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ABSTRACT

This paper summarizes the results of a study funded by and conducted for the U.S.
Environmental Protection Agency to evaluate and develop adjustments to account for the uncertainty
associated with using emissions factors in noninventory applications.  The adjustments will enable users
to apply the AP-42 emissions factors, which are based on mean values, in applications where other
values (e.g., maximum or minimum values) may be more appropriate.  For example, in estimating
emissions data inputs for risk assessment analysis or for determining the applicability of a rule to a
single source, an upper boundary emissions factor might be more appropriate than an average emissions
factor to calculate the emissions from a single source. 

During the study, the data sets for 44 A-rated AP-42 emissions factors from four industries were
analyzed and the following pollutants were evaluated: particulate matter (PM); sulfur dioxide (SO2);
nitrogen oxides (NOx); carbon monoxide (CO); and hazardous air pollutants (HAPs).  Examination of
the data for each of the emissions factor data sets indicates that the data are either log-normal or Weibull
distributed.  A statistical analyses based on the Monte Carlo technique was conducted on each of the
emissions factor data sets to simulate the hypothetical population density of the emissions factor for the
specific pollutant.  Using the hypothetical population, default emissions factor adjustments were
developed.  The emissions factors analyzed, the statistical procedures used, and the default emissions
factor adjustments developed are presented and discussed.

INTRODUCTION

The U.S. Environmental Protection Agency (EPA) and its predecessors have used emissions
factors since 1968 to estimate emissions from point and area sources.  Because of program priorities and
goals, the emissions factor program primarily supported the development of the national trends
emissions inventory and other inventories used for state and regional implementation plans.  Over the
last 10 years, however, the number of programs that use emissions factors has increased beyond the
intended and supported national emissions inventory program use.  In 2003, EPA began a complete re-
evaluation of the emissions factor program.  Part of this re-evaluation includes identifying ways to make
the program more responsive to the broad and diverse range of emissions factors users.  This paper
presents the results of a study funded by and conducted for EPA to evaluate and develop adjustments for
using emissions factors in noninventory applications.1  The emissions factors analyzed, the statistical
approach and procedures used to determine default emissions factor adjustments, the results, and the
composite default adjustment factors are presented and discussed.  The adjustments will enable users to
apply the AP-42 emissions factors, which are based on mean values, in applications where other values
(e.g., maximum or minimum values) would be more appropriate.2  For noninventory applications of
emissions factors, the AP-42 emissions factor would be multiplied by the composite default adjustment
to estimate the emissions factor at the pertinent statistic (e.g., the 90th percentile).  The true emissions
from a single source of interest may fall anywhere within the range of emissions data.  Although the
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approach of applying an adjustment is not a fix for all situations, it is an improvement over the current
use of emissions factors from AP-42 for all applications.

The characterization of the individual emissions factor data sets, the statistical procedures used
to simulate a distribution of the population (from the sample made up of the AP-42 emissions factor
data), and the statistical procedures used to calculate default adjustments and normalized Monte Carlo
sampling distributions of the mean are discussed.

Technical Approach Overview

The overall technical approach consists of first selecting A-rated emissions factor data sets for
analysis and using exploratory data analysis techniques to visualize and characterize these data sets. 
Then, statistical techniques are applied to each of the emissions factor data sets selected to determine
preliminary emissions factor adjustments.  Finally, default emissions factor adjustments are calculated
for combined data sets.  During the course of the project, several different statistical analyses were
explored or conducted.  The technical approach established for this project comprises the following
steps:

1. Select and prepare initial emissions factor data sets for analysis.

2. Establish the statistical procedures.

3. Conduct statistical analyses of an emissions factor data set for an industry and calculate
preliminary default emissions factor adjustments.

