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Abstract. Fine particulate matter is a significant pollutant that endangers human health.
Small particulates, 2.5 micrometers in diameter or less, penetrate further into the lungs
of humans than larger particulates leading to increased cases of respiratory diseases and
eventual death. Both annual mean and 24 hour National Ambient Air Quality Standards
have been set for fine particulate matter (PM2.5). PM2.5 is one of five pollutants reported
in the USEPAs Air Quality Index. It is critically important that todays PM2.5 value can
be accurately forecast so it can be reported to the public with an appropriate health ad-
visory. Our objective is to develop reliable forecasting regression models to serve as tools
for predicting PM2.5. The regression models will take into account various meteorolog-
ical parameters such as temperature, wind speed, wind direction, and yesterdays PM2.5
measurements. Our client, the Maryland Department of Environment, provided all meteo-
rological and particulate matter data. Analyses of selected particulate matter monitoring
stations and meteorological sites in the state of Maryland have lead to discoveries of certain
PM2.5 patterns. Trends show PM2.5 variations between winter and summer seasons as well
as weekday and weekend periods. Various patterns, interaction terms, nonlinear curvature,
and other possible confounders will be taken into account. Regression analysis and model
building techniques will be implemented for prognostic purposes and also for interests in
inferential procedures on linear combinations of regression variables. Development of more
specific regression models and software packages for these different periods will improve
future forecasts of PM2.5 in addition to making the information readily accessible to the
public.

1. Introduction

Fine particulate matter (PM2.5) defined as ultra-fine masses of size 2.5(μ/m3) and less is
one of six major criteria pollutants. The presence and prevalence of PM fine has effected the
lives of many. Air quality index reporting has extended standards to maintain acceptable
levels of PM fine based on studies in the chemical makeup and its health impacts.

1.1. Chemistry. PM2.5 is directly emitted from both anthropogenic and natural sources.
Anthropogenic effects, processes, objects or materials are polluting derivatives from human
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activities such as power plants, industry, transportation, mining, habitations and agriculture
techniques and machinery. The release of gases and dust into the atmosphere due to waste
disposal practices have been linked to increases in air and water pollution by a variety
of studies. Additionally, slash-and-burn techniques, hydrological diversion, salinization and
chemical pollutants from fertilizers and pesticides have plagued the air quality indexes linked
to the agriculture industry. Air pollutants are commonly released as a result of mineral
refining processes. Natural sources also exist as dirt, dust, sea salt and volcanic or fire ash.
These sources are not derived from human activities and involvement but are still involved in
various facets, such as the soiling effect, and contribute to the underlying issue of fine matter
pollutants. Primary sources continue to be characterized from wind-blown dust and diesel
exhaust, while secondary sources exist from the reaction of sulfates and nitrates released
from power plants.

1.2. Health Impacts. Fine particles are inhalable and can penetrate into the lungs. Some
are small enough to enter the bloodstream and then deposit themselves to be accumulated
or absorbed by the body. Consistency across studies has shown tendencies of significant
health risks such as respiratory and cardiovascular problems, coughing, painful breathing,
asthma, bronchitis, emphysema, decreased lung function, weakening of the heart, heart
attacks and premature death. Older women living in the most polluted cities have about a
150% increased risk of death from heart attacks related to particulate matter1. Recent studies
have also underscored that the elderly with pre-existing cardiopulmonary disease are most
at risk. In addition, other groups such as the very young, asthmatics, and diabetics may also
be susceptible to the effects of PM. Increased mortality in infants and lung cancer patients
from decreased lung function and inflammed airways has also exacerbated the prevalence of
PM fine related diseases. Findings have suggested that extended exposure to PM can lead
to chronic disease and/or a shortened life span2.

