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ABSTRACT 
 
Because of the interest in air quality studies of toxics in urban areas, a Monte Carlo (MC) 
probabilistic uncertainty study is being conducted for a 15 km by 15 km domain centered 
on the Houston Ship Channel. This American Petroleum Institute (API) study is related to 
a similar MC uncertainty study being carried out over a much broader domain in the 
Houston metropolitan area by the EPA. The focus of the current study is on uncertainties 
in ISC3ST and AERMOD predictions of annual averaged concentrations of benzene and 
1,3-butadiene, due to uncertainties in emissions and meteorological inputs. The 
uncertainties in emissions components are being estimated based on observed data 
variability supplemented by guidance from an API-EPA workshop held on this topic 
(typical emissions uncertainties are about +/- a factor of three (i.e., covering the 95 % 
range) for 21 benzene emissions categories and 13 1,3-butadiene emissions categories).  
The uncertainties in meteorological inputs (such as wind speed and stability) are also 
being determined from analysis of the field data used to develop parameterizations of 
dispersion coefficients, plus consultation with experts. However, the current paper 
addresses only the emissions uncertainties.  ISC3ST and AERMOD are being run 100 
times in MC mode, using random and independent perturbations of all inputs in order to 
estimate 1) the total uncertainty of the annual averaged concentrations, and 2) the inputs 
with uncertainties that are most strongly correlated with uncertainties in predicted 
concentrations.  The results of the MC runs with ISC3ST and AERMOD will be 
discussed in a later paper. 



 

INTRODUCTION 
 
This paper describes a Monte Carlo probabilistic uncertainty analysis related to air toxics 
studies in urban regions.  The EPA (2000) Integrated Urban Air Toxics Study (IUATS) 
presents a framework for addressing air toxics in urban areas.  A test example for the 
Houston and Phoenix areas was given by the EPA (1999), and various enhancements 
including improved emissions models for mobile sources were tested for Houston in a 
later report (EPA, 2002).   
 
The Monte Carlo (MC) probabilistic uncertainty approach is used here because it allows 
the combined influences of the uncertainties in many model inputs and parameters to be 
assessed.  The resulting total uncertainty in the model outputs can be determined as well 
as correlations between uncertainties in inputs and outputs. Basic explanations of the MC 
procedures are provided in several books (e.g., Cullen and Frey, 1999) and examples of 
applications to atmospheric transport and dispersion models have also been published 
(e.g., Irwin et al. 1987 and Hanna et al. 2001). 
    
The specific uncertainty study that is being discussed here began with the Houston 
example described by the EPA (1999, 2002), which used a 150 km by 150 km urban 
geographic domain including Houston and made use of an emissions model and a 
transport and dispersion model (ISC3ST) to calculate annual average concentrations of 
five toxic pollutants.  The current plan focuses on a smaller 15 km by 15 km Houston 
domain (see the inner square in Figure 1) concerning the area around the Houston Ship 
Channel.  The concentrations in the inner square in Figure 1 are calculated using 
emissions information from sources on a 30 km by 30 km domain, indicated by the outer 
square in Figure 1. The Houston ship channel domain includes many oil refineries and 
chemical processing plants, as well as numerous major highways.   
 
Annual averaged concentrations at 49 receptors (46 at census tract centroids and three at 
monitoring sites) are being studied in the Houston 15 km by 15 km receptor domain. The 
current MC uncertainty study focuses on two pollutants – benzene and 1,3-butadiene, 
whose primary sources are mobile sources and industrial sources.      
 
Two alternate transport and dispersion models are being run in the Monte Carlo exercise:  
ISC3ST( EPA, 1995) and AERMOD (Cimorelli et al., 1998).  The necessary emissions 
files and the major base runs for the Houston domain in Figure 1 are available from an 
earlier sensitivity study by Heinold et al. (2003) of ISC3ST and AERMOD on this same 
geographic area. 
 
In the MC probabilistic uncertainty methodology, the modeling system is run 100 times 
for random choices of variations in the input parameters and the responses of the key 
model output parameters are analyzed.  100 MC runs are being made for the combined 
emissions and dispersion model for the AERMOD, ISC3ST (all rural), ISC3ST (urban 
grid sources), and ISC3ST (rural grid sources) dispersion models.   



 
 
Figure 1.  Domain of the API uncertainty study 
 

 



 
 
In parallel with the uncertainty study being described in this paper, there is an EPA-
sponsored MC uncertainty study currently underway for the larger (about 150 km by 150 
km) Houston domain.  Benzene is also one of the pollutants being studied by the EPA, 
and its emissions uncertainties were recently estimated (Frey and Zhao, 2003).  The two 
groups are collaborating in several ways, such as by participated in the emissions 
uncertainty workshop on 26-27 August 2003 (Hanna, 2003).   
 
