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ABSTRACT 
 

Emission factors are subject both to variability and uncertainty. Variability refers to real 
differences in emissions among multiple emission sources at any given time or over time for any 
individual emission source. Uncertainty refers to lack of knowledge regarding the true value of 
emissions.  In this paper, we demonstrate quantitative methods for characterizing both variability and 
uncertainty and apply the methods to case studies of emission factors for Lawn and Garden (L&G) 
engines and for construction, farm, and industrial (CFI) equipment.  Data were obtained from emissions 
testing conducted by others.  Databases were created and statistically analyzed to determine the 
minimum number of emission source categories with statistically significantly different average 
emissions.  Inter-engine variability in emissions was quantified using parametric distributions. Bootstrap 
simulation was used to characterize confidence intervals for the fitted distributions. For 2-stroke L&G 
engines, the 95 percent confidence intervals for the mean emission factors for total hydrocarbon (THC) 
and Nitrogen Oxides (NOx) emissions in g/hp-hr units were -32% to +38% and -46% to +65%, 
respectively. For 4-stroke L&G engines, the confidence intervals for mean emissions in g/hp-hr units 
were -38% to +45% for THC and -25% to +38% for NOx.  For CFI engines, which are primarily diesel, 
the 95 % confidence intervals for the mean emission factors were as small as –10% to +11% and as 
large as –48% to +49%.  These quantitative measures of uncertainty convey information regarding the 
quality of the emission factors and serve as a basis for calculation of uncertainty in emission inventories. 
The method, example case studies, and benefits of the approach are discussed. 
 
INTRODUCTION 
 

The objective of this paper is to demonstrate a quantitative approach for quantifying variability 
and uncertainty in emission factors with application to nonroad mobile source emissions.  This paper is 
part of a larger program at NC State University to develop and demonstrate methods for quantification 
of variability and uncertainty, apply the methods to emission factors for a variety of emission source 
categories, develop probabilistic emission inventories, and evaluate the policy implications of a 
probabilistic approach to development and use of emission inventories.   As a case example, much of the 
work is aimed at developing a probabilistic emission inventory for use in tropospheric ozone air quality 
modeling.  Therefore, the focus is on characterizing uncertainty in emissions of NOx and hydrocarbons.   
In addition to the non-road emissions source categories addressed in this paper, other work at NC State 
focuses on the following source categories:  highway vehicles; power plants; stationary natural gas-fired 
engines; gasoline terminals; consumer solvents; architectural coatings; and asphalt paving, among 
others.  In addition to work focused on ozone precursors, work is also underway to develop and apply 
probabilistic methods to urban air toxic emission inventories.   
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THE NEED FOR PROBABILISTIC ANALYSIS 
 
The National Research Council (NRC) and the U.S. Environmental Protection Agency (EPA) 

have increasingly recognized the need for a quantitative approach to dealing with uncertainty in 
environmental modeling applications.  For example, the NRC recently issued a report regarding mobile 
source emissions that recommends that uncertainty in such emission be quantified.1  In 1997 EPA issued 
a report entitled "Guiding Principles for Monte Carlo Analysis" that was motivated primarily by the 
need to quantify variability and uncertainty in the context of human exposure and risk analysis.2  
However, based upon the recommendation of the NRC, EPA will have to respond with methods for 
quantifying uncertainty for mobile source emissions.   

 
Variability refers to real differences in emissions, such as from one engine to another.  

Uncertainty refers to lack of knowledge regarding the true value of emissions.  Sources of uncertainty 
can include:  random sampling error; measurement error; non-representative data; data entry errors; 
and/or lack of data.  This paper focuses primarily upon random sampling error as a key source of 
uncertainty.  As part of separate work now underway, NC State is exploring methods for incorporating 
knowledge regarding measurement error into uncertainty analysis.  The issue of non-representative data 
is difficult to quantify in the absence of benchmark data regarding the true real-world in-use emissions 
of a particular source category.  In the case of nonroad vehicles, the available emission measurements 
are typically made using test cycles involving a weighted average of measurements made in the 
laboratory over multiple steady state operating modes.  These cycles may or may not produce emissions 
similar to those produced by the same equipment when operated in the field.  The potential lack of 
representativeness of available laboratory data for nonroad emission sources could lead to biases in the 
emission factor estimates.  In the future, it is expected that real-world in-use emissions data will be 
obtained from nonroad equipment using portable on-board instruments that are now becoming available. 
As part of a recent project, NC State has analyzed some examples of on-board data obtained from a 
limited set of diesel nonroad equipment, as well as for onroad vehicles.3,4  However, the on-board 
nonroad data are not sufficient for inclusion in this analysis at this time.   

