a 
spherical earth.  The Surrogate Tool could be updated to support different datums, but it is unlikely that 
SMOKE and CMAQ would be updated to support this. If the coordinate distortion is large, it can be 
partially corrected using control points based on coordinate transformation functions.  It may also be 
worth studying alternative approaches for changing the map projection, with the hope that one of them 
will result in less distortion. 

 



Figure 18. On-road mobile NOx emissions: annual differences due to surrogate changes (2030 – 2000) 
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Figure 19. Stationary area VOC emissions: annual differences due to surrogate changes (2030 – 2000) 
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Figure 20. Stationary area VOC emissions: annual differences due to surrogate changes (2030 – 2000) 
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CONCLUSIONS 
 

From this study we have found that population changes housing density over a 30-year period 
are projected to be sufficiently large that they will result in a redistribution of pollutant emissions for 
fine- and medium-scale emissions modeling applications (e.g., 4 km and 12 km grids, respectively). 
Changes were less apparent when modeling at a 36 km grid, however the changes may be greater when 
population migration is considered.  

 
The approach applied both population growth and housing density projections. In addition, 

housing density projections were analyzed to characterize future urban, suburban, and rural land use 
boundaries. For the case study application, urban and suburban boundaries were projected to grow in 
size, while rural areas diminished.   

 
These changes in housing and population were reflected in the air quality modeling process by 

updating the related spatial surrogates used for emissions modeling.  Use of the updated surrogates was 
shown to redistribute pollutant emissions, particularly from current urban areas to projected new urban 
and suburban areas. Allocation of emissions from on-road mobile sources was shown to change 
substantially since these are allocated using surrogates that are a function of urban and rural boundaries. 
The geographic allocation of other pollutants, such as PM2.5 and VOCs from stationary area sources 
and non-road mobile sources also showed some changes. These changes are expected to show some 
response in the air quality model outputs, but that has not been tested yet.  It should be noted that 
currently, the population-related spatial surrogates are used more heavily in modeling than the housing 
related surrogates.  Therefore, the fine-scale estimation of population in future years is an important 
component of this process. 

 
There are a number of possibilities for future work in this area. First, it may be desirable to adjust 

additional surrogates using the SERGoM and projected population data. For example, comparing 
housing density and population projections from one decade to the next may inform the  housing change 
and population surrogate. This surrogate is used for many stationary area sources of PM2.5. Similarly, 
SERGoM-projected rural boundaries may be used to update rural land area and total agriculture 
surrogates.  

 
It also may be advantageous to explore updating to the spatial cross references between 

emissions and surrogates.  For example, the cross-reference could be modified to make greater use of 
housing and population projections. For example, adding suburban area as a surrogate for many 
pollutants may provide better allocation than current surrogates that typically differentiate land as being 
either urban or rural.  Similarly, when projecting many years in the future, housing may be a better 
surrogate for stationary area VOC and PM2.5 emissions than “residential heating – wood”.   

 
Other potential changes that could be considered include updating road networks for mobile 

sources and land use data for biogenic sources.  We might also consider updating the actual emissions in 
areas of high growth, and evaluating the impact of using the adjusted emissions on the air quality model 
outputs. 
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