This paper addresses the emissions uncertainties.  The meteorological and dispersion 
model uncertainties will be described in a separate paper. 
 
ESTIMATES OF INPUT UNCERTAINTIES FOR EMISSIONS  
       
There are uncertainties and probably also biases in the emissions estimates for Houston, 
but quantifying these is rather difficult given the difficulty in getting sample data.  In an 
earlier MC study by Hanna et al. (2001) involving photochemical grid models applied 
over the eastern U.S., the emissions uncertainties were assumed to have approximately a 
factor of three uncertainty (i.e., 95 % range) and a log-normal distribution.  The earlier 
study assumed that the mean bias was zero, since there was not a good scientific reason 
for assuming otherwise.  Fortunately, the emissions inventory in Houston for benzene and 
1,3-butadiene is more complete than in most other parts of the country.   
 
Uncertainties in emissions can be estimated by a combination of two approaches: 1) 
analysis of available data, and 2) expert elicitation (Cullen and Frey 1999).  As an 
example of the first approach, emissions data available for benzene were used to derive 
probability density functions describing the uncertainties in emissions for several 
categories in Houston (Frey and Zhao, 2003). 
 
A key element of the current study has been the 26-27 August 2003 Workshop in 
Houston on uncertainties of emissions in benzene and 1,3-butadiene (Hanna, 2003).  The 
Workshop employed a combination of the data analysis and expert elicitation approaches.  
A major recommendation arising from the Workshop was that almost the same 24 
benzene emissions categories, suggested by Frey and Zhao (2003) and being used by the 
EPA for their Houston uncertainty study, should be used for the current uncertainty 
study.  Furthermore, it was recommended that the 1,3-butadiene emissions follow the 
same strategy, but with different categories, as detailed below. It should be noted that 
most of the discussions of 1,3 butadiene emissions took place after the Workshop.   
 
The Workshop participants discussed the uncertainties for the 21 benzene categories 
defined in Table 1. The emission amount and the percentage for each category are listed. 
There are other emissions in other categories, but it is rationalized that those emissions 
are relatively small and will not significantly impact the total model uncertainty.  The 
categories in Table 1 are somewhat different from those in the Frey and Zhao (2003) 
report and in the Hanna (2003) Workshop summary, since subsequent discussions 
resulted in some realignment and replacement.  This is mainly because the Ship Channel  



Table 1.  Emission categories used for benzene in the uncertainty assessment 
 

Cate- 
Gory Description TPY 

% of 
Total Emissions Type and Source 

1 

Light Duty Gas Vehicles 
(LDGV), Light Gas Trucks 
(LDGT), Road Segments 475.0 28.5 

On-Road - HDDV, HDGV, LDGT, LDGV, 
MC, and All Road Segments 

2 Petroleum refineries 412.7 24.7 

Point - Petr Refineries, Catalytic Cracking, 
and Sulfur Plants; Non-Point - Petr 
Refining-Nat Gas Support 

3 

Non-road 4-stroke gas 
engines, Internal Combustion 
Engines 145.8 8.7 

Non-Road - Res. Heat-Distillate Oil; Point 
- Internal Comb Engines; Non-Pt - Station 
Inter. Comb. Eng. Diesel & Nat. Gas 

4 Non-rd 2-stroke gas engines 34.3 2.1 Non-Road - Off Highway Gas. 2-stroke 

5 
Non-road diesel (const-
ruction, farm, and industr) 26.2 1.6 Non-Road - Off Highway Diesel 

6 Oil and gas production 10.2 0.6 Non-Pt  Oil & Nat. Gas Prod and support 

7 
Natural gas transmission and 
marine transport 63.7 3.8 

Non-Point - Nat Gas Transmission & 
Storage; Marine Cargo Handling 

8 
Forest wildfires, Municipal 
Landfills 5.8 0.4 

Non-Point - Open Burning-Scrap Tires, 
Forests & Wildfires, POTWs,; Point - 
Municipal Landfills 

9 
Solid waste disposal (sewage 
treatment, aeration tanks) 59.2 3.5 

Point - Waste Disposal and Solid Waste 
Disposal 

10 
Acetylene prod (butylenes, 
ethylene, propylene, olefin) 47.8 2.9 Point - Acetylene Production 

11 
Fuel oil external combustion, 
External Combustion Boilers 37.9 2.3 

Point - Fuel Oil External Comb, External 
Comb Boilers; Non-Point - POTW Digest 
Gas, Res. Heat. Distillate Oil,  