 
In developing an emission inventory, the objective is typically to estimate average emission 

factors for a given source category to support a prediction of the total emissions in a given geographic 
area over some time period.  Estimation of the uncertainty in the average emission factor is therefore the 
main focus of this paper.  However, in order to estimate uncertainty associated with random sampling 
error, it is necessary to quantify the inter-engine variability in emissions and to employ appropriate 
statistical methods for inferring a probability distribution for uncertainty in the mean emissions.   

 
 The importance of a quantitative approach to uncertainty analysis has been highlighted by the 
NRC.1  A comprehensive uncertainty analysis can be used to to assess the relative contributions to 
uncertainty in an emission inventory of individual emission source categories and of specific emission 
factors and/or activity factors.  Such information can be used to identify the emission inventory inputs 
that contribute the most to uncertainty in total emissions.  With this knowledge, data collection can be 
specifically targeted to obtain more or better data (e.g., real-world in-use data) to reduce uncertainty and 
improve the overall inventory.  Thus, it is possible to develop a rational basis for guiding future 
emission testing programs and emission inventory improvement activities.  Information about 
uncertainty is also important in conveying the quality of the emission factors, activity factors, and the 
emission inventory to enable decision-makers to account for uncertainty when making air quality 
management decisions.  For example, when comparing emission estimates to an emissions budget for 
conformity or compliance purposes, a decision maker may wish to know the confidence with which an 
emissions goal can be met.  Similarly, when making predictions with air quality models for comparison 
to ambient monitoring data for purposes of validation, the range of uncertainty in the air quality model 
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prediction should be taken into account when determining whether there is agreement with monitoring 
data. 
 

As the NRC indicates, it is difficult to quantify the uncertainty associated with non-
representative samples.1  "That a perfect assessment of uncertainty cannot be done, however, should not 
stop researchers from estimating the uncertainties that can be addressed quantitatively."  The NRC 
recommends that EPA archive data used in model development and document analysis approaches.  The 
NRC also recommends that future versions of the MOBILE model and other models should be 
developed to facilitate uncertainty analysis.   
 

In the case of mobile sources, there is not an established practice for conveying the quality of the 
emission factors.  However, in the case of stationary source emission factors, EPA has defined and 
reported qualitative “A” through “E” ratings.5 The Data Attribute Rating System (DARS) is a method 
for combining data quality scores for both emission factor and activity data to develop an overall quality 
score for an emission inventory.6 While DARS can be used to compare quality ratings for EIs, it cannot 
be used to quantify the precision of an inventory or to evaluate the robustness of a decision to 
uncertainty.  Other efforts have focused on characterizing the mean and variance of emission estimates 
and using simplified approaches for combining uncertainties in activity and emission factor data to 
arrive at an aggregate uncertainty estimate.7,8,9 These approaches have various shortcomings.  In many 
cases, assumptions are made that the probability distribution model representing uncertainty in an 
emission or activity factor is normal or lognormal without empirical justification. No distinction is made 
between inter-unit variability and uncertainty in estimating uncertainty in emissions and activity factors. 
Because the range of inter-unit variability is larger than the range of uncertainty in the average, an 
uncertainty analysis that is improperly based upon inter-unit variability will lead to an overestimation of 
uncertainty in the emission inventory.   
 