4. Review the initial results and refine the analytical approach. 

5. Conduct statistical analyses of additional representative emissions factor data sets.

6. Calculate composite default emissions factor adjustments for the combined data sets.

7. Consider alternative approaches and compare results to default emissions factor adjustments
for noninventory use.

Selecting Emissions Factor Data

AP-42 emissions factor data sets were selected for statistical analysis.  These AP-42 emissions
factors are representative of an industry average, and the supporting emissions data used to develop the
emissions factors are also publicly available in the background documentation for each AP-42 industry-
specific section.  The rationale for selecting which data sets for the analysis was based on several
criteria, including the following:

! The quality rating of the emissions factor
! The quantity of emissions data used to develop the factors (i.e., number of emissions tests)
! The number of pollutants included
! The accessibility of the supporting emissions data.

Based on these criteria, data sets from the AP-42 background documentation were selected for
four source categories or industries.  Each of these AP-42 sections provided the requisite supporting
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background documentation and detailed data sets used to develop the emissions factors.  The data sets
were compiled for statistical analysis from the following AP-42 chapters:

! Wood Residue Combustion in Boilers (External Combustion Sources), Chapter 1.6
! Refuse Combustion (Solid Waste Disposal), Chapter 2.1
! Waferboard/Oriented Strandboard Manufacturing (Wood Products Industry), Chapter 10.6.1
! Hot Mix Asphalt Plants (Mineral Products Industry), Chapter 11.1.

These data sets included supporting emissions data for the following pollutants:

! Particulate matter (PM), including filterable, condensible, and total
! Sulfur dioxide (SO2)
! Nitrogen oxides (NOx)
! Carbon monoxide (CO)
! Hazardous air pollutants (HAPs), including acetaldehyde, arsenic, benzene, cadmium,

chromium, formaldehyde, hydrogen chloride, lead, mercury, and nickel. 

Data analyses have been completed for a total of 44 A-rated data sets.  Each of these data sets
included at least 15 emissions tests (n) to calculate the emissions factor.

Statistical Approach Overview

Several statistical approaches to developing default emissions factors adjustments for using
emissions factors in noninventory applications were considered.  These approaches are as follows:

! Target boundary statistics of the hypothetical population (is appropriate for noninventory
uses of emissions factors)

! Normalized distributions for estimating the confidence interval about the mean of the
hypothetical population (i.e., estimate uncertainty about the mean of the population) (is more
appropriate for inventory uses of emission factors)

! Bayesian approach to account for uncertainty associated with the unknown portion of the
population

! Variability approach that accounts for the uncertainty for three sources of variability,
including skewness, the number of tests, and the number of process units.

Primary Statistical Approach

The primary approach selected for developing the emissions factor adjustments is designed to
target selected boundary statistics of the population of emissions data.  These adjustment factors will
enable users to apply the AP-42 emissions factors, which are based on mean values, in applications
where other population values (e.g., 90th percentile, 95th percentile, maximum, or minimum values)
would be more appropriate.  The true emissions from a single source of interest may fall anywhere
within the range of emissions data.

Figure 1 presents a flow diagram of the statistical procedure used to calculate the emissions
factor adjustments.  The statistical analysis includes the following major steps:
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1. Conduct data visualization techniques.  Perform exploratory data analyses using summary
statistics and histograms.

2. Fit probability density functions.  Analyze empirical cumulative distribution functions
(CDFs).  Identify parametric theoretical probability density functions to model the data and
estimate the parameters of the density function based on the data.  Perform the Kolmogorov-
Smirnov (KS) goodness-of-fit test to assess how well the model fits the data.  Using
maximization approaches implemented in the statistic software Splus® 7.0 for Microsoft
Windows, obtain probability density function parameter estimates.

3. Simulate population.  For each data set, use Monte Carlo techniques and the parameter
estimates obtained in Step 2 to simulate the hypothetical population density of the emissions
factor for the specific pollutant.  For each simulated hypothetical population, calculate the
following statistics: minimum, 1st percentile, 5th percentile, 10th percentile, 15th percentile,
20th percentile, 25th percentile, median, mean, 75th percentile, 80th percentile, 85th
percentile, 90th percentile, 95th percentile, 99th percentile, and maximum.

4. For each hypothetical population, select 10,000 random samples of a specified size. 
Calculate the sample mean for each of the 10,000 samples.  Repeat for samples (n = number
of tests) of size 1, 3, 5, 10, 15, 20, and 25.