12 Typical ethylene plant 17.0 1.0 Point - Ethylene Plant 

13 Gas service stations stage 1 9.6 0.6 
Non-Point -  Gasoline Distribution Stage I 
& II 

14 Petroleum industry fugitives 26.8 1.6 Point - Petroleum Industry Fugitives 
15 Managed burning, prescribed 0.6 0.04 Non-Point - Open Burning: Prescribed 

16 
Chemical manufacturing; 
fugitive emissions 16.7 1.0 

Pt - Chem Manuf: Fug Emis; Non-Pt - 
Indus Org & Inorg Chem Manuf, Misc. 
Org Chem Proc; On-Rd - LDDV 

17 Aircraft 6.5 0.4 Point – Aircraft 

18 
Petr ind; fug emis; misc. Petr 
& Solvent Evap. 121.8 7.3 

Point - Petroleum and Solvent 
Evaporation 

19 
Process vents in refinery 
production 15.0 0.9 

Point - Process Vents in Refinery 
Production 

20 
Loading, ballasting, transit 
losses from marine vessels 21.6 1.3 

Point - Loading, Ballasting, Transit Losses 
from Marine Vessels; Non-Road - 
Commercial Marine Vessels 

21 Industrial Processes 113.3 6.8 

Pt - Ind Proc; Non-Pt - Consumer Prod 
Usage, Architect Surface Coatings, 
Asphalt Concrete and Roofing Manuf 

  Total Emissions  1667.6 100.0   



area has a larger fraction of industrial sources than the larger Houston domain studied by 
Frey and Zhao (2003).   
 
Since most of the individual category uncertainties were found to be in the range of a 
factor of 1.5 to 3, it was decided, for the purposes of the current study, to simply assume 
a factor of three uncertainty, with a log-normal distribution, for each category. This factor 
of three is assumed to cover the 95 % range of the uncertainty.  Also, after much 
discussion at the Workshop and afterwards, it was decided that there was not enough 
information to assume anything other than zero for the mean biases.  
 
There are no correlations assumed between any of the categories in Table 1.  To prevent 
unrealistical extremes in emissions from being selected by the MC random number 
process, it is assumed that there are no emissions that depart from the median by more 
than a factor of 7.5 (2.5 times the 95 % range).  Because the probability of such large 
extremes is very small (less than 0.1 %), the truncation of the extremes should not 
significantly bias the simulated distribution.. 
 
Similarly, the 1,3-butadiene emissions inventory was studied for the Houston Ship 
Channel domain and 13 emissions categories were assumed to cover most of the 
emissions.  Table 2 contains the list of the 13 emissions categories, including a 
description, a total “Tons Per Year” (TPY) for that category, and the associated percent 
of the total.  A much smaller fraction (about 15 %) of the 1,3-butadiene emissions comes 
from mobile sources, compared to the fraction (about 40 %) for benzene. 
 
In all categories in Tables 1 and 2, the uncertainty is represented by a distribution 
function (log-normal) and a definition of the 95 % range (i.e., plus and minus three 
standard deviations).  None of the inputs is assumed to have a mean bias. That is, the 
medians of the distributions are assumed to equal the value of that variable used in the 
base model run.   

MONTE CARLO SAMPLING METHODS 
 
The Monte Carlo (MC) sampling procedure is straightforward.  By using simple random 
sampling, standard statistical confidence limit formulas can be applied to the results.  
Also, with simple random sampling with no assumed correlations among input 
fluctuations, the number of needed MC runs is not dependent on the number of variables.  
The number of MC runs is recommended to be 100, and is a reasonable compromise 
between the desire to have more runs to narrow the confidence bounds in the results, and 
the desire to have less runs to save computer time.  Previous MC studies suggest that 100 
runs are sufficient to provide useful results on total uncertainty and on correlations (e.g., 
Hanna et al, 2001). 
 
Random selections of variables must be constrained to be within known physical bounds. 
Since the normal and lognormal distributions can go to infinity, there is a small chance 
that an extreme large or small value may be chosen.  For example, an hourly-averaged 



emission 1000 times the expected median value is not physically possible.  In the current 
study, MC-selected data are constrained to be within about ± 5σ of the median. 
 