The probabilistic approach presented addresses many of the concerns raised in the NRC and 
earlier studies.  Specifically, the approach presented here properly distinguishes between inter-unit 
variability and uncertainty in the average; can be based upon a variety of assumptions regarding the 
shape of the estimated population distribution for inter-unit variability and need not be limited to 
normality or lognormality assumptions; is based upon analysis of empirical data; and produces 
distributions of uncertainty for the average emission factor that may take on an appropriate shape based 
upon the sample size of empirical data and the skewness of the estimated population distribution for 
inter-unit variability.   

 
NONROAD EMISSION SOURCES AND DATA 

 
The 1990 Clean Air Act Amendments require that the U.S. Environmental Protection Agency 

(EPA) study the contribution of nonroad engines to urban air pollution, and regulate them if warranted. 
"Nonroad," also referred to as "off-road" or "off-highway," includes recreational equipment, farm 
equipment, construction, farm, and industrial (CFI) equipment, lawn and garden (L&G) equipment, 
outdoor power equipment, and marine vessels.10  The CFI and L&G categories are the focus of this 
paper.  

 
Nonroad equipment emissions for CFI and L&G are estimated using EPA’s NONROAD 

model.11,12  Information regarding the specific data used to come up with emission factors associated 
with this model are not readily available.  In particular, the emissions data are from a variety of reports, 
a number of which could not be obtained after several months of searching.  Given the unavailability of 
a complete data set and the incomplete documentation of the current version of the NONROAD model, 
the focus here instead was on obtaining as complete of a data set as possible and analyzing these data to 
develop relative measures of uncertainty.  Relative measures of uncertainty, such as plus or minus 
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percentage ranges on the estimated mean value, provide insight into the level of uncertainty anticipated 
in any emission factor calculated based upon a similar dataset in the NONROAD model 

 
All of the emission factor data that were collected for this work came from technical reports of 

the California Air Resources Board (CARB), contract reports prepared by Southwest Research Institute 
(SwRI), a paper published in J. Air & Waste Manage. Assoc., documentation of the NONROAD model, 
and papers published by the Society of Automotive Engineers (SAE).  These data are described in detail 
by Frey and Bammi (2002a) in the case of L&G data and by Frey and Bammi (2002b) in the case of CFI 
data.13,14  The detailed discussion is not repeated here.  Units in which emission factor data were 
reported were either:  (1) grams per hour (g/hr); (2) grams per brake horsepower-hour (g/hp-hr); and/or 
(3) grams per kilowatt-hour (g/kw-hr). For evaluation purposes, some of these data were converted to 
gram per gallon (g/gallon) units, assuming that the specific gravity of gasoline is 0.75.15 

 
For the L&G source category, data for a total of 51 gasoline-fueled engines were included in the 

database compiled by NCSU.13 The database includes data collected using the SAE J1088, CARB 
J1088, and C6M test procedures, and it includes 2-stroke and 4-stroke engines, and handheld and non-
handheld engines.  However, 2-stroke engines are predominantly used in hand-held applications and 4-
stroke engines are predominantly used in non-handheld applications. Emission factor data were not 
available for all three emission factor units (i.e. g/hr, g/hp-hr, and g/gal) for all cases.  For example, 
some reports had THC and NOx data in g/hp-hr units only, while some had enough additional 
information provided so that emission factors could be calculated in other units.  
 

For CFI engines, data for a total of 56 engines are included in the final database compiled by 
NCSU.14  All but four of these were diesel engines.  These data are based upon the 8-, 13-, 21-, and 23-
mode tests. Emission factor data were not available for all three emission factor units (i.e. g/hr, g/hp-hr, 
and g/gal) for all cases.  For example, most reports had THC and NOx data in g/hp-hr units only, while 
only a few had enough additional information provided so that emission factors could be calculated in 
other units.  

