EMISSION FACTOR DOCUMENTATION FOR

AP-42 SECTION 2.4

MUNICIPAL SOLID WASTE LANDFILLS

REVISED

Office of Air Quality Planning and Standards Office of Air and Radiation U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711

August 1997

TABLE OF CONTENTS

Page

1.0	INTI	RODUCTION
2.0	IND	USTRY DESCRIPTION
	21	CHARACTERIZATION OF THE INDUSTRY 2-1
	2.1	PROCESS DESCRIPTION 2-2
	2.2	EMISSIONS 2-3
	2.4	CONTROL TECHNOLOGY
3.0	GEN	ERAL DATA REVIEW AND ANALYSIS PROCEDURES
	31	DATA GATHERING 3-1
	0.11	3.1.1 Literature Search
		3.1.2 Contacts
		3.1.3 Electronic Database Searches
		3.1.4 Data for the 1995 AP-42 Section Revision
	3.2	LITERATURE AND DATA REVIEW/ANALYSIS
	3.3	EMISSION DATA QUALITY RATING SYSTEM
	3.4	EMISSION FACTOR DETERMINATION AND RANKING
4.0	DEV	ELOPMENT OF EMISSION ESTIMATION METHODS 4-1
	4.1	DATA REVIEW
	4.2	RESULTS OF DATA ANALYSIS AND RECOMMENDED USAGE FOR
		UNCONTROLLED EMISSIONS
		4.2.1 Estimation Methods for Uncontrolled Emissions
		4.2.2 Derivation of AP-42 Default Concentrations
		4.2.3 Assessment of Default Concentrations for Selected Constituents by Co-Disposal
		History
		4.2.4 Estimation of Uncontrolled Compound-Specific Emissions
	4.3	RESULTS OF DATA ANALYSIS AND RECOMMENDED USAGE FOR
		CONTROLLED EMISSIONS
		4.3.1 Controlled CH4, NMOC, and Speciated Organic Emissions 4-22
		4.3.2 Controlled Emissions of CO ₂ and SO ₂
		4.3.3 Hydrochloric Acid [Hydrogen Chloride (HCl)] Emissions
5.0	AP-4	42 SECTION 2.4
Арр	pendix	A Summary of Test Report Data A-1

Appendix B	Background Data for	Default LPG Constituent Concentration	S	B-1
Appendix C	Background Data for	Secondary Pollutant Emission Factors a	and Control Efficiencies	C-1

LIST OF TABLES

Tab	le	Page
4-1	Reference Data Tests Excluded	4-3
4-2	Ranking of Reference Data Tests	4-5
4-3	Comparison of Modeled and Empirical LFG Generation Data.	4-9
4-4	Results of Non-Parametric Analysis	1- 14
4-5	Uncontrolled LFG Constituents	4-15
4-6	Uncontrolled Concentrations of Benzene, NMOC,	
	and Toluene Based on Waste Disposal History	4-17
4-7	Control Efficiencies for LFG Constituents	1-24
4-8	Emission Factors for Secondary Pollutants Exiting Control Devices	4-26

1.0 INTRODUCTION

The document "Compilation of Air Pollutant Emission Factors" (AP-42) has been published periodically by the U.S. Environmental Protection Agency (EPA) since 1972. New emission source categories and updates to existing emission factors to supplement the AP-42 have been routinely published. These supplements are in response to the emission factor needs of the EPA, State, and local air pollution control programs, and industry.

An emission factor relates the quantity (weight) of pollutants emitted from a unit source. The emission factors presented in AP-42 can be used to:

Estimate area-wide emissions;

- Estimate emissions for a specific facility; and
- Evaluate emissions relative to ambient air quality. ¹

The purpose of this report is to provide background information on municipal solid waste (MSW) landfills, the test reports reviewed and used to calculate emission factors, and the models presented in the AP-42 for the estimating of emissions from MSW landfills. This report was revised during the summer of 1997 in order to incorporate additional test data gathered by EPA since the original report was published.