5a. Obtain adjustments.  For each distribution of 10,000 means based on n samples, calculate the
ratio of the population statistics (obtained in Step 3) and the sample mean.  Because the
sample mean converges in probability to the population mean, the distribution of this ratio
will approach 1 as the sample size increases.  The distribution of ratios characterizes the
distribution of the adjustment for the emissions factor.

RTI International (RTI) conducted the statistical analysis for each of the 44 A-rated data sets
identified from AP-42.  For this analysis, RTI assumed that the data available were a representative
sample of the population of interest.  This is reasonable for A-rated emissions factors.  Furthermore, RTI
disregarded any precision concerns regarding the difference in number of sample runs comprising each
emissions test value used to calculate the emissions factor.  Typically, each emissions test is comprised
of multiple sample runs (usually a minimum of three sample runs comprises an emissions test).

From the statistical analysis, a number of observations regarding the data sets were made.  Each
of the data sets was positively skewed.  The Weibull, log-normal, and gamma functions were considered
(Step 2), and these data sets were either log-normal or Weibull distributions.  Figure 2 shows an
example histogram (left graph) and empirical CDF (continuous line on right graph) for uncontrolled
carbon monoxide data for wood residue combustion in boilers.  
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Figure 1.  Schematic of statistical approach.
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For the carbon monoxide example, ten thousand values were randomly drawn from the Weibull
distribution with scale parameter 0.64 and shape parameter 1.26; the scale and shape parameters were
calculated based on best fit of the data.  This collection of 10,000 values will be referred to hereinafter
as the hypothetical Weibull population or hypothetical distribution.  The following population values
(statistics) were calculated from the hypothetical population: minimum, maximum, mean, median, and
the 1st, 5th, 10th, 15th, 20th, 25th, 75th, 80th, 85th, 90th, 95th, and 99th percentiles.  Figure 2 also
shows an example density of the hypothetical Weibull distribution superimposed on the histogram (left
graph) for the carbon monoxide data set.  An example plot of the hypothetical Weibull CDF (dotted line
on the right graph) is also presented in Figure 2 for the carbon monoxide data.  The similarity between
the two lines observed in the CDF plot suggests a good fit was achieved for the data set.

Monte Carlo simulations refer to the repeated sampling of the hypothetical distribution to make
conclusions about the data obtained from the population.  Ten thousand samples of sizes 1, 3 to 5, 10,
15, 20, and 25 were randomly drawn from the hypothetical populations using a Monte Carlo approach. 
For each sample size, the mean was calculated for each sample.

The default adjustments were calculated for several pertinent statistics of interest, including the
minimum, maximum, mean, median, and the 1st, 5th, 10th, 15th, 20th, 25th, 75th, 80th, 85th, 90th, 95th,
and 99th percentiles of the data distribution.  The default adjustments are a function of the number of
tests, n, on which the emissions factor is based.  In general, as the sample size increases, the magnitude
of the adjustment decreases.  Example results of the default adjustments for uncontrolled carbon
monoxide for the wood residue combustion are shown in Table 1.

Referring to the example in Table 1, the Monte Carlo adjustment needed to estimate the 5th and
10th percentiles is about 0.2 and 0.3, respectively, for all number of tests.  To target the population
median, a factor of 0.9 is needed when the number of tests is greater than 3.  To target  the 90th
percentile, an adjustment of 2 seems appropriate for all sample sizes.  To target the 95th percentile, an
adjustment of 2.7 is needed for an emissions factor based on 1 test and an adjustment of 2.4 is needed
for an emissions factor based on 3 or more tests.
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Figure 2.  Graphical display of goodness-of-fit of the carbon monoxide data for wood residue
combustion in boilers.
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Table 1.  Default emissions factor adjustments for carbon monoxide (uncontrolled), wood residue
combustion, by number of tests (n) and target statistic.

n
Target Statistic

5th Percentile 10th Percentile Median Mean 90th Percentile 95th  Percentile
1 0.19 0.30 1.0 1.2 2.2 2.7
3 0.17 0.27 0.91 1.0 2.0 2.4
5 0.16 0.26 0.89 1.0 1.9 2.3