1.3. Purpose. The purpose of our study is to develop models that will aid in the moni-
toring and prediction of fine particulate matter since PM fine is a major constituent of the
Air Quality Index. However, due to air quality standards, a Federal Reference Method, or
“PMFRM,” must be used, because it contains true information, by definition. Unfortunately,
PMFRM recorded data is not available in real-time, but instead either every three days or
six days with a running midnight-to-midnight figure. Thus, the use of continuous PM fine
measurements (PMcont) will be implemented. These measurements are available electroni-
cally in real-time, on an hourly basis. The implication of a daily statistic has raised the issue
of using the daily average PMcont as a predictor for the federal reference method. We will
show that the development of regression models to take daily average PMcont readings and
make it “PMFRM-like” is effective. Further information, namely PMcont measurements will
be provided from air monitoring stations, such as National Air Monitoring Stations (NAMS),

1Study found in the New England Journal of Medicine
2According to EPA literature and publications
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Airport Site PM Site Distance (miles)
KPHL (Philadelphia International Airport) 0003 ≈ 35.24
KHGR (Hagerstown Washington Co. Airport) 0009 ≈ 9.19
KDCA (Ronald Reagan Washington National Airport) 0030 ≈ 16.45
KBWI (Baltimore Washington International Airport) 0040 ≈ 10.39

Table 1. Meteorological conditions for airport and PM sites are assumed to
be comparatively uniform, even across great distances.

Site Data Percentage for 2001-06 Time Span
KBWI ≈ 98.22
KDCA ≈ 89.73
KHGR ≈ 99.22
KPHL ≈ 85.62

Table 2. Meteorological data completeness percentages.

State and Local Air Monitoring Stations (SLAMS), Special Purpose Monitors (SPMS), Pho-
tochemical Assessment Monitoring Stations (PAMS) and PM fine Chemical Speciation sites.
Our final objective is to observe yearly trends and to develop functions in terms of yesterday’s
PM fine value and today’s meteorological conditions to be used for forecasting purposes.

2. Preliminary Findings and Assumptions

PMFRM data is collected by the Maryland Department of the Environment (MDE) on a
filter over a 24-hour period and are measured every 3 or 6 days. Continuous hourly data
from Tapered Elemental Oscillating Microbalances (TEOM) and Beta Attenuation Monitors
(BAMM) will be the focus of this paper. Data from BAMM, FDMS, and TEOM sites are
calculated on one-hour averages (60 1-minute averages, starting at minute 0 and ending at
minute 59), without hour-to-hour overlap. Meteorological data are also available for these
domains from local airports and measurement stations collected by the National Oceanic and
Atmospheric Administration (NOAA) and were provided by MDE, all in an hourly form.

Five sites were found containing PMcont readings; however, only four were co-located
with PMFRM. Co-location is necessary in developing a mapping model to transform PMcont

readings into PMFRM-like measurements. Thus, site 0002 with only PMcont was thrown out.
We created the air quality and meteorological dataset by merging the air monitoring

site with the closest airport and the meteorological site. We assumed that meteorological
conditions are comparatively uniform for our prospective regression analyses. We used the
EPA quality assurance requirement of 75% completeness, or 18 hours, to define a valid day.
Only valid days were included in this analysis.

The meteorological data collected at Baltimore-Washington International Airport was over
90% complete. In general, the meteorological dataset completeness was more than sufficient.
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Figure 1. PMFRM, PMcont and airport meteorological site locations.

PM Site County Met Site County
0003 Cecil KPHL Philadelphia3

0009 Washington KHGR Washington
0030 Prince George’s KDCA Arlington4

0040 Baltimore (City) KBWI Anne Arundel
Table 3. County locations for airport and PM sites. Sites are located in the
state of Maryland, with the exception of: 3in Pennsylvania and 4in Virginia.

Most air monitoring sites were located in different counties than the meterological data.
In fact, only one pair out of four sites happens to be located in precisely the same county
(Washington county, MD–see table 3).
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Figure 2. PMFRM/PMcont and airport meteorological sites. The development
of a pairing scheme for nearly co-located sites relied heavily on latitude and
longitudes, allow us to pair up sites in close proximity to each other.