 
RECOMMENDATIONS FOR NONROAD EMISSION SOURCE CATEGORIES 

 
Emission categories are typically defined based upon a priori assumptions, rather than based 

upon data analysis.  In the case of nonroad vehicles, it is possible to define so many emission source 
categories that one is faced with very scarce data from which to estimate emissions for any given 
category.  For example, if a priori assumptions are made that there should be many different categories 
of emission factor for data for different engine size ranges, then it is likely that the already small 
available data will be subdivided too finely, resulting in very small sample sizes for any one engine size 
category.  To avoid this problem, an empirical approach was used for the development of emission 
source subcategories within the broader categories of L&G equipment and CFI equipment.13,14 

 
The L&G and CFI databases compiled from the available literature were analyzed statistically to 

identify whether there are any significant differences in emissions that justify categorization of the data 
with respect to the type of engine application, design, and/or size.  Two-tailed t – tests for the difference 
in means at a 5 percent level of significance were done to determine whether there is a statistically 
significant difference in the mean emission factor estimate for each possible pair of categories.  In 
general, the comparisons were made for six groups of data:  for each of the two pollutants (NOx and 
THC), three different emission factor units were considered (g/hr, g/hp-hr, and g/gallon).   

 
For L&G equipment, the findings from the comparisons of mean emissions are that there are:  

(1) significant differences in emissions between 2-stroke engines and 4-stroke engines; (2) significant 
differences in emissions between handheld and non-handheld engines; (3) no significant differences in 
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emissions between 4-stroke OHV engines and 4-stroke LHV engines; and (4) mixed indications 
regarding differences in emissions with respect to engine size.  In this work, data were divided into two 
size ranges for 4-stroke engines but not for 2-stroke engines. Because there is strong concordance 
between 2-stroke engines and handheld engines, and between 4-stroke engines and non-handheld 
engines, and lack of sufficient data for 2-stroke non-handheld engines and 4-stroke handheld engines, 
classifications with respect to engine design (2 versus 4 strokes) or application (handheld versus non-
handheld) are approximately equivalent.  In this work, classification by engine design is selected.   

 
For CFI engines, the results of the statistical analysis supported grouping emission factors on the 

basis of fuel (diesel vs. gasoline) and engine technology (i.e. 2-stroke vs. 4-stroke) in the case of diesel 
engines.  There was no or little evidence to support grouping these data with respect to engine age, 
engine size, or type of aspiration in the case of diesel engines.   

 
It should be noted that for both L&G and CFI engines, there were insufficient data to evaluate 

factors such as the influence of deterioration rate, maintenance practices, or ambient conditions with 
respect to emissions. 

 
METHOD FOR QUANTIFICATION OF VARIABILITY AND UNCERTAINTY IN EMISSION 
FACTORS 

 
Inter-engine variability in the emission factor data was quantified using parametric probability 

distribution models.  Uncertainty in the mean emission factors, and regarding the fitted distributions, 
was quantified using bootstrap simulation.  
 
Estimating Inter-Engine Variability  
 

The inter-engine variability in emissions can be described as an empirical cumulative distribution 
function (CDF) or by a parametric probability distribution function.  Parametric distributions offer 
advantages of enabling interpolation within the range of the observed data and extrapolation to the tails 
of the distribution beyond the range of observed data. The latter is important because it is unlikely, with 
a finite sample of data, that the true minimum or maximum values are represented by the sample 
minimum and maximum values.  Alternative parametric probability distribution models were fit to the 
data and evaluated for goodness-of-fit based upon visualization of the fitted distribution compared with 
the data and the results of bootstrap simulations.  The sensitivity of the uncertainty estimates to different 
parametric distributions for variability was evaluated.  Statistical goodness-of-fit tests typically lack 
statistical power in situations with small sample sizes; however, statistical goodness-of-fit tests such as 
the Kolmogorov-Smirnov and Anderson Darling tests were used when fitting distributions to data in the 
case of the CFI data.  However, the insight obtained from the statistical goodness-of-fit tests was 
typically the same as that obtained based upon graphically comparing the CDF of the fitted parametric 
distribution to the data, and by visualizing confidence intervals for the CDF estimated using bootstrap 
simulation.  The parametric distributions considered were lognormal, gamma and Weibull.  Maximum 
likelihood estimation was used to estimate the parameters of the fitted distributions.  This overall 
method is similar to that reported by Cullen and Frey.16  
 