10 0.16 0.26 0.88 1.0 1.9 2.3
15 0.16 0.26 0.88 1.0 1.9 2.3
20 0.16 0.26 0.88 1.0 1.9 2.3
25 0.16 0.26 0.88 1.0 1.9 2.3

An adjustment for the emissions factor based on the Monte Carlo simulation is defined as the
ratio between the target population statistic (minimum, maximum, mean, median, and the 1st, 5th, 10th,
15th, 20th, 25th, 75th, 80th, 85th, 90th, 95th, and 99th percentiles) and the emissions factor, as shown in
Equation 1.

( ) ( )EF Adj EFstatistictarget = ×        (1)

where:

EFtarget statistic = Target population value of the emissions distribution, hereafter referred to as
the target statistic (e.g., 95th percentile), in units of the AP-42 emissions factor

Adj = Default emissions factor adjustment, unitless
EF = Emissions factor, as presented in AP-42, in units of the AP-42 emissions factor.

Consideration of Alternative Statistical Techniques–Alternative Approach 1

Like the statistical analyses described in the primary approach above, the statistical analyses
described in this section were conducted on the AP-42 emissions factor data.  The first four steps of the
analyses are the same as those described in the primary approach; however, the fifth step differed.  The
distribution of means obtained in Step 4 for each value of n (for n = 1 to 30) is known in the statistical
literature as the “sampling distribution” of the mean.  The spread of the sampling distribution of the
mean decreases as the sample size increases, but the mean of the distribution, which approaches the
mean of the hypothetical distribution, is not affected by the sample size; therefore, all sampling
distributions are centered in the population mean.  In Step 5b, all sampling distributions obtained in
Step 4 were “normalized.”  In other words, each value of each sampling distribution was divided by the
mean of the corresponding sampling distribution.  As a result, all 30 normalized sampling distributions
have a mean equal to 1.

As an example, Figure 3 presents the normalized sampling distribution of carbon monoxide,
where n = 15.  Observe that each normalized sampling distribution can be considered as the sampling
distribution of the adjustment statistic if the goal is to target the population mean.  The sampling
distribution shows the probability of observing the different values of this adjustment statistic.  With this
“sampling distribution,” it is possible to predict the 68 percent, 95 percent, and 99 percent confidence
intervals for the population mean based on sample size of a specified size n.  The 95 percent confidence
interval around the mean of this sampling distribution has endpoints equal to the 2.5th and 97.5th
percentiles of the normalized sampling distribution.  The 95 percent confidence intervals are centered
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on 1.  These endpoints will define the lower and upper values for the adjustment factor if the goal is to
target the mean of the hypothetical distribution.  As a result, a 95 percent confidence interval for this
adjustment factor produces an approximated 95 percent confidence interval for the mean.  As an
example, Table 2 presents selected sampling distribution percentiles for selected n-values for
uncontrolled carbon monoxide for wood residue combustion in boilers.

Composite Default Emissions Factor Adjustments

Development of composite default emissions factor adjustments from the adjustment values
determined for the individual emissions factor categories was explored.  Two approaches to developing
composite default adjustments were considered, including

! Clustering (categorizing) the individual adjustments based on the similarity of the
distribution of the emissions factor data as measured by some statistical parameters (e.g.,
adjustments for emissions factors where the data exhibit a similar degree of skewness would
be clustered)

! Clustering the individual adjustments based on an engineering/scientific property related to
the emissions factor (e.g., similar pollutants [gaseous versus PM], controlled versus
uncontrolled emissions, type of process).

The default emissions factor adjustments calculated for each data set were clustered by type of
pollutant and control (e.g., controlled versus uncontrolled).  Specifically the adjustments were clustered
as follows:

! HAP, controlled 
! HAP, uncontrolled
! PM-condensible
! PM-filterable, controlled
! PM-filterable, uncontrolled
! Gaseous criteria pollutants. 

