Best Practices for Including Carbon Sinks in Greenhouse Gas Inventories

16th Annual International Emissions Inventory Conference
Amelia Ravin and Teresa Raine

May 15, 2007

What is Carbon Sequestration?

- The process of removing carbon from the atmosphere
- Commonly referred to as a “carbon sink”
- Biological: incorporating atmospheric carbon into plants, soils, and water
- Geological: piping carbon dioxide into underground storage
The Question

- How can organizations incorporate carbon sinks into their annual GHG emissions inventories?
 - Agencies and corporations with large forested land holdings
 - Not as an offset – but as an annual sink in corporate accounting
 - Individual organizations interested in counting carbon sinks against their annual emissions at the entity level
 - Carbon management and long-term planning opportunities

Topics to Cover

- Standards and Protocols:
 - The GHG Protocol
 - IPCC Guidelines and Methodology Reports
 - ICLEI-Local Governments for Sustainability

- Sequestration and Forest Carbon Sinks
 - Calculating Emission Sinks
 - Best Practices for Carbon Sinks Accounting
Standards and Protocols

Sources of Standards and Protocols

- The GHG Protocol (WRI/WBCSD)
- IPCC Reports and Methodologies
- ICLEI Toolkit (specific to cities and municipal agencies)
The GHG Protocol (WRI/WBCSD)

- Consists of two modules and 16 calculation tools
 - Corporate GHG Accounting and Reporting
 - Project GHG Accounting and Reporting
 - CCAR forestry protocol and project accounting tools

IPCC Guidelines and Methodologies

- Describing methodologies and practices for national GHG inventories
 - Good Practice Guidance and Uncertainty Management
 - Good Practice Guidance for LULUCF
 - Definitions and Methodological Options related to Inventory Emissions from Direct Human-Induced ‘Degradation’ of Forests and ‘Devegetation’ of other Vegetation Types
ICLEI Urban Forestry Toolkit

- Document provides guidance for local governments
- Focused mostly on urban tree management
- Case study examples of local actions to reduce GHG emissions through adding/management urban forest sinks

Carbon Sequestration and Carbon Sinks
Practices and Process Sequestering Carbon

- Conservation of riparian buffers;
- Conservation tillage on croplands;
- Grazing land management;
- Afforestation;
- Reforestation;
- Forest preservation or avoided deforestation;
- Forest management;
- Underground geologic depositories; and
- Oceanic uptake.

Carbon Sequestration in Trees and Soils

- Primarily through photosynthesis – roughly 50% stored in woody biomass
- Carbon released during biomass decay
- Carbon pools dependent on plants, human-inputs, and management practices

From: U.S Environmental Protection Agency. 2007. Carbon Sequestration in Agriculture and Forestry
Calculating Emission Sinks - Forests

<table>
<thead>
<tr>
<th>Key Forestry Practices</th>
<th>Typical definition and some examples</th>
<th>Effect on greenhouse gases</th>
<th>Carbon sequestration rate in U.S. Metric tons CO₂/acre/year</th>
<th>Time over which sequestration may occur before saturating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aforestation</td>
<td>Tree planting on lands previously not in forestry (e.g., conversion of marginal cropland to trees).</td>
<td>Increases carbon storage through sequestration.</td>
<td>0.6 – 2.6</td>
<td>90 – 120+ years</td>
</tr>
<tr>
<td>Reforestation</td>
<td>Tree planting on lands that in the more recent past were in forestry, excluding the planting of trees immediately after harvest (e.g., restoring trees on severely burned lands that will demonstrably not regenerate without intervention).</td>
<td>Increases carbon storage through sequestration.</td>
<td>0.3 – 2.1</td>
<td>90 – 120+ years</td>
</tr>
<tr>
<td>Forest preservation or avoided deforestation</td>
<td>Protection of forests that are threatened by logging or clearing for development.</td>
<td>Avoids CO₂ emissions via conservation of existing carbon stocks.</td>
<td>Based on existing carbon stock</td>
<td>Depends on age of existing carbon stocks</td>
</tr>
<tr>
<td>Forest management</td>
<td>Modification to forestry practices that produce wood products to enhance sequestration over time (e.g., lengthening the harvest-regeneration cycle, adopting low-impact logging).</td>
<td>Increases carbon storage by sequestration and may also avoid CO₂ emissions by altering management. May generate some N₂O emissions due to fertilization practices.</td>
<td>0.6 – 0.8</td>
<td>0.2</td>
</tr>
</tbody>
</table>

GHG Protocol: LULUCF Guidance

- Focus on reforestation and forest management
- Several main components of carbon sink accounting are identified:
 - Assessment boundary definition
 - Baseline procedure assessment
 - ID baseline candidates
 - Baseline GHG removal estimation
 - Application of LU/ Management trend factors
 - Estimating Carbon Stocks
 - Monitoring/Quantifying GHG reductions
 - Carbon Reversibility Management
 - Reporting

Typical definition and some examples:
- Aforestation and Reforestation are defined as the planting of trees on lands previously not in forestry. Reforestation specifically refers to lands that were in forestry in the past but are now in a different use.
- Forest preservation or avoided deforestation involves protecting forests from logging or clearing for development.
- Forest management includes modification of forestry practices to enhance carbon sequestration, such as lengthening the harvest-regeneration cycle or adopting low-impact logging.

Time over which sequestration may occur before saturating:
- Aforestation: 90 – 120+ years
- Reforestation: 90 – 120+ years
- Forest preservation or avoided deforestation: Depends on age of existing carbon stocks
- Forest management: 0.2 years

Carbon sequestration rate in U.S. Metric tons CO₂/acre/year:
- Aforestation: 0.6 – 2.6
- Reforestation: 0.3 – 2.1
- Forest preservation or avoided deforestation: Based on existing carbon stock
- Forest management: 0.6 – 0.8

If wood products included in accounting, saturation does not necessarily occur if C continuously flows into products.
IPCC Guidance

- Guidance is primarily for national GHG inventories
- Estimation focuses on changes in land use over time
- First order approximations use:

\[\Delta C = \sum_{ijk} \left[A_{ijk} \cdot (C_I - C_L)_{ijk} \right] \]

- \(\Delta C = \) carbon stock change in the pool
- \(A = \) Area of Land (ha)
- \(ijk = \) corresponds to climate type \(i \), forest type \(j \), management practice \(k \), etc.
- \(C_I = \) rate of gain of carbon (tonnes C ha\(^{-1}\) yr\(^{-1}\))
- \(C_L = \) rate of loss of carbon (tonnes C ha\(^{-1}\) yr\(^{-1}\))

Emerging Opportunities

- The Climate Registry

 “There is significant state or tribal interest in developing a rigorous accounting framework that could also quantify and characterize CO2 removals from the atmosphere… The Climate Registry would develop a comprehensive framework for accounting and reporting for sink activities, from both a project and entity approach, as soon as reasonably feasible during implementation.”

- Carbon Offsets

 Marketable Commodities developed in addition to any enforceable requirements.
Looking to the Future of Carbon Sinks Accounting

- At the organizational level, increasing opportunities for organizations with land holdings
- Data and information requirements can be extensive: be ready to create an extensive, detailed inventory
- Changes and updates are happening rapidly: check for recent versions of protocols and requirements

Contact Information

www.cdm.com/ghg

Tree Raine
rainetj@cdm.com
(760) 438-7755

Amelia Ravin
ravinal@cdm.com
(617) 452 6737