The basis for selecting parametric distributions includes a combination of theoretical and 
empirical considerations.  Emissions data must be nonnegative and typically are positively skewed.  
Thus, a symmetric distribution such as the normal distribution will typically be a poor or inappropriate 
choice to represent variability in emissions.  Furthermore, for data sets with substantial variability, a 
normal distribution fitted to the data will predict the possibility of negative emission values, which is 
physically impossible.  In contrast, the lognormal distribution is non-negative and positively skewed 
and, therefore, is often useful for representing physical quantities.17  The lognormal distribution arises as 
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a result of multiplicative or dilution processes and, therefore, is often an appropriate candidate for 
concentration or emission rate data.18   The lognormal, gamma, and Weibull distributions are very 
similar for moderately skewed data sets and therefore can often provide approximately similar fits to 
data.  However, as the skewness of the data increase, the gamma and Weibull distributions are less tail 
heavy than the lognormal.16,19  Both the gamma and lognormal distributions have been used by others to 
describe physical quantities, such as rainfall and pollutant concentrations.20,21  
 
Estimating Uncertainty in Average Emission Factors 
 

Bootstrap simulation was used to estimate uncertainty in the average emission factor.  Bootstrap 
simulation is a numerical technique originally developed for the purpose of estimating confidence 
intervals for statistics.22 This method can provide solutions for confidence intervals in situations where 
exact analytical solutions may be unavailable and in which approximate analytical solutions are 
inadequate.  Example applications of bootstrap simulation are available elsewhere.16,23-26 
  

Bootstrap simulation uses a conceptually straightforward approach. First, an estimated 
population distribution is developed, such as by fitting a parametric distribution to a data set. A random 
sample of the same size as the original data set is simulated, with replacement, from the assumed 
population distribution and is referred to as a “bootstrap sample.”  Any statistic of interest, such as the 
mean, standard deviation, distribution parameters, distribution percentiles, or others, is calculated from 
the bootstrap sample and is referred to as a "bootstrap replication" of the statistic.  The process is then 
repeated many (e.g. 500) times to create a probability distribution of bootstrap replications of a statistic. 
A probability distribution for a statistic is referred to as a “sampling distribution.” Confidence intervals 
for a statistic are inferred from its sampling distribution.  For example, the 2.5th and 97.5th percentiles of 
the sampling distribution enclose a 95% confidence interval.  Confidence intervals were constructed for 
the mean emission factor estimates and for the fitted cumulative distribution functions.  Bootstrap 
simulations can be repeated a number of times to evaluate numerical stability by comparing results 
among the multiple bootstrap simulations. 
 
RESULTS OF QUANTITATIVE ANALYSIS OF VARIABILITY AND UNCERTAINTY IN 
L&G ENGINE EMISSION FACTORS 
 

For each L&G emission factor data set, three candidate probability distribution models for inter-
engine variability were fit to the data.  These candidates include the lognormal, gamma, and Weibull 
distributions.  In some cases, there is clearly one of the three candidates that provides a better fit to the 
data than the other two.  For example, for less than 8 hp 4-stroke engine NOx emissions in g/gallon, the 
Weibull distribution agrees with the data moreso than the other two candidates.  The gamma distribution 
is slightly more tail heavy than the Weibull in this case.  The lognormal distribution is noticeably more 
tail heavy.  The gamma distribution agrees more with the 2-stroke NOx emissions in g/gallon than do the 
other two candidates, especially in the central portion of the distribution.  In some cases, all three 
distributions provide similar fits.  In such cases, there is typically a smaller relative amount of variation 
in the data than for the other three examples.  Thus, as previously noted, there is not much difference 
between the three distributions for data sets with little or moderate skewness.  There is not a single 
parametric distribution that provides a good fit for all cases.  For example, the lognormal distribution 
does not provide the best fit for all of the emission source categories or emission factor units. 
 