Composite default emissions factor adjustments were determined for each category of pollutant
by calculating the mean value.  The composite default adjustment depends on the number of emissions
tests, n, used to calculate the emissions factor being adjusted.  An emissions test consists of multiple
sample runs (typically at least three valid sample runs.)  Throughout the analyses conducted for this
study, adjustments were calculated for the following values of n:  1, 3, 5, 10, 15, 20, and 25.  The
composite default adjustments were calculated for each value of n.  Examination of the composite
default values indicates that for each of the pollutant categories, the adjustment values begin to stabilize
when n is 10 or greater.  Furthermore, the composite adjustments for n = 5 and n = 10 are similar. 
Consequently, to further simplify the application of default emissions factor adjustments, we
recommend providing fewer adjustment factors, for n < 3, 3 < n <10, 10 < n < 25, and n > 25 for each
pollutant category.  Table 3 presents the recommended composite default adjustments, based on
boundary statistics, for HAP, controlled; HAP, uncontrolled; PM-condensible; PM-filterable, controlled;
PM-filterable, uncontrolled; and gaseous criteria pollutants.  Table 4 presents the composite default
adjustments, based on normalized sampling distributions (i.e., the Alternative Approach 1), for HAP,
controlled; HAP, uncontrolled; PM-condensible; PM-filterable, controlled; PM-filterable, uncontrolled;
and gaseous criteria pollutants.
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Figure 3.  Normalized Monte Carlo sampling distribution of the mean (n = 15) of carbon
monoxide for wood residue combustion in boilers.

Table 2.  Normalized Monte Carlo sampling distribution of emissions factors (means) from the
population: wood residue combustion, carbon monoxide, uncontrolled.

EF Sample Size 1st 5th 10th 50th (Median) 90th 95th 99th Mean
n = 1 0.03 0.10 0.19 0.81 2.04 2.55 3.69 1.00
n = 2 0.13 0.27 0.37 0.90 1.75 2.07 2.72 1.00
n = 3 0.23 0.37 0.47 0.94 1.60 1.86 2.35 1.00
n = 4 0.29 0.45 0.54 0.95 1.54 1.73 2.13 1.00
n = 5 0.35 0.49 0.58 0.96 1.47 1.64 1.98 1.00
n = 6 0.40 0.53 0.61 0.97 1.42 1.57 1.88 1.00
n = 7 0.43 0.56 0.64 0.97 1.40 1.54 1.79 1.00
n = 8 0.46 0.58 0.66 0.97 1.37 1.50 1.74 1.00
n = 9 0.47 0.60 0.68 0.98 1.34 1.46 1.70 1.00

n = 10 0.51 0.62 0.69 0.98 1.33 1.44 1.67 1.00
n = 11 0.52 0.65 0.71 0.98 1.31 1.41 1.63 1.00
n = 12 0.55 0.65 0.72 0.99 1.30 1.40 1.61 1.00
n = 13 0.55 0.66 0.73 0.99 1.28 1.38 1.57 1.00
n = 14 0.57 0.68 0.74 0.99 1.28 1.36 1.56 1.00
n = 15 0.58 0.69 0.75 0.99 1.26 1.35 1.52 1.00
n = 16 0.60 0.70 0.76 0.99 1.26 1.34 1.51 1.00
n = 17 0.60 0.71 0.77 0.99 1.25 1.33 1.50 1.00
n = 18 0.61 0.71 0.77 0.99 1.24 1.32 1.48 1.00
n = 19 0.63 0.71 0.77 0.99 1.24 1.31 1.48 1.00
n = 20 0.63 0.72 0.78 0.99 1.23 1.31 1.46 1.00
n = 21 0.64 0.73 0.78 0.99 1.23 1.30 1.43 1.00
n = 22 0.64 0.74 0.79 0.99 1.22 1.29 1.43 1.00
n = 23 0.66 0.75 0.80 0.99 1.21 1.28 1.42 1.00
n = 24 0.66 0.75 0.80 0.99 1.21 1.28 1.40 1.00
n = 25 0.67 0.76 0.81 0.99 1.21 1.27 1.40 1.00
n = 26 0.66 0.75 0.80 1.00 1.20 1.27 1.39 1.00
n = 27 0.68 0.77 0.81 0.99 1.19 1.26 1.38 1.00
n = 28 0.68 0.76 0.81 0.99 1.19 1.26 1.38 1.00
n = 29 0.69 0.77 0.81 0.99 1.19 1.25 1.38 1.00
n = 30 0.69 0.77 0.82 0.99 1.19 1.25 1.36 1
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Table 3.  Composite default emissions factor adjustments based on boundary statistics.

