Development and Application of a Micro scale Emission Factor Model (MicroFac) for Mobile Source Emissions

Rakesh Singh and James Sloan

14th International Emission Inventory Conference "Transforming Emission Inventories - Meeting Future Challenges Today“
Las Vegas, Nevada
April 11-14, 2005
Why MicroFac?

- Current emission models such as the MOBILE family only deal with time-averaged regional-scale emissions.
- They lack:
 - Real-time description
 - Site specificity
- MicroFac has these capabilities and many more.
MOBILE Models

- Historically, MOBILE6/5 has been used for vehicle emissions modelling in Canada.

- **MOBILE** is
 - Designed for county-scale (minimum), not street-scale, emission estimates
 - Not designed for
 - microscale modeling
 - application in air quality modeling
 - human exposure modelling
The MicroFac algorithm gives emissions in terms of the specific vehicle fleet being considered. The composite emission for a specified fleet is built up from the contributions of the individual vehicles as follows:

\[CEF = \sum_{ij} ER_{ij} \times VEH_{ij} \]

Where:
- \(CEF \) = composite emission factor for the fleet
- \(ER_{ij} \) = composite emission factor for vehicle type \(i \) and model year \(j \)
- \(VEH_{ij} \) = fraction of vehicles in the fleet for vehicle type \(i \) and model year \(j \)
MicroFac Process Flow Diagram

- MicroFac output takes account of the characteristics of the individual vehicles in the fleet as shown below.

![Diagram showing MicroFac Process Flow Diagram]

- Driving-Cycle-Based Normal Exhaust Emission Rates per Vehicle Class and Model Year
- Driving-Cycle-Based High Exhaust Emission Rates per Vehicle Class and Model Year
- Normal Exhaust Emission Rates per Vehicle Class and Model Year
- High Exhaust Emission Rates per Vehicle Class and Model Year
- Brake, Tire and Re-entrained Road Dust
- Vehicle Fleet
- Evaporative/Running Loss
- Composite Emission Factors in g/km/veh
MicroFac Input Requirements

- Date and time
- Ambient temperature and relative humidity
- Average vehicle speed
- Road gradient
- Fuel composition
- Vehicle fleet characterization
MicroFac Evaluation

- Tunnel studies
 - for CO, NOx and CO\textsubscript{2}
 - Callahan Tunnel, Boston 1995
 - Lincoln Tunnel, New York 1995
 - Deck Park Tunnel, Phoenix 1995
 - For PM\textsubscript{10} and PM\textsubscript{2.5}
 - Tuscarora Tunnel, PA 1999

- Speed, traffic fleet and age distribution were known
Performance of MicroFac (Boston)

- Average Speed = 26.4 (14.1-35.3) mph
- Average Ambient Temperature = 62.1 (50.0-69.1)°F
Performance of MicroFac
(New York)

- Average Speed = 27.1 (20.4-30.0) mph
- Average Ambient Temperature = 84.6 (79.5-91.0)°F

CO (g/km)

- Aug 16
- Aug 17
- Aug 18

NOx (g/km)

- Aug 16
- Aug 17
- Aug 18

CO2 (g/km)

- Aug 16
- Aug 17
- Aug 18

Waterloo Centre for
Atmospheric Sciences

University of Waterloo
Performance of MicroFac (Phoenix)

- **Average Speed**: 59.7 (58.0-61.9) mph
- **Average Ambient Temperature**: 103.2 (84.9-110.8) °F
Performance of MicroFac (Pennsylvania)

- Average Speed = 56.8 (53.6-61.7) mph
- Light-duty percentage = 56.5 (13.68-88.61) %
Application in Air Quality Modeling

Micrometeorology + Site-Specific meteorology

On-Road Traffic → Site-Specific Real-Time Emission Factor Model

MicroFac

Dispersion Model → Such as CALINE4 or AERMOD
Application of MicroFac
(Windsor, ON)

1, 2 Normal traffic + Trucks: Free flow
3, 4, 6. Normal traffic: Free flow
5. Trucks only: Queued

Waterloo Centre for
Atmospheric Sciences
MicroFac + CALINE4/AERMOD
(Windsor, ON)

- Monitoring limitations
- No road dust

Waterloo Centre for Atmospheric Sciences
MicroFac + CALINE4
(Waterloo Region, ON)

July 15, 2002, 11:00; Wind Direction 275°; Wind Speed 2.1 m/s

Cambridge – Hespeler Road

Waterloo Centre for Atmospheric Sciences
Application in Remote Sensing

Remote sensing devices (RSD)

- Concentrations of material emitted by vehicles in ppm
- Can be converted to emissions in g pollutant (CO, NOx, HC) / kg fuel used
- Assumed fuel economy rate is used to convert to emission factors
- Suitable only for inventory and qualitative assessment

MicroFac fuel consumption model convert RSD concentrations to emission factors g/km at any speed and driving conditions

- RSD data analysis and conversion to emission factors for individual vehicles and vehicle fleet
Conclusions

- Site-specific real-time emissions are critical for modeling air transport/dispersion and human exposure in various roadway microenvironments.

- MicroFac models for
 - CO and NO\textsubscript{x}
 - PM\textsubscript{10} and PM\textsubscript{2.5}
 - Fuel consumption model
 - CO\textsubscript{2} model
 - Remote sensing applications
Acknowledgements

Funding Agencies

- NSERC
- Ontario Power Generation
- Ontario Ministry of the Environment
- Ontario Research and Development Challenge Fund

We are grateful for the support of Dr. Alan Huber, NERL, US EPA in the initial MicroFac development and Dr. Alan Gertler, DRI for Tunnels data.