Bootstrap simulation was used to characterize uncertainty in the parameters of the preferred 
fitted distributions for each emission factor data set.  As an example, in Figure 1, probabilistic analysis 
results are shown for the 2-stroke engine NOx emission data set in units of g/gallon.  The inter-engine 
variability in emissions is more than an order-of-magnitude, from approximately 1 g/gallon to 
approximately 15 g/gallon, with most of the data having values of less than 10 g/gallon.  A fitted gamma  
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Figure 1. Fitted Gamma Distribution and Bootstrap Simulation Results for 2-Stroke Lawn and Garden 

Engine NOx Emission Data in Units of g/gallon (n=16). 

0 5 10 15 20
NOx Emission Factor (g/gallon)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

Data
Fitted Distribution
50% Confidence Interval
90% Confidence Interval
95% Confidence Interval

 
 
distribution is shown in comparison to the data.  The gamma distribution captures the overall trends of 
the empirical distribution of the data.  There is some scatter of the data above and below the fitted 
distribution.  In order to evaluate whether the deviations of the data with respect to the fitted distribution 
imply a poor fit, confidence intervals for the CDF of the gamma distribution are shown.  More than half 
of the data (10 out of 16 data points) are enclosed by the 50 percent confidence interval, and all of the 
data are enclosed by the 90 percent confidence interval.  This comparison suggests that the gamma 
distribution is an adequate fit to the data set and, therefore, is a reasonable representation of inter-engine 
variability in emissions. 
 

The results for uncertainty in the mean emission factors for the L&G source categories are 
summarized in Table 1.  Of the 24 cases shown in Table 1, all but one have uncertainty ranges of greater 
than approximately plus or minus 20 percent, and fourteen have uncertainty ranges of greater than 
approximately plus or minus 30 percent.  Thus, there is substantial quantified uncertainty in the mean 
emission factors.  For the same type of engine and pollutant, the range of uncertainty in emission factors 
varies depending on the unit used, at least in part because differing numbers of data points are available 
depending on the unit of measure employed.  For example, although the uncertainty in the mean g/gallon 
emission factor for THC for 2-stroke engine is only plus or minus 12 percent, the range of uncertainty is 
minus 30 to plus 41 percent if g/hp-hr units are used.  There is not conclusive indication that one 
particular emission factor unit always has less uncertainty than another. 
 

Knowledge of the range of uncertainty enables rigorous comparison among different groups of 
engines.  For example, it is clear that 2-stroke engines have lower average NOx emissions than the group 
of all 4-stroke engines because the confidence intervals for the mean emissions for each of the three 
emission factor units do not overlap.  Similarly, it is clear that the group of 2-stroke engines have much 
higher average THC emissions than the group of all four-stroke engines.  It is clear that the smaller 4-
stroke engines have significantly higher average THC emissions than the larger 4-stroke engines.  The 
larger 4-stroke engines have significantly higher average NOx emissions on a g/gal basis, but there is 
substantial overlap between the confidence intervals of the mean for g/hp-hr units.  Thus, it appears to 
be the case that g/hp-hr units for NOx vary less for one category to another on a relative basis than do the 
other two emission factor units. 
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Table 1. Results of the Uncertainty Analysis of Mean NOx and THC Emission Rates for 2-Stroke and 4-
Stroke Lawn and Garden Engines for Three Emission Factor Units (g/gal, g/h, and g/hp-h) 
 

Notes:  No. of data = number of data points.  Type of Distrib.:  G = Gamma; L = Lognormal; W = Weibull.  Mean represents the mean of 
all bootstrap simulations.  The 95 % confidence intervals are averages of 15 bootstrap simulations, each based upon 1,000 bootstrap 
samples.  The confidence intervals are reliable to at least two significant figures.   

 
RESULTS OF QUANTITATIVE ANALYSIS OF VARIABILITY AND UNCERTAINTY IN 
L&G ENGINE EMISSION FACTORS 
 

The methodology for characterizing inter-engine variability and uncertainty in the average 
emissions for the CFI source categories was similar to that for the L&G source categories.  For example, 
Figure 2 illustrate probabilistic analysis results for 4-stroke diesel engines for the THC emission factor, 
in units of g/kW-hr. The inter-engine variability in THC emissions ranges from 0.1 g/kW-hr to 5 g/kW-
hr. More than half of the data points (23 out of 37) are enclosed within the 50% confidence interval and 
all of the data are enclosed by the 90% confidence interval. Thus, the Weibull distribution shown in the 
figure appears to adequately fit the dataset. 
 