Pollutant Target Statistic
Number of Emissions Tests Used to Determine AP-42 Emissions Factor

n < 3 3 < n < 10 10 < n < 25 n > 25
HAP, Controlled 10th Percentile 0.3 0.2 0.2 0.2

25th Percentile 0.5 0.4 0.4 0.3
Median 1.0 0.8 0.7 0.7
75th Percentile 1.9 1.5 1.3 1.3
90th Percentile 3.4 2.6 2.3 2.2
95th Percentile 4.7 3.6 3.2 3.1

HAP, Uncontrolled 10th Percentile 0.1 0.1 0.1 0.1
25th Percentile 0.3 0.2 0.2 0.2
Median 1.0 0.5 0.4 0.4
75th Percentile 3.4 1.6 1.2 1.0
90th Percentile 9.8 4.1 2.9 2.6
95th Percentile 19.1 7.8 5.1 4.5

PM-Condensible 10th Percentile 0.2 0.2 0.2 0.1
25th Percentile 0.5 0.3 0.3 0.3
Median 1.0 0.7 0.6 0.6
75th Percentile 2.2 1.5 1.3 1.2
90th Percentile 4.4 3 2.5 2.4
95th Percentile 6.9 4.7 3.9 3.6

PM-Filterable,
Controlled

10th Percentile 0.4 0.3 0.3 0.3
25th Percentile 0.6 0.5 0.5 0.5
Median 1.0 0.8 0.8 0.8
75th Percentile 1.7 1.4 1.3 1.2
90th Percentile 2.8 2.3 2.1 2.0
95th Percentile 3.9 3.1 2.8 2.7

PM-Filterable,
Uncontrolled

10th Percentile 0.5 0.5 0.4 0.4
25th Percentile 0.7 0.6 0.6 0.6
Median 1.0 0.9 0.9 0.9
75th Percentile 1.5 1.3 1.3 1.2
90th Percentile 2.2 1.9 1.8 1.8
95th Percentile 2.7 2.3 2.2 2.2

Gaseous Criteria
Pollutants

10th Percentile 0.3 0.3 0.3 0.3
25th Percentile 0.6 0.5 0.5 0.5
Median 1.0 0.8 0.8 0.8
75th Percentile 1.9 1.4 1.3 1.2
90th Percentile 3.5 2.5 2.1 2.0
95th Percentile 5.4 3.6 3.0 2.8

HAP = hazardous air pollutant
PM = particulate matter
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Table 4.  Composite default emissions factor adjustments based on normalized sampling
distribution of emissions factor (mean).

Pollutant Distribution Statistic
Number of Emissions Tests Used to Determine AP-42 Emissions Factor

n < 3 3 < n < 10 10 < n < 25 n > 25
HAP, Controlled 10th Percentile 0.2 0.4 0.6 0.8

25th Percentile 0.4 0.6 0.8 0.8
Median 0.7 0.8 0.9 1.0
Mean 1.0 1.0 1.0 1.0
75th Percentile 1.2 1.2 1.2 1.1
90th Percentile 2.1 1.7 1.4 1.3
95th Percentile 2.9 2.1 1.6 1.4

HAP, Uncontrolled 10th Percentile 0.1 0.2 0.4 0.5
25th Percentile 0.1 0.3 0.5 0.7
Median 0.3 0.6 0.8 0.9
Mean 1.0 1.0 1.0 1.0
75th Percentile 0.9 1.1 1.2 1.2
90th Percentile 2.2 2.1 1.8 1.6
95th Percentile 3.8 3.1 2.3 1.9