Including the introduction (Chapter 1), this report contains five chapters. Chapter 2 gives a description of MSW landfills. It includes a characterization of the industry, an overview of the different process types, a discussion of emission sources, and a description of the technology used to control emissions resulting from MSW landfills. Chapter 3 is a review of emissions data collection and analysis procedures. The methodology adapted to develop this AP-42 is presented in Chapter 3, including the discussion of the literature search, emission data reports screening, the quality rating system used for test reports and emission factors, and the data used. Chapter 4 describes the pollutant emission factor development, review the data utilized, discusses the protocol methodology, and presents the results of the analysis. Chapter 5 presents AP-42 Section 2.4, Municipal Solid Waste Landfills.

REFERENCES FOR CHAPTER 1.0

1. U. S. Environmental Protection Agency. Technical Procedures for Developing AP-42 Emission Factors and Preparing AP-42 Sections. Office of Air and Radiation. Office of Air Quality Planning and Standards. Research Triangle Park, North Carolina. March 6, 1992. p. 6.

2.0 INDUSTRY DESCRIPTION

A MSW landfill unit means a discrete area of land or an excavation that receives household waste and that is not a land application unit, surface impoundment, injection well, or waste pile.¹ A MSW landfill unit may also receive other types of wastes, such as commercialized solid waste, nonhazardous sludge, and industrial solid waste.¹ Studies conducted by the EPA and State authorities have shown that MSW landfills release air pollutants that may have adverse effects on both public health and welfare. The EPA has proposed that MSW landfills be listed as a source category that causes or contributes to air pollution that endangers public health or welfare.² Municipal solid waste landfill emissions, often collectively called landfill gas (LFG), consist primarily of methane (CH4) and carbon dioxide (CO₂) (roughly 50 percent of each), with trace amounts of more than 100 non-methane organic compounds (NMOCs) such as ethane, toluene, and benzene.² In the United States, approximately 57 percent of municipal solid waste is landfilled, 16 percent is incinerated, and 27 percent is recycled or composted.³

2.1 CHARACTERIZATION OF THE INDUSTRY

There were an estimated 2,500 active MSW landfills in the United States in 1995.³ These landfills were estimated to receive 189 million megagrams (Mg) (208 million tons) of waste annually for 1995, with 55 to 65 percent household waste, and 35 to 45 percent commercial waste.³ The waste types potentially accepted by MSW landfills include (most landfills accept only a few of these categories):

- MSW;
- Household hazardous waste;
- Municipal sludge;
- Municipal waste combustion ash;
- Infectious waste;
- Waste tires;
- Industrial non-hazardous waste;
- Conditionally exempt small quantity generator (CESQG) hazardous waste;

- Construction and demolition waste;
- Agricultural wastes;
- Oil and gas wastes; and
- Mining wastes.²

Unlike many other emission source categories (i.e., manufacturing facilities), landfills will generate LFG emissions long after closure (possibly up to 100 years after closure).

2.2 PROCESS DESCRIPTION

Landfill design and operation is normally accomplished by one or a combination of three approaches. These approaches are the area method, the trench method, and the ramp method.^{2,4} All of these methods utilize a three-step process that consists of spreading the waste, compacting the waste, and covering the waste with soil. The trench and ramp methods are not commonly used, and are not the preferred methods when liners and leachate collection systems are utilized or required by law.

The area fill method entails placing waste on the ground surface or landfill liner, spreading it in layers, and compacting with heavy equipment. Successive layers are added until a depth of 3 to 4 meters (m) [10 to 12 feet (ft)] is reached. A daily soil cover (i.e., on the top and sides) is spread over the compacted waste. The soil cover can come from other parts of the landfill, or be imported from outside the landfill.²

The trench method entails excavating daily trenches designed to receive a day's worth of waste. Successive parallel trenches are excavated and filled, with the soil from the excavation being used for cover material and wind breaks.^{2,4}

The ramp method is typically employed on sloping land, where waste is spread and compacted in a manner similar to the area method. However, the cover material is generally obtained from the front of the working face (i.e., from the slope) of the filling operation.^{2,4}