Results of the analysis of uncertainty in mean emission factors for all of the cases considered are 
given in Table 2.  For example, for the diesel fueled 4-stroke engine NOx emissions in units of g/kW-hr, 
the mean emission rate is 11.3 g/kW-hr.  This corresponds to the approximately 55th percentile of the 
fitted distribution.  The mean occurs at a cumulative probability above the median (50th percentile) 
because the data and the distribution are positively skewed.  The 95 percent confidence interval for the 
mean is 10.2 g/kW-hr to 12.6 g/kW-hr, which is a range of minus 10 percent to plus 11 percent of the 
mean value.  The range is slightly skewed because of the positive skewness in the data set. 
 

Of the 10 cases shown in Table 4, eight have uncertainty ranges of greater than approximately 
plus or minus 20 percent, and one has an uncertainty range of greater than approximately plus or minus  

Engine No. of Type of
Type Pollutant Units Data Distrib. Mean

g/gal 16 G 3.7 2.3 5.5 -37 46
g/hr 18 L 0.93 0.53 1.6 -43 69

g/hp-hr 16 L 0.83 0.45 1.4 -45 75
g/gal 16 L 809 720 907 -11 12
g/hr 18 L 237 182 305 -23 29

g/hp-hr 16 L 224 156 316 -30 41
g/gal 19 W 12 8.9 16.2 -28 31
g/hr 19 L 5.6 2.7 11 -52 100

g/hp-hr 27 L 2.0 1.5 2.8 -27 35
g/gal 19 L 113 83 154 -27 35
g/hr 19 L 34 25 47 -27 36

g/hp-hr 22 L 22 14 32 -33 46
g/gal 13 W 9.1 6.7 12 -27 29
g/hr 13 W 1.8 1.3 2.4 -29 32

g/hp-hr 21 W 1.8 1.3 2.2 -24 26
g/gal 6 L 20 11 36 -47 77
g/hr 6 W 14 7.7 21 -44 53

g/hp-hr 6 G 2.7 1.5 4.3 -45 58
g/gal 13 L 136 101 181 -26 33
g/hr 13 G 31 21 43 -32 38

g/hp-hr 16 G 28 19 38 -32 39
g/gal 6 L 62 40 95 -37 52
g/hr 6 L 40 27 59 -34 47

g/hp-hr 6 G 9.0 5.2 14 -42 53

2-stroke

NOx

THC

95% CI on Mean 
(absolute values)
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Figure 2. Fitted Weibull distribution and bootstrap simulation results for 4-stroke diesel-fueled 
construction, farm, and industrial engine total hydrocarbon emission data. 
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Table 2. Results of the uncertainty analysis of mean NOx and THC emission rates for gasoline and 
diesel fueled construction, farm, and industrial engines. 

Category Pollutant  Units 
# of 
Data 

Mean 95% CI on 
Mean 

Relative 
Uncertainty 

NOx g/kW-hr 4 6.14 4.17 – 8.48 -32% to +38% Gasoline 
THC g/kW-hr 4 14.1 11.0 – 16.5 -22% to +17% 
NOx g/kW-hr 4 22.5 17.7 – 27.1 -21% to +20% Diesel 2-

Stroke THC g/kW-hr 4 2.00 1.05 – 2.97 -48% to +49% 
g/l 15 38.7 32.8 – 46.0 -15% to +19% 

g/hr 20 1670 1220 – 2140 -27% to +28% NOx 
g/kW-hr 37 11.3 10.2 – 12.6 -10% to +11% 

g/l 15 4.34 2.99 – 5.88 -31% to +34% 
g/hr 20 133 90.3 – 176 -32% to +32% 

Diesel 4-
Stroke 

THC 
g/kW-hr 37 1.68 1.25 – 2.12 -26% to +26% 

 
40 percent.  Thus, there is substantial quantified uncertainty in the mean emission factors.  For the same 
type of engine and pollutant, the range of uncertainty in emission factors varies depending the unit of 
measurement used for the emission factors, at least in part because differing numbers of data points are 
available. 
 