Site Approximate Data Percentage for 2001-06 Time Span Date of First Observation
0003 ≈ 4.34 6/28/06
0009 ≈ 21.86 5/16/05
0030 ≈ 13.65 9/15/05
0040 ≈ 78.09 01/01/01

Table 4. PMcont data completeness percentages. Notice only one site (0040)
with data beginning from the start of the trend period.
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Site
Approximate Dataset Percentages

Prior to Merging Approximate Final Dataset Percentages
PHL/0003 98.22/4.34 55.96/2.56
HGR/0009 89.73/21.86 61.11/14.88
DCA/0030 99.22/13.65 56.23/8.90
BWI/0040 85.62/78.09 57.46/44.50

Table 5. Approximate dataset percentage, prior to and following data merge.
Final percentages reflect that of analyses directly preceding full-scale regres-
sion. Entries given in “Meteorological/PM” form.

In order to increase the amount of data available for analysis, data from four pairs of sites
were used. Each air monitoring observation was matched with that of the nearest airport.
Since we are focusing on a general model to forecast PM fine for the State of Maryland,
we initially focused on all of the data up to the 95th percentile. It should be noted that
a separate analysis with the full dataset was also performed, both sets yielding promising
results.

It can be said that data completeness was affected by the start day for recorded PMcont

observations. In fact, most of the data lies within the years of 2005-06, with little to drive
a regression analyses and exploratory study for the years 2001-04. In addition, assuming
uniform meteorology across large distances may not accurately reflect what is happening
meteorologically as we would like it to be at the air monitoring sites.

3. Regression Analyses

(Please see Appendix A for Regression Theory.) Our notion is to build a general piecewise
model with stratifications, based on central PMcont values. Implementing the Central Limit
Theorem, we can note that the daily average is a well-behaved statistic with low variance.
These averages can be easily regressed to a PMFRM value after the predicted average has been
computed. We conducted our analyses with two datasets: the full set, and the abbreviate
set, which focuses on data up to the 95th percentile, to eliminate peak values, since averages
are unstable with outliers.

Meteorological and PMcont data are collected in an hourly fashion. Therefore, the two data
sets could be merged and each hourly PM fine value was matched with its corresponding
meteorological data. However, because the Air Quality Index uses a midnight-to-midnight
measurement, a 24-hour average PM fine value was calculated for midnight-to-midnight. The
daily average PM fine data were then compared with the daily meteorological variables. We
were able to develop “level one” and “level two” explanatory variables to be implemented for
our work. The following level one variables (and square terms for each, as indicated within
the parentheses) were considered:

• Peak Temperature (X6)
• Accumulated Precipitation (X7)
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• Maximum Wind Speed (X8)
• Average Wind Speed (X9)
• Average Pressure (X10)
• Average Humidity (X11)
• u vector (X12)
• v vector (X13)
• Yesterday’s PMcont value, “PMyes” (X14)
• Probability of Precipitation (POP) (X15)

Arguable amounts of curvature were observed for each level one variable. Thus, it was
natural to include square terms for each of these variables. In addition, interaction terms
(falling under the category of level two explanatory variables) were also considered:

• X1 = (Maximum Wind Speed) × (Avg WS)
• X2 = (POP) × (Accumulated Precipitation)
• X3 = (POP) × (Average Humidity)
• X4 = (Accumulated Precipitation) × (Average Humidity)

One can consider our situation as potentially benefiting from a stratified piecewise modeling
system. Such a system is resemblant of a two-way layout with two sub-factors: a seasonal
effect (summer vs. winter)5 and a weekly effect (weekend vs. weekday)6. This yields to
one full model and eight additional models with some sort of stratification, for a total of
nine models. The applicable output and SAS implementation is available (see last section
for follow up information). Dummy variables were also considered on an exploratory basis;
however, these variables were highly insignificant in any model and not considered for our
final reports. Instead, a piecewise scenario is encouraged allowing square terms to account
for additional curvature. Also, varying selections of meteorological variables were considered
for each stratification. This approach will present increased R2 values, thus increasing the
ability to forecast.