The basic landfill cell (i.e., unit, structure) is common to all landfilling methods, and is usually designed to accept a day's waste, after which it is closed, compacted, and covered with soil at the day's end. Figure 2-1 illustrates a sectional view of a sanitary landfill that incorporates a ramp design.² Generally, the height of a cell is less than 2.4 m (8 ft), and the working face of the cell can extend to the

facility boundaries. Waste densities generally range from 653 to 830 kilograms (kg) per cubic meter (m^3) [1,100 to 1,400 pounds (lbs) per cubic yard (yd^3)] after the waste has been compacted, and range from 1,008 to 1,127 kg per m³ (1,700 to 1,900 lbs per yd³) after waste degradation and settling. If site-specific data are not available, a density of 688 kg per m³ (1,160 lbs per yd³) is recommended for compacted waste.⁵ Daily cover material and depth requirements may vary from State to State. Most States, however, require that at least a 15 centimeter (cm) (6 inch) cover be applied at the end of each day, and a 0.6 m (2 ft) final cover of material capable of supporting vegetation be applied for a completed landfill.²

Modern landfill design often incorporates liners constructed of soil (i.e., recompacted clay) or synthetics (i.e., high density polyethylene), or both to provide an impermeable barrier to leachate (i.e., water that has passed through the landfill), and gas migration from the landfill. Soil liners can reduce permeability to 10^{-7} cm (10^{-8} inches) per second, and synthetic liners to 10^{-13} cm (10^{-14} inches) per second.²

2.3 EMISSIONS

CH4 and CO₂ are the primary constituents of LFG, and are produced by microorganisms within the landfill under anaerobic conditions. Carbohydrates from paper, cardboard, etc, which form the major components of refuse, are decomposed initially to sugars, then mainly to acetic acid, and finally to CH4 and CO_2 .²

Figure 2-1. Landfill cell design.

Source: Adapted from Reference 2.

LFG generation, including rate and composition, proceeds through four characteristic phases throughout the lifetime of a landfill. The first phase is aerobic [i.e., with oxygen (O₂) available] and the primary gas produced is CO₂. The second phase is characterized by O₂ depletion, resulting in an anaerobic environment where large amounts of CO₂ and some hydrogen (H₂) are produced. In the anaerobic third phase, CH₄ production begins, with an accompanying reduction in the amount of CO₂ produced. Nitrogen (N₂) content is initially high in LFG in the aerobic first phase, and declines sharply as the landfill proceeds

through the anaerobic second and third phases. In the fourth phase, gas production of CH₄, CO_2 , and N_2 becomes fairly steady.²

The phase duration and time of gas generation varies with landfill conditions (i.e., waste composition, cover materials, design), and may also vary with climatic conditions such as precipitation rates and temperatures. The modelled evolution of typical LFG is presented in Figure 2-2.²

Emissions of NMOCs result from NMOCs originally contained in the landfilled waste and from their creation from biological processes and chemical reactions within the landfill.²

The rates of emissions from landfills are governed by gas production and transport mechanisms. Production mechanisms involve the production of the emission constituent in its vapor phase through vaporization, biological decomposition, or chemical reaction. Production mechanisms are affected by a variety of factors. Vaporization is affected by the concentration of the individual compounds in the landfill, the physical properties of the individual compounds, and the specific landfill conditions (i.e., temperature and confining pressure). Biological decomposition of liquid and solid compounds into other chemical species is dependent upon:

- The nutrient availability for micro-organisms;
- Refuse composition;
- The age of the landfill;
- Moisture content;

Figure 2-2. Evolution of typical LFG.

Source: Reference 2.

- pH;
- Temperature;
- Oxygen availability; and
- Exposure to biological inhibiting industrial waste.²

Quantification of the impacts of any of these factors on LFG production is not possible with the state of current knowledge. Chemical reactions are dictated by the composition of the waste, temperature, and moisture content in the landfills.

Transport mechanisms involve the transportation of a volatile constituent in its vapor phase to the surface of the landfill, through the air boundary layer above the landfill, and into the atmosphere.² There are two major transport mechanisms that enable transport of a volatile constituent in its vapor phase: molecular diffusion and biogas convection.²

As with production mechanisms, transport mechanisms are affected by a variety of factors. Molecular diffusion through a soil cover is influenced by the soil porosity, the existing concentration gradient, the diffusivity of the constituent, and the thickness of the soil. Molecular diffusion through the air boundary layer is affected by the windspeed, concentration gradient, and diffusivity of the constituent. Biogas convection occurs due to pressure changes within the landfill which are influenced by nutrient availability for bacteria, refuse composition, moisture content, landfill age, temperature, pH, oxygen availability, presence of a gas collection system, and biological inhibiting wastes (i.e., industrial wastes). Displacement due to compaction and settlement is dependent upon the degree of compaction, waste, compatibility, and overburden weight (settlement). Displacement can also occur through other mechanisms. Displacement can be influenced by changes in atmospheric pressure. Displacement due to water table fluctuations is affected by the presence of a liner, rate of evaporation, rate of precipitation, and the horizontal versus the vertical permeability.