CONCLUSIONS 
 

Datasets for L&G and for CFI emission factors were compiled based upon a review of available 
literature. A key difficulty encountered in this work was to obtain a well-documented and complete 
database such as that used in EPA's NONROAD model.  We recommend that such data should be made 
widely available through published technical documents and via databases on the World Wide Web.  
 

Measurements of L&G and CFI engines have been made using a variety of test procedures.  Care 
was taken in this work not to group together data that were obtained from dissimilar test methods.  For 
emission inventory purposes, it is important to have data that are representative of real world emissions.  
Therefore, candidate test methods should be evaluated with respect to their representativeness.  In this 
paper, we have not attempted to quantify uncertainty associated with potential lack of 
representativeness.  Such an analysis would require at least some benchmark measurements of real-
world in-use emissions, which is a recommendation to regulatory agencies for future work.  For 
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example, on-board emissions measurement methods can be used to measure L&G and CFI equipment 
emissions during in-use operation. 
 

Decisions regarding how to categorize the emission factor database were made based upon 
empirical evidence from the database regarding whether mean emissions differed in a statistically 
significant manner for different subgroups and not based only upon a priori assumptions.  It is important 
not to fragment databases by creating too many unnecessary categories, while at the same time it is 
important to divide the data into categories if there is a good empirical basis for doing so.  We 
recommend that an empirically-based approach to developing emission source categories be employed 
to avoid creation of unnecessary categories. 
 

Uncertainty in emissions measurements can, potentially, be a significant source of uncertainty.  
In the judgment of the authors, the methods used to measure engine emissions for NOx and THC are 
relatively well known and of reasonably high quality.  Therefore, it is expected that the measurement 
errors are not large with respect to the quantified uncertainty associated with random sampling error, 
except in cases when this quantified uncertainty is relatively small (e.g., plus or minus 10 percent).  
However, verification of this assumption is a need for future work.  An obstacle to verifying this 
assumption is the lack of reported information regarding the precision and accuracy of the test methods.  
A key recommendation is that such information should be provided in emission test reports and in 
emission factor databases. 
 

This paper has successfully demonstrated, with application to L&G and CFI equipment, a 
procedure for quantifying variability in emissions and uncertainty in mean emissions factors using 
parametric probability distributions and bootstrap simulation.  Inter-engine variability in emissions was 
found to be substantial, such as a factor of 10 or more variation from the smallest to largest values in a 
given data set.  Although it is clear that there are often only a small number of large values in a given 
data set, unless there are known errors in the data, it is not appropriate to discard such values.  Because 
of the relatively small data set sample sizes and the large range of variability, the uncertainty in the 
mean emissions was relatively large, with nearly all cases evaluated having uncertainty ranges for the 
mean in excess of plus or minus 20 percent.  The ranges of uncertainty for the mean emission factors are 
typically positively skewed, which reflects the positive skewness and small sample sizes of the available 
data.  
 

The large range of quantified uncertainty in emission factors suggests that it is important to 
quantify uncertainty.  As the NRC recently noted, it is not possible to quantify all sources of uncertainty.  
Nonetheless, the quantifiable portion of uncertainty should be taken into account when reporting and 
using emission factors.  For example, in comparing different engine technologies, it is important to 
consider the uncertainty in emission factor estimates in order to determine whether one technology has 
higher or lower emissions than the other with statistical significance.  Non-quantifiable contributions to 
uncertainty should be acknowledged qualitatively.  Decision-makers should be aware of both the 
strengths and limitations of emission factors and emission inventories, so that decisions regarding air 
quality management can be made that are robust to uncertainty.  Furthermore, by understanding the key 
sources of uncertainty in an emission inventory, resources can be prioritized to reduce uncertainty, such 
as by collecting better and/or more data.  The probabilistic methodology presented here is part of an 
overall approach to developing policy, program management, and research planning. 
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