PM-Condensible 10th Percentile 0.1 0.3 0.5 0.6
25th Percentile 0.3 0.4 0.6 0.8
Median 0.5 0.7 0.9 0.9
Mean 1.0 1.0 1.0 1.0
75th Percentile 1.1 1.2 1.2 1.2
90th Percentile 2.2 1.9 1.6 1.4
95th Percentile 3.3 2.6 2.0 1.6

PM-Filterable,
Controlled

10th Percentile 0.3 0.5 0.6 0.7
25th Percentile 0.4 0.6 0.8 0.8
Median 0.7 0.8 0.9 1.0
Mean 1.0 1.0 1.0 1.0
75th Percentile 1.2 1.2 1.1 1.1
90th Percentile 2.0 1.7 1.4 1.3
95th Percentile 2.8 2.1 1.7 1.4

PM-Filterable,
Uncontrolled

10th Percentile 0.5 0.6 0.8 0.8
25th Percentile 0.6 0.7 0.9 0.9
Median 0.8 0.9 1.0 1.0
Mean 1.0 1.0 1.0 1.0
75th Percentile 1.2 1.2 1.1 1.1
90th Percentile 1.7 1.5 1.3 1.2
95th Percentile 2.2 1.7 1.4 1.2

Gaseous Criteria
Pollutants

10th Percentile 0.4 0.5 0.7 0.8
25th Percentile 0.5 0.7 0.8 0.9
Median 0.8 0.9 0.9 1.0
Mean 1.0 1.0 1.0 1.0
75th Percentile 1.2 1.2 1.1 1.1
90th Percentile 1.8 1.5 1.3 1.2
95th Percentile 2.3 1.9 1.5 1.3

HAP = hazardous air pollutant
PM = particulate matter
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Comparison of the Two Statistical Techniques

Two different statistical analyses to develop default emissions factor adjustments were
conducted.  The first, or primary, statistical approach targets boundary statistics of the hypothetical
population and may be better suited for noninventory uses of emissions factors.  The second, or
alternative, statistical approach examined estimates of uncertainty about the mean of the population and
may be better suited for inventory uses of emission factors.  As expected, adjustment factors calculated
using the first approach are greater because they target a boundary statistic of the hypothetical
population for a single measurement, whereas the second approach calculates an adjustment that
provides uncertainty measures (confidence intervals) for the mean.  The adjustments based on the two
approaches can be considered to represent endpoints of a continuum; the adjustments calculated by the
first approach target a boundary statistic for application to a single source, while the adjustments
calculated by the second approach target the uncertainty about the mean value of a large sample.  Some
situations do not fall perfectly into one of these two categories, making it unclear which adjustment is
most appropriate.  This is particularly true when estimating emissions from a small number of similar
sources for noninventory applications, for example, estimating the total emissions from a facility with
three similar boilers.  As suggested earlier, the default adjustments calculated by the two approaches
represent endpoints; consequently, the adjustment values for the situations involving multiple sources
should fall between the two endpoints.  One approach for addressing the multiple-source situation is to
start with the noninventory adjustment factor and apply a correction to reduce the adjustment factor
applied because emissions from multiple emissions units are being estimated.  A practical, nonstatistical
approach based on a linear interpolation of the difference in the adjustments from the two statistical
approaches was used to develop correction factors when applying the adjustments to up to 10 sources. 
For 11 or more sources, the emissions factor adjustment is equivalent to the adjustment determined by
the normalized sample distribution about the mean.

Consideration of Alternative Statistical Techniques

An alternative approach designed to account for the uncertainty induced by three sources of
variability was reviewed; however, we did not conduct any analyses using this approach.  The three
sources of variability considered in this approach were (1) the skewness of the distribution of emissions
data, (2) the number of tests comprising the emissions factor, and (3) the number of process units for
which emissions are being estimated.  This analysis was based on hypothetical populations and did not
use the actual AP-42 emissions data.