2.4 CONTROL TECHNOLOGY

The Resource Conservation and Recovery Act (RCRA) Subtitle D regulations promulgated on October 9, 1991, require restrictions on location and operation, design standards, groundwater monitoring, measures of corrective action, closure and post-closure care requirements, and financial

2-7

assurance standards for landfills. Under these requirements, the concentration of CH4 generated by MSW landfills can not exceed 25 percent of the lower explosive limit (LEL) in on-site structures, such as scale houses, or the LEL at the facility property boundary.¹ These regulations took effect on October 9, 1993 and apply to all MSW landfills except those owned and operated by a State or the Federal government.¹

In addition to RCRA Subtitle D regulations, New Source Performance Standards (NSPS) and Emission Guidelines for air emissions from MSW landfills were promulgated in March of 1996. The standards and guidelines are for non-exempt new and existing landfills. The MSW landfills affected by the NSPS/Emission Guidelines are landfills with actual or design capacities equal to or greater than 2.5 million Mg (2.75 million tons). These include new MSW landfills that began accepting waste on or after May 30, 1991, and existing MSW landfills that have accepted waste since November 8, 1987, or that have capacity available for future use.² Regulated under the standards and guidelines are "MSW landfill emissions," which include CO₂, CH₄, and NMOCs, some of which are toxic.

The regulation requires that Best Demonstrated Technology (BDT) be used to reduce MSW landfill emissions from affected new and existing MSW landfills emitting greater than or equal to 50 Mg/yr [55 tons per year (tpy)] of NMOCs. The standards require: (1) a well-designed and well-operated gas collection system, and (2) a control device capable of reducing NMOCs in the collected gas by 98 weight-percent. All affected facilities are required to periodically estimate their NMOC emissions rate in order to determine whether collection and control systems are required.²

LFG collection systems are either active or passive systems. Active collection systems provide a pressure gradient in order to extract LFG by use of mechanical blowers or compressors. Passive systems allow the natural pressure gradient created by the increased pressure within the landfill from LFG generation to mobilize the gas for collection.² The type of gas collection system adopted by a facility is largely dependent upon the landfill characteristics and operating practices. Gas extraction wells may be installed at the landfill perimeter, but are typically installed within the refuse of a landfill. Offsite migration probes are often installed at the landfill perimeter for monitoring the proper operation of the collection system. The depth and spacing of gas extraction wells vary with landfill characteristics and operations (i.e., lined or unlined, waste type, LFG generation, etc.).²

2-8

The effectiveness of a LFG collection system is also dependent upon its design and operation. Active gas collection systems are generally more efficient than passive gas collection systems.² A typical LFG collection system (i.e., typical LFG extraction well and well-field) is illustrated in Figure 2-3.5

LFG control and treatment options include (1) combustion of the LFG, and (2) purification of the LFG. Combustion technique options include those that destroy organics without energy recovery (i.e., flares), and those that recover energy from the destruction of organics (i.e., gas turbines, internal combustion engines, and boiler-to-steam turbine systems).² Purification technique options include the use of adsorption, absorption, and membranes to remove water (H₂O), CO₂, and NMOCs. Purification techniques can process raw LFG to pipeline quality natural gas by using adsorption, absorption, and membranes techniques.

