Abstract - Globally, domestic animals are the largest source (22 Tg N yr$^{-1}$, 1 Tg = 1012 g) of atmospheric NH$_3$, comprising approximately 40% of natural and anthropogenic emissions combined, while synthetic fertilizers and agricultural crops together contribute an additional 12.6 Tg NH$_3$-N yr$^{-1}$ (23% of total emissions). Within and downwind of mixed (animal and crop production) agricultural regions, NH$_3$ therefore plays a significant role in atmospheric chemistry, particularly the formation of inorganic PM$_{2.5}$, and deposition of nitrogen to terrestrial and aquatic systems. While animal production facilities have been identified as important sources of NH$_3$, there are no estimates of local NH$_3$ dry deposition for U.S. systems. This project investigates the dry deposition of NH$_3$ near a 5000 head swine production facility located in eastern North Carolina. Passive samplers are used to measure weekly-integrated NH$_3$ concentrations along horizontal gradients from the lagoon/housing complex out to a distance of 500 m. Dry deposition is estimated using a resistance model that accounts for vegetation and soil compensation points as well as cuticular and stomatal uptake. Preliminary results indicate dry deposition rates ranging from 200 kg NH$_3$-N ha$^{-1}$ yr$^{-1}$ within 25 m of the lagoon/housing complex to 5 kg NH$_3$-N ha$^{-1}$ yr$^{-1}$ at a distance of 500 m. During a 1-week period of concurrent emission and deposition measurements during October 2003, cumulative deposition (0.062 g NH$_3$ s$^{-1}$) over the 500 m radius accounted for approximately 8% of barn emissions (0.755 g NH$_3$ s$^{-1}$). Deposition measurements, which began during April 2003, will continue through April 2005 in order to capture the seasonal variability in emission rates, meteorology, and surface characteristics.

walker.johnt@epa.gov

Poster Presentation:

U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards
13th Annual Emission Inventory Conference
Clearwater, Florida, June 7 - 10, 2004