The basic approach is to sample each of the hypothetical populations to develop separate data
sets; one data set to replicate emissions factors (“calculated” emissions factor values) and the other to
represent actual emissions from the  process units.  The results were compared to determine how well
the calculated emissions factors represent the  actual emissions of the process units; the calculated
emissions factor value was subtracted from the actual process unit value.  The sampling that simulates
emissions factor process units was replicated nine times to represent nine different facilities having from
one to nine similar process units.  The sampling that simulates the development of the calculated
emissions factors values was replicated 20 times to represent emissions factors developed from 1 to 20
tests (i.e., n = 1 to 20).  All combinations of differences between the 9 sampling distributions
representing actual emissions factor process units and the 20 sampling distributions representing
calculated emissions factors were calculated.  This approach recreates the distribution of the differences
of means based on different sample sizes.  The adjustment for the emissions factor was defined as (1 +
differences).  Selected percentiles of the distribution of adjustment produced upper bounds for the mean.
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A relevant aspect of this approach is the incorporation of the uncertainty due to the differences
between the number of tests the emissions factor was based on and the number of process units.  Also,
this approach is based on the assumption that it is possible to model all the pollutants using one
probability distribution with few varying parameters, which in some sense follows the finding from this
project, that the pollutants considered were either Weibull or log-normally distributed.  As expected,
when the number of process units increases and the number of tests (n) used to calculate the emissions
factor increases, the difference between the means will tend to zero.

CONCLUSIONS

Default adjustment factors based on boundary (target) statistics of the population have been
developed; these emissions factor adjustments are appropriate to use for noninventory applications.
Default adjustment factors were developed for numerous target statistics and values of n.  To simplify
presentation of the data and application of the results, default adjustments for selected target statistics
are reported.  Similarly, adjustments were calculated for numerous values of n; to simplify, composite
adjustments for selected ranges of n are proposed.  A more extensive presentation of additional target
statistics can be developed for use in an electronic database or lookup table to provide a broader set of
options, if needed.

For applications where the target statistic of interest is the mean, such as inventories, the
appropriate adjustment to use is a selected confidence interval (upper and/or lower confidence limits). 
Although the primary focus of this study was on non-inventory applications of emissions factors using
statistics other than the mean, adjustments based on the normalized sampling distribution of the mean
for n = 1 to 30 were also calculated as part of the study.  Multiplying selected adjustments (percentiles
of the normalized distribution) by the AP-42 emissions factor will produce the desired confidence
interval for the mean.  A more extensive presentation of additional confidence limits about the mean can
be presented in an electronic database or lookup table implemented in a user-friendly Java applet to
provide a broader set of options, if needed.

The following general conclusions result from the analyses:

! All of the emissions factor data sets examined are either Weibull or log-normally distributed.

! A consistent pattern is shown for all of the pollutants: as the number of tests, n, increases, the
value of the default emissions factor adjustment decreases.  This pattern holds for all of the
pollutants, regardless of the number of tests available from the supporting emissions data set
or the control status (e.g., controlled versus uncontrolled).

! For each of the pollutant categories, the adjustment values nearly stabilize when n is 10 or
greater.

! There are some differences from pollutant to pollutant regarding the range of the default
emissions factor adjustments as a function of n.  For some pollutants, regardless of the n
value, the default adjustment does not change significantly (e.g., PM-filterable,
uncontrolled).  For other emissions factor data sets, the default adjustment varies more
widely depending on the value of n.
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! The HAP emissions factor data exhibit the highest degree of variability and result in the
largest emissions factor adjustments.  The majority of the emissions factors for HAP contain
at least one data point identified as a problematic outlier.

REFERENCES

1. Neulicht, R., B. Munoz, K. Schaffner, L. Barr, Using Emissions Factors in Noninventory
Applications–Options Paper for Default Emissions Factor Adjustments.  Prepared for U.S.
Environmental Protection Agency by RTI International, Research Triangle Park, NC. 
February 2006.

2.  Compilation of Air Pollutant Emissions Factors, AP-42, Fifth Edition, Volume I:  Stationary
Point and Area Sources.  U.S. Environmental Protection Agency, 1995.



15

KEY WORDS

emissions factor adjustments
adjustments
emissions factors
emissions factor uncertainty