Flares involve an open combustion process. Oxygen is usually provided by induction (enclosed flares) or simple mixing (candle flares) of ambient air. The LFG normally enters into a

flare collection header and transfer line via one or more blowers. At start-up a purge-gas may also be introduced into the header. The gas then proceeds to the knockout drum, which aids in the removal of condensate formed. The gas then proceeds through a flame barrier (i.e., water seal) prior to flares in order to prevent a flashback from the flares.² Flares can be open or enclosed. In an enclosed flare, the quality of combustion is governed by flame temperature, residence time of components in the combustion zone, turbulent mixing within the combustion zone, and the amount of oxygen available for combustion.² Figure 2-4 illustrates an example of an enclosed flare design.² A process diagram and description are submitted for an enclosed flare because of the prevalence of flare use as a LFG control technique at landfill facilities. Thermal incinerators are used to heat organic chemicals in the presence of sufficient oxygen to a temperature high enough to oxidize the chemical to CO₂ and water. Combustion techniques that recover energy include gas turbines and internal combustion engines that generate electricity from the combustion of LFG.² Figure 2-5 is a simplified schematic of a typical gas turbine.² Boilers can also be used to recover energy from LFG in the form of steam.²

REFERENCES FOR CHAPTER 2.0

- 1. Federal Register. 40 CFR Part 258. Vol. 56, No. 196. October 9, 1991. pp. 50978.
- U. S. Environmental Protection Agency. Air Emissions from Municipal Solid Waste Landfills -Background Information for Proposed Standards and Guidelines. Office of Air Quality Planning and Standards. Research Triangle Park, North Carolina. March 1991. EPA-450/3-90-011a. Chapter 3 and 4.
- 3. U. S. Environmental Protection Agency. Characterization of Municipal Solid Waste in the United States: 1996 Update. May 1997. EPA/530-R-97-015.
- 4. State of California Air Resources Board. Suggested Control Measure for Landfill Gas Emissions. Stationary Source Division, Sacramento, California. August 1990. p. 21-22.
- U. S. Environmental Protection Agency. Standards of Performance for New Stationary Sources and Guidelines for Control of Existing Sources, Municipal Solid Waste Landfills. Federal Register, Vol. 56, No. 104. May 30, 1991. p. 24469, 24470.
- Industrial Gas Turbine Systems for Landfill Gas to Energy Projects. Caterpillar Solar Turbines. W. L. Owen.

3.0 GENERAL DATA REVIEW AND ANALYSIS PROCEDURES

In the preparation stage for the MSW Landfill AP-42 section, a data gathering task was undertaken. This task included an extensive literature search, contacts to identify ongoing projects within EPA, and electronic database searches. Included in the data gathering was the collection of MSW landfills source test reports. After the data gathering was completed, a review of the information obtained was undertaken to reduce and synthesize the information. The following sections present the general data gathering and review procedures performed in the preparation of the MSW Landfill AP-42 section.

3.1 DATA GATHERING

3.1.1 Literature Search

The literature search conducted for the preparation of this AP-42 section included on-line library system searches of the Office of Research and Development/National Technical Information Service (ORD/NTIS) Database and the NSPS/CTG/CTC database. Information gathered during the preparation of the Proposed Standards and Guidelines (New Source Performance Standards) for MSW landfills was also accessed. This information was available through the EPA's Emission Standards Division, Research Triangle Park, North Carolina. Other information was accessed through the EPA's Air and Energy Engineering Research Laboratory's work on estimating global landfill emissions.

3.1.2 Contacts

Staff within the Emission Standards Division and Air and Energy Engineering Research Laboratory of the EPA with expertise in MSW landfills and testing were sought for their input and technical support, and to provide potential sources of information not already obtained. Telephone contact was also made with Michael Barboza, author of the AP-40 MSW LFG Emissions chapter.

3.1.3 Electronic Database Searches

The Crosswalk/Air Toxics Emission Factors (XATEF), VOC/PM Chemical Speciation (SPECIATE), and the Aerometric Information Retrieval System (AIRS)/Facility Subsystem Emission Factors (AFSEF) electronic databases were searched.

3.1.4 Data for the 1995 AP-42 Section Revision

Additional source test data were incorporated into the AP-42 section analysis from work conducted by EPA's Air and Energy Engineering Research Laboratory (AEERL) during the summer and fall of 1994.¹ Of the 41 source tests reviewed during the AEERL work, data from 18 of these tests were added to the AP-42 database. These 18 tests were selected using the AP-42 guidelines discussed in the following sections. During subsequent peer review, additional source test data were recieved. The quality of these data were reviewed and the new test data were incorporated as appropriate.

