A Revised Framework for Treating Primary Organic Aerosol Emissions in Inventories and Models

Allen Robinson, Andrew Grieshop, Manish Shrivastava, Neil Donahue, Timothy Lane, Spyros Pandis

Center for Atmospheric Particle Studies
Carnegie Mellon University

Presented at the 16th Annual International Emissions Inventory Conference
Raleigh, North Carolina, May 14-17, 2007
Fine Particulate Matter Composition

Pittsburgh July 2001, 20.1 ug/m3
Sources of Organic Aerosol (OA)

Photochemistry
VOC + hν, O₃, OH, NO₃

Secondary Organic Aerosol

Condensed Phase Emissions

Primary

Secondary

Gas Phase Emissions

Center for Atmospheric Particle Studies
What is primary organic aerosol?

Hildemann et al.

- Broad range of compounds
- ~10% Resolved
- ~90% Unresolved Complex Mixture (UCM)
 - branched compounds
 - cyclic compounds

Measure with dilution sampler

GC/FID of extracted filter sample
Gas-Particle Partitioning and the Volatility Distribution

Partitioning Theory:

- Raoult’s Law
 \[P_i = \gamma_i P_{sat,i}(T) y_i \]
- C* or Partitioning Coefficient

\[
X_{p,i} = \left(1 + \frac{C_i^*}{C_{OA}} \right)^{-1}
\]

\[C_{OA} = \sum X_{p,i} C_i \]

Donahue et al. ES&T 2006

Pankow AE 1987 & 1994

Carnegie Mellon

Center for Atmospheric Particle Studies
Volatility Distribution

Donahue et al. ES&T 2006
Volatility distribution of NEI 2002

C* (ug/m^3)

Mass (Ktons/Yr)
Comparing NEI and ambient data

LA data from Fraser et al. ES&T 1996, 1997
How do primary emissions evolve after leaving the tail pipe?

- Initial dilution of exhaust
- Continued mixing and photochemical processing
- Deposition

Spatial Scale:
- Near Source (~ m)
- CTM Grid Cell (~ 10 km)
- Regional (100+ km)
Gas-particle partitioning of primary emissions in near field

Hildeman et al. AST 1989
Lipsky and Robinson ES&T 2006

Center for Atmospheric Particle Studies
Volutility distribution of diesel exhaust

Partitioning Plot

Volutility distribution and partitioning at $C_{OA} = 10 \ \mu g \ m^{-3}$

Shrivastava et al. ES&T 2006
Robinson et al. Science 2007

Carnegie Mellon

Center for Atmospheric Particle Studies

\[X_p = \sum_{i=1}^{n} f_i \left(1 + \frac{C_{i}^*}{C_{OA}} \right)^{-1} \]
POA emission factors may be biased high

Shrivastava et al. EST 2006.
Cannot represent emissions with a single, static emission factor

Particulate fraction (X_p) vs. C_{OA} ($\mu g m^{-3}$)

Atmospheric Plume-like

$25^\circ C$, $0^\circ C$, $40^\circ C$

(Shrivastava et al. EST 2006)
Simulating Organic Aerosols in Eastern US with a Chemical Transport Model

- **PMCAMx+**
 - 36x36 km grid
 - MM5
 - July 12-28, 2001

- **LADCO Base E Inventory**
 - NEI 1999 V2

- **Modifications**
 - Apply diesel volatility distribution to all primary emissions
 - Partitioning of primary emissions
Evaporation dramatically reduces regional POA

Volatility Distributions

Traditional Model

Allowing POA to partition

July 2001

Photochemical aging of diesel exhaust

CMU smog chamber

Diluted Diesel exhaust

T=22 ± 2 °C
RH= 7 ± 3%

Particle Measurements:
- SMPS
- Q-AMS

Gas Measurements:
- Ozone Monitor
- PTR-MS
Photo-oxidation creates significant amounts of SOA

What is contribution of known SOA precursors?

- SOAM II (Koo et al. 2003)
- 58 precursors
 - Measured Aromatics
 - Estimates for other species
- Assume ideal solution
- Wall losses

Aging of low volatility vapors source of unexplained SOA

Predicted Summertime Organic Aerosol

Traditional Model

Allowing POA to partition

Partitioning + Aging

July 2001

Revised model predicts a more regional aerosol

Ratio of Revised-to-Traditional Model Predicted OA levels

Model-Measurement Comparison

Dramatic shift in primary-secondary split

Predicted fractional contribution of SOA to total OA concentration

Traditional Model

Semivolatile Emissions + Aging

July 2001

Conclusions

- Revised conceptual model for treating primary emissions
 - Gas-particle partitioning of semivolatile organics
 - Photochemical aging of semivolatile emissions

- Implications for regional OA
 - Reduce POA
 - Increase SOA
 - Developing control strategies?

- Implications for emission inventory
 - Represent emissions using volatility distribution
 - Include all low-volatility organics
Acknowledgments

- Funding US EPA through the STAR Program
Evaporation dramatically reduces regional POA

Volatile Distributions

- Traditional Model
- Semivolatile POA

Traditional Model

Allowing POA to partition

PMCAMx July 2001

Gas-particle partitioning of semivolatile organics

Partitioning Theory:
- Raoult's Law
 \[P_i = \gamma_i P_{\text{sat},i}(T) y_i \]
- C* or Partitioning Coefficient
 \[X_{p,i} = \left(1 + \frac{C_{i^*}}{C_{OA}} \right)^{-1} \]
 0.1 \(\text{ug/m}^3 \) < C* < 1000 \(\text{ug/m}^3 \)

(Pankow AE 1987, 1994)
Gases Dominate Organic Emissions

Anthropogenic VOC
~ 15,000 Kton/year

POC
~ 1,200 Kton/year

NEI 2002