4. Results

It can be seen that our R2 values increase as stratifications become more specific with
both the full and abbreviate dataset.

Using the abbreviated dataset, the following significant level one variables were found to
be useful in prediction with:

Peak Temperature: Full, Summer, Weekend, Weekday, Summer Weekend, Summer
Weekday

Accumulated Precipitation: Full, Winter, Weekday

5By our definition, Winter = {January, February, March, October, November, December} and Summer
= {April, May, June, July, August, September}.
6By our definition, Weekend = {Saturday, Sunday, Monday} and Weekday = {Tuesday, Wednesday, Thurs-
day, Friday}.
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Figure 3. Plot of peak temperature vs. peak PMcont values. Notice the ran-
dom scatter for winter months and noticeable curvature for the summer. This
implies the need for stratifications, leading to a piecewise model. Dummy
variables would usually be ineffective in such a setting. With dummy vari-
ables in a general model, curvature terms would always be considered, even
in certain situations where a square term would be insignificant (such as with
Peak Temperature, shown in Figure 3). Therefore, stratification and piecewise
modeling may capture more information by being able to apply square terms
under applicable situations, and simple linear terms with other variables.

Maximum Wind Speed: Full, Summer, Winter, Weekend, Summer Weekend, Sum-
mer Weekday, Winter Weekend

Average Wind Speed: ALL
Average Pressure: Summer Weekend
Average Humidity: Full, Winter, Weekend, Weekday, Summer Weekend, Winter

Weekend, Winter Weekday
u vector: Full, Summer, Winter, Weekday, Summer Weekday, Winter Weekday
v vector: ALL
PMyes: ALL
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Model R2 (Abbreviated Dataset) R2 (Full Dataset)
Full .4367 .5523

Summer .4588 .5623
Winter .4683 .5476

Weekend .4213 .5110
Weekday .4715 .5807

Summer Weekend .4651 .5134
Summer Weekday .4751 .5927
Winter Weekend .4749 .5754
Winter Weekday .4857 .5404

Table 6. Establishment of a direct relationship between stratification com-
plexity and explained variability.

POP: Summer, Summer Weekday

and the follow significant level two interaction terms were found to be useful in prediction
with:

(Maximum Wind Speed) × (Average Wind Speed): Winter, Winter Weekend
(POP) × (Average Humidity): Summer, Summer Weekday
(Accumulated Precipitation) × (Average Humidity): Full, Summer, Winter, Week-

end, Weekday, Summer Weekend, Winter Weekday

and the following significant level two square terms were found to be useful in prediction
with:

Peak Temperature2: Full, Summer, Weekend, Weekday, Summer Weekend, Summer
Weekday

Accumulated Precipitation2: Full, Summer, Weekend, Summer Weekend
Maximum Wind Speed2: Weekday, Winter Weekday
Average Wind Speed2: Full, Summer, Weekend, Weekday, Summer Weekend, Win-

ter Weekday
Average Pressure2: Summer
Average Humidity2: Summer, Summer Weekday
v vector2: Full, Winter Weekend, Weekday, Summer Weekend, Winter Weekend, Win-

ter Weekday
PM2

yes: ALL

Some variables were thrown out by backward elimination each time, regardless of stratifi-
cation. For example, with interaction terms, “(POP) × (Accumulated Precipitation)” and
with square terms “(u vector)2” and “(POP)2.” Perhaps the greatest trends can be found
with temperature driving PMcont values during the summer and humidity, wind and
precipitation driving PMcont values during the winter. Precipitation variables (POP, Av-
erage Humidity and Accumulated Precipitation) were somewhat significant, at times, but
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Vector Sign Wind Direction
+u, +v tan−1 (+u/ + v)
+u, −v 90 + tan−1 (−v/ + u)
−u, −v 180 + tan−1 (−u/ − v)
−u, +v 270 + tan−1 (+v/ − u)

Table 7. Vectors for analyses are very useful in finding an overall average
wind direction. However, wind directions can be easily obtained from the
implemented wind vectors.

only with some sort of modifications (transformations, interaction terms, etc.). Temperature,
with or without various modifications tended to be very significant in all summer settings.
In addition, it can be seen that average wind speed, the v vector (but not the u vector for
weekend models, strangely), PMyes and PM2

yes, were very significant variables in all cases,
driving much of the regression.