3.2 LITERATURE AND DATA REVIEW/ANALYSIS

Reduction of the literature and data into a smaller, more pertinent subset for development of the MSW Landfill AP-42 section was governed by the following:

- Only primary references of emissions data were used.
- Test report source processes were clearly identified.
- Test reports specified whether emissions were controlled or uncontrolled.
- Reports referenced for controlled emissions specify the control devices.
- Data support (i.e., calculation sheets, sampling and analysis description) was supplied in most cases. One exception is that some industry responses to the NSPS surveys were deemed satisfactory for inclusion.
- Test report units were convertible to selected reporting units.
- Test reports that were positively biased to a particular situation (i.e., test studies involving PCB analysis because of a known historical problem associated with PCB disposal in an MSW landfill) were excluded.

3.3 EMISSION DATA QUALITY RATING SYSTEM

As delineated by the Emission Inventory Branch (EIB), the reduced subset of emission data was ranked for quality. The ranking/rating of the data was used to identify questionable data. Each data set was ranked as follows:

- A When tests were performed by a sound methodology and reported in enough detail for adequate validation. These tests are not necessarily EPA reference method tests, although such reference methods were preferred.
- B When tests were performed by a generally sound methodology, but lack enough detail for adequate validation.
- C When tests were based on an untested or new methodology or are lacking a significant amount of background data.
- D When tests were based on a generally unacceptable method but the method may provide an order-of-magnitude value for the source.²

The selected rankings were based on the following criteria:

- Source operation. The manner in which the source was operated is well documented in the report. The source was operating within typical parameters during the test.
- Sampling procedures. If actual procedures deviated from standard methods, the deviations are well documented. Procedural alterations are often made in testing an uncommon type of source. When this occurs an evaluation is made of how such alternative procedures could influence the test results.
- Sampling and process data. Many variations can occur without warning during testing, sometimes without being noticed. Such variations can induce wide deviation in sampling results. If a large spread between test results cannot be explained by information contained in the test report, the data are suspect and are given a lower rating.
- Analysis and calculations. The test reports contain original raw data sheets. The nomenclature and equations used are compared with those specified by the EPA, to establish equivalency. The depth of review of the calculations is dictated by the reviewers' confidence in the ability and conscientiousness of the tester, which in turn is based on factors such as consistency of results and completeness of other areas of the test report.²

3.4 EMISSION FACTOR DETERMINATION AND RANKING

Once the data were ranked, the selection and determination of data for use in the development of emission factors for uncontrolled and controlled emissions was made. The emission factors developed and presented in the emission factor tables are ranked. The quality ranking ranges from A (best) to E (worst). As delineated by the EIB, the emission factor ratings are applied as follows:

- A <u>Excellent</u>. Developed only from A-rated source test data taken from many randomly chosen facilities in the industry population. The source category is specific enough to minimize variability within the source population.
- B <u>Above average</u>. Developed only from A-rated test data from a reasonable number of facilities. Although no specific bias is evident, it is not clear if the facilities tested represent a random sample of the industry. As with the A rating, the source is specific enough to minimize variability within the source population.
- C <u>Average</u>. Developed only from A- and B-rated test data from a reasonable number of facilities. Although no specific bias is evident, it is not clear if the facilities tested represent a random sample of the industry. As with the A rating, the source category is specific enough to minimize variability within the source population.
- D <u>Below average</u>. The emission factor was developed only from A- and B-rated test data from a small number of facilities, and there may be reason to suspect that these facilities do not represent a random sample of the industry. There also may be evidence of variability within the source population. Any limitations on the use of the emission factor are footnoted in the emission factor table.
- E <u>Poor</u>. The emission factor was developed from C- and or D-rated test data, and there may be reason to suspect that the facilities tested do not represent a random sample of the industry. There also may be evidence of variability within the source category population. Any limitations on the use of these factors are always clearly noted.²

Emission data quality and emission factor development and ranking according to the discussed

methodology in this chapter are presented in more detail in Chapter 4.

REFERENCES FOR CHAPTER 3.0

- 1. Methodologies for Quantifying Pollution Prevention Benefits from Landfill Gas Control and Utilization, Roe, S.M., et al., EPA-600/R-95-089, U. S. Environmental Protection Agency, Research Triangle Park, North Carolina, July 1995.
- Technical Procedures for Developing AP-42 Emission Factors and Preparing AP-42 Sections. Final, Emission