 

Table 2.  1,3-butadiene emissions source categories  
 

Category   Description TPY % of Total 

1 

Fuel oil external comb, petr and solvent evap, 
organic solvent evap, fuel fired equip, natural 
gas, flares, indust proc, petr ind, process gas 271.8 40.1 

2 
Styrene-butadiene rubber and latex production, 
nitrile butadiene rubber production 105.8 15.6 

3 

Chemical manuf fugitive emis, industl processes, 
general processes, fabricated metal products 
fugitive emissions, plastics production 118.8 17.5 

4 
Industrial processes, chemical manufacturing, 
butadiene fugitive emissions 17.1 2.5 

5 

Ethylene plant, industrial processes chemical 
manufacturing butylenes. Ethylene propylene, 
olefin production fugitives emissions 26.3 3.9 

6 
Loading, ballasting, transit losses from marine 
vehicles 10.7 1.6 

7 
Indust proc, petr industry cooling towers and 
fugitive emissions from flanges and all streams 13.9 2.0 

8 Aircraft 5.1 0.8 
9 Unknown 6.4 0.9 
10 Road Segments 42.4 6.3 
11 On-road Gridded 30.0 4.4 
12 Non-road 17.6 2.6 
13 Non Point 12.6 1.9 
  Total Emissions 678.4 100.0 

 
 
The recommendations for emissions uncertainties assumed that a given random number 
would apply for the entire year of ISC3ST or AERMOD runs.  Before the set of m = 100 
MC runs is carried out for each of the three combinations of emissions and transport and 
dispersion models, a set of "n" random numbers is generated (one for each of the n input 
variables or parameters) from a Gaussian distribution with mean 0.0 and variance 1.0 
using any random number software package.  In order to make the comparisons more 
meaningful in the subsequent analysis, the same sets of n random numbers for m = 100 
MC runs will be used for the runs for each model. The exact value of a given input that is 
used in the model for a given MC run is obtained by converting the random number 
selected from a Gaussian or normal distribution with mean 0.0 and variance 1.0 to the 
actual normal or log-normal distribution prescribed for that variable.   

 



ANALYSIS TECHNIQUES 
 
The analysis shall make use of the outputs of the m =100 sets of MC runs with each of 
the three linked emissions and transport and dispersion models on the Houston domain.  
Suppose there are 100 sets of predicted annual concentrations for benzene and 1,3-
butadiene at each receptor location.  There are also 100 sets of randomly-selected 
variations in each of the n input parameters or model parameters (i.e., the n x m matrix 
mentioned in the previous section, but only for the inputs that are annual-averaged).  The 
outputs will be analyzed to determine the characteristics of the total variability. The 
paired outputs and inputs (for annual averaged inputs) will be subjected to a correlation 
analysis to determine the inputs whose variations have the most effect on the variations in 
the outputs. 
 
The specific outputs to be analyzed partly depend on the set of relevant questions being 
asked of the study.  The primary outputs are 1) the annual average concentration 
averaged over the 46 population-weighted centroids of census tracts, and 2) the annual 
average concentration at each of the 46 centroids and at the three receptor locations. 
 
Total variability      
 
The 100 sets of MC outputs averaged over the entire domain and at selected receptors 
shall be rank-ordered and used to define 95 % confidence intervals and maxima and 
minima.  The 95 % confidence range is known as the “total variability” and will probably 
be close to a factor of two or three.  The shape of the output pdf shall be estimated 
(usually these are lognormal).  The results will be studied to see if there is much 
variability in space from one receptor to another or from one pollutant to another 
(benzene or 1,3-butadiene). Special attention will be paid to identifying receptors that 
may be overly influenced by a nearby source, so that these can be analyzed separately.   

Statistical analysis techniques such as correlation coefficients     
 
After the MC outputs are created, a variety of statistical analysis techniques will be 
applied to identify key contributors to output uncertainty.  These include scatter plots of 
inputs versus outputs, correlation coefficient analysis, regression analysis, and principal 
component analysis (see Cullen and Frey, 1999).  Scatter plots are most revealing when 
uncertainty in output is dominated by uncertainty in a small number of inputs.  Linear and 
nonlinear relationships, as well as patterns and trends, can be identified readily during 
visual analysis of scatter plots, then tested using other techniques.   
 
In most probabilistic MC assessments, the majority of the uncertainty in the output 
distribution (annual averaged concentrations in this scenario) is attributable to uncertainty 
in a small subset of the inputs7.  An identification of this subset of highly significant 
contributors to output uncertainty can help guide future research. The most common 
statistical parameter used to identify important inputs is the rank correlation coefficient.  
In the Hanna et al. (2001) study (with 100 MC runs) of uncertainty in regional ozone 



models, out of 128 input variables, there were only about five that yielded correlations 
greater than 0.5 with predicted maximum ozone concentration. 
 
The analysis will rank the input variables and model parameters whose variations have 
the strongest correlation with the output variables.  The analysis will also allow the 
relative contributions of the uncertainties in the emissions model and the transport and 
dispersion model to the uncertainties in the output concentrations to be assessed. 
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