One may find slight bits of oddities, such as a significant u vector in all stratifications, but
the v vector was only found to be significant in prediction for models aside from the weekend
stratifications. In addition the X4 interaction term variable containing data of (Accumulated
Precipitation) × (Average Humidity) seemed to have switched in the models. X4 was seen
to be significant for the Summer Weekend model and the Winter Weekday model, but not
for Summer Weekday nor Winter Weekend.

Stratifications and the development of a piecewise predictor function have proven to be
useful. Additionally, the use of wind components has great explanatory power during winter
models, and also in summer models, especially the use of average wind speed instead of
peak wind statistics. It is important to observe that with respect to PMcont values, the u
vector (East/West) has an inverse relationship and the v vector (North/South) has a direct
relationship. This means as wind directions shift from an easterly direction (positive u) to a
westerly direction (negative u), PMcont values increase. The same occurs as wind direction
shifts from a southerly direction (negative v) to a northerly direction (positive v). Trends
with the u and v vector can be observed and further analyses can be made in the future,
including oceanic effects (sea-breeze or bay-breeze), and other terrain-generated currents (see
table 7).

5. Recommendations

The most important suggestion that can be made would be the presence of co-located me-
teorological and PMcont sites. The assumption of uniform meteorology is quite a presumption
and it would be better and potentially far more accurate if one could rely on co-location.
One would expect to find an improvement in R2 values if such sites were to be implemented
and analyzed. Sites, co-located or not, ought to be present throughout the state, especially
where there is currently a lack of monitoring sites and data transmission, mostly with the
northwest and southeast corners (Calvert County, south Anne Arundel) of the state. This
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AQI Index Values AQI Descriptor Concentration range (24-hour avg., μg/m3) Color

0 − 50 Good 0 − 15.4 Green
51 − 100 Moderate 15.5 − 40.4 Yellow

101 − 150
Unhealthy for

Sensitive Groups 40.5 − 65.4 Orange
151 − 200 Unhealthy 65.5 − 150.4 Red
201 − 300 Very Unhealthy 150.5 − 250.4 Purple

Table 8. AQI chart for PM fine. Continuous readings can be placed into categories.

would provide a better understanding of spatial patterns in PM fine. In addition, as PM
models are updated, the R2 values should increase with the prevalence of new, more abun-
dant data. As more data is collected, site-based regression modeling would be very useful,
as opposed to a generic model observing general trends as was performed with our study.

Visibility has been proven to be very significant in prediction of PM fine from other
similar studies. Such data was available from MDE, but was found to be troublesome in
data step production, with varying units and formats. It can be noted that data inputs
follow a different system for 2001-04 than with the new system implemented for the 2005-06
data. Connections were very difficult to draw upon, and thus, visibility ultimately was not
included for analysis. A revisiting of visibility measurements in future modeling studies may
be effective.

The development of software packages7 will allow the information of various facets of PM
fine modeling to be readily available to meteorologists and the interested public. Using this
sort of publication, one may generalize PM fine readings into categories, all as defined by an
Air Quality Standards Index. This implementation would require the use of ordinal, or in
simpler cases, logistic regression models (see Appendix B).

6. Follow-Up Information

Applicable code is available upon request. In addition, follow-up analyses output are
also available (Diagnostics output, histograms and boxplots for distributional assumptions,
residual plots for heteroscedasticity, and correlation matrices for multicollinearity8.) PROC
REG SAS output is available from modeling allowing us to map daily average PMcont into
an “PMFRM-like” value. This can be done with R2 values of almost 85%. Increases can be
made on the explained variation with the inclusion of temperature, precipitation or wind
variables. With subsequent models, backwards elimination is used and each step count and

7Namely the “CART” system, as implemented by the EPA
8The multicollinearity assumption was carefully observed and highly correlated explanatory variables were
thrown out. For example, the situation with “Dry Bulb Temperature in Celsius,” “Humidity” and “Dew
Point” resulted in dew point observations being thrown out since any effect ought to be modeled in a split
format, where inference on each individual component can be performed.
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R2 and Cp-mallows9 Output on all models is available, upon request. Final models are
included, however (see Appendix C).
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8. Appendix A: Regression Analysis Theory

We assume

(8.1) εij
iid∼ N(0, σ2)

and

(8.2) βi
iid∼ N(μβi

, σ2
βi

)

with xij collected without error10

Usefully, independent variables can be involved with the explanation of variation in a
dependent variable. If we consider the use of data vectors, and more generally, data matrices,
we can assume a certain multiple regressive linear model formally as

y = β̂0 + β̂1x1 + ... + β̂kxk + ε

9Mallows’ Cp is commonly used as a stopping rule in stepwise regression. One potential pitfall of regression is
to produce a model that is “overfit,” or contains too many independent variables. This can be addressed by
observing the explanatory power of all possible models containing subsets of the original group of variables.
Instead of defining entrance and exit probabilities, as with backwards elimination (implemented for our
modeling, upon request), one would compute regression models using all possible combinations of explanatory
variables, observe the Cp Mallows value, defined as: Cp = SSEp

MSE − N + 2p for p regressors. These values are
indicated on the outputs following the full regression model (available upon request). After Cp values are
calculated, one can plot these values against the number of variables used, and then to see at what number
of variables does the explanatory power level off on the plot. Using this number of variables, one can list R2

values and pick the model with the largest explained variation.
10For xij collected with error, one may consider measurement error models as a side study. It can be
noted that each site operates under its own setup and may differ from site-to-site. Measurement error, if
distributional assumptions can be made, may be a prominent worth investigating. For our purposes, and
with the support of MDE, measurement error will operate as a relaxed assumption for our study.
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or

(8.3) E[y] = β0 + β1x1 + ... + βkxk

where we have

Y =

⎡⎢⎢⎣
y1

y2
...

yn

⎤⎥⎥⎦ , X =

⎡⎢⎢⎢⎢⎣
1 x11 x21 . . . xk1

1 x12 x22 . . . xk2

1 x13 x23 . . . xk3
...

...
...

. . .
...

1 x1n x2n . . . xkn

⎤⎥⎥⎥⎥⎦ , β̂ =

⎡⎢⎢⎢⎢⎢⎣
β̂0

β̂1

β̂2
...

β̂k

⎤⎥⎥⎥⎥⎥⎦
β̂ can be solved for using elementary matrix algebra, yielding the useful result

(8.4) β̂ = (X′X)
−1

X′Y

Detection diagnostics were performed for this project to detect inaccuracies among regres-
sion assumptions. Heteroscedasticity, or non-homogenous variances, can be observed with
residual plots of the independent (or explanatory) variables. Detecting model lack of fit with
residuals requires plotting of the ε̂ (on the vertical axis) against each of the independent vari-
ables, x1, x2, ..., xk on the horizontal axis. Then, plots of ε̂ (on the vertical axis) versus the
predicted value ŷ are to be observed. Trends, dramatic changes in variability, or more than
5% of residuals that lie outside 2s of 0 should raise concerns. Normal probability plots check
the normality (distributional) assumption by plotting residuals against the expected values
of the residuals under the assumption of normality. Sorted residuals, ε̂i are used to calculate
corresponding tail areas given by

A =
i − .375

n + .25

where n is the sample size. Then, the estimated value of of ε̂i under normality can be
approximated by

E(ε̂i) ≈
√

MSE[Z(A)]

where MSE is the mean square error for the fitted model and Z(A) is the value of the
standard normal distribution (z value) that cuts off an area of A in the lower tail of the
distribution. That is,

(8.5) Z ∼ N(0, 1)
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and one may recall from standard statistical literature

Φ(z) = F (z)

= P [Z ≤ z]

= P

[√
n

(
Y − μ

σ

)
≤ z

]
=

∫ z

−∞
f(z)du

=

∫ z

−∞

(
1√
2π

)
e−z2/2du(8.6)

9. Appendix B: Logistic and Ordinal Regression Modeling

We would assume a vector of random variables Y in a set of interest, under our denoted
set of interest Ω are iid binomially with (population) parameters ni and πi, ∀i ∈ Ω. That is,

Yi
iid∼ Bin(ni, πi)

It has been shown (proof omitted) that

(9.1) πi =
e

 
β0+

kP
j=1

βjxij

!

1 + e

 
β0+

kP
j=1

βjxij

! , ∀i ∈ Ω

Then using our logit function,

(9.2) logit (πi) =
∏
i∈Ω

(
ni

ni1

)
π

(
XT

i β
)ni1 (

1 − π
(
XT

i β
))ni−ni1

To obtain a good estimator, we can compute the maximum likelihood estimator (MLE), also

known as “β̂” by computing

(9.3) min

{
2∑

j=1

∑
i∈Ω

nij

N
log

( nij

N

πij
ni

N

)}
By using differential calculus, one can observe local (or absolute) maxima over the real line
of the “theta-set,” defined as

Θ = {(β0, ..., βk) : βi ∈ (−∞,∞) = R, i = 0, 1, ..., k}
Simulation studies using Monte Carlo Markov processes, the bootstrap and the jacknife have
all been successfully implemented in the testing and justification said estimators. However,
such computations and analyses are beyond the scope of this paper.
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10. Appendix C: Final Models

One can implement any level stratification that they wish. It was shown earlier that as
stratification complexity increases, explained variability increases. One can employ seasonal
stratification, temporal (day of the week) stratification, both stratifications, or simply use
the full (unstratified) model. All models use some sort of consolidated daily measurement,
not hourly, using the full dataset. So, for the tth day we have:

10.1. Full Model.

P̂M cont,t = − 0.4561 − 0.3343(Peak Temperature) + 8.1889(Accumulated Precipitation)−
1.3219(Average Wind Speed) + 0.4023(v vector) + 0.41749(PM cont,t−1)+

3.8255 [(Probability of Precipitation) × (Accumulated Precipitation)]−
0.0864 [(Probability of Precipitation) × (Average Humidity)]−
0.1358 [(Accumulated Precipitation) × (Average Humidity)] +

0.0141(Peak Temperature)2 + 0.0038(Maximum Wind Speed)2+

0.0199(Average Wind Speed)2 + 0.0154(Average Pressure)2+

0.0005(Average Humidity)2 + 0.0121(u vector)2 + 5.1283(Probability of Precipitation)2
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10.2. Seasonal Model.

P̂M cont,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

27.3497 − 1.5796(Peak Temperature) + 7.9379(Accumulated Rain)−
1.4712(Average Wind Speed) + 0.4153(v vector) + 0.3896(PM cont,t−1)+

3.5320 [(Probability of Precipitation) × (Accumulated Precipitation)]−
0.0272 [(Probability of Precipitation) × (Average Humidity)]−
0.1153 [(Accumulated Precipitation) × (Average Humidity)] +

0.0436(Peak Temperature)2 + 0.0022(Maximum Wind Speed)2+

0.0455(Average Wind Speed)2 if Summer

−14.9963 − 0.9760(Average Wind Speed) + 0.8037(Average Pressure)−
0.1206(u vector) + 0.4069(v vector) + 0.5815(PM cont,t−1)+

7.7747(Probability of Precipitation)−
0.0262 [(Maximum Wind Speed) × (Average Wind Speed)] +

9.2039 [(Probability of Precipitation) × (Accumulated Precipitation)]−
0.1501 [(Probability of Precipitation) × (Average Humidity)]−
0.1024 [(Accumulated Precipitation) × (Average Humidity)]−
0.0078 [(u vector) × v vector)] + 0.0024(Peak Temperature)2+

0.0084(Maximum Wind Speed)2 + 0.0299(Average Wind Speed)2+

0.0009(Average Humidity)2 + 0.0200(uvector)2 + 0.0352(v vector)2−
0.0072(PM cont,t−1)

2 if Winter
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10.3. Temporal Model for Weekly Trends.

P̂M cont,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−3.7123 − 0.2844(Peak Temperature) − 1.4385(Average Wind Speed)+

0.0560(Average Humidity) + 0.4118(v vector) + 0.3813(PM cont,t−1)−
0.1079 [(Probability of Precipitation) × (Average Humidity)]−
0.0197 [(Accumulated Precipitation) × (Average Humidity)] +

0.0125(Peak Temperature)2 + 0.0057(Maximum Wind Speed)2+

0.0375(Average Wind Speed)2 + 0.0168(Average Pressure)2+

0.0200(v vector)2 + 9.3215(Probability of Precipitation)2 if Weekend

−0.1106 − 0.3564(Peak Temperature)+

11.6620(Accumulated Precipitation)−
1.2080(Average Wind Speed) + 0.4000(v vector) + 0.4295(PM cont,t−1)+

7.7265 [(Probability of Precipitation) × (Accumulated Precipitation)]−
0.0584 [(Probability of Precipitation) × (Average Humidity)]−
0.1976 [(Accumulated Precipitation) × (Average Humidity)] +

0.0150(Peak Temperature)2 + 0.0032(Maximum Wind Speed)2+

0.0152(Average Pressure)2 + 0.0006(Average Humidity)2+

0.0257(u vector)2 + 0.0332(v vector)2 if Weekday
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10.4. Wholly Stratified Model.

P̂M cont,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2557.0748 − 1.2913(Peak Temperature)−
1.1961(Average Wind Speed) − 171.7438(Average Pressure)+
0.3232(v vector) + 0.3302(PM cont,t−1)+
0.0238 [(Maximum Wind Speed) × (Average Wind Speed)]−
0.1010 [(Probability of Precipitation) × (Average Humidity)] +
0.0385(Peak Temperature)2 + 2.9084(Average Pressure)2+
0.0147(v vector)2 + 9.4715(Probability of Precipitation)2 if Summer, Weekend

31.7084 − 1.7542(Peak Temperature)−
1.8122(Average Wind Speed) + 0.4907(v vector)+
0.4109(PM cont,t−1)−
0.0270 [(Probability of Precipitation) × (Average Humidity)] +
0.0465(Peak Temperature)2 + 0.0647(Average Wind Speed)2 if Summer, Weekday

−19.8939 − 11.1972(Accumulated Precipitation)−
1.1251(Average Wind Speed) + 0.9526(Average Pressure)+
0.4174(v vector) + 0.5825(PM cont,t−1)+
12.3872(Probability of Precipitation)−
−0.0524 [(Maximum Wind Speed) × (Average Wind Speed)] +
9.6897 [(Probability of Precipitation) × (Accumulated Precipitation)]−
0.1748 [(Probability of Precipitation) × (Average Humidity)] +
0.0016(Peak Temperature)2 + 0.0153(Maximum Wind Speed)2

0.0784(Average Wind Speed)2 + 0.0008(Average Humidity)2

0.0227(v vector)2 − 0.0069(PM cont,t−1)2 if Winter, Weekend

0.0739 + 0.0855(Maximum Wind Speed)−
1.1008(Average Wind Speed) − 0.1400(u vector)+
0.3809(v vector) + 0.6023(PM cont,t−1)+
7.5079 [(Probability of Precipitation) × (Accumulated Precipitation)]−
0.0739 [(Probability of Precipitation) × (Average Humidity)]−
0.0844 [(Accumulated Precipitation) × (Average Humidity)] +
0.0032(Peak Temperature)2 + 0.0108(Average Pressure)2+
0.0008(Average Humidity)2 + 0.0299(u vector)2+
0.0447(v vector)2 − 0.0076(PM cont,t−1)2 if Winter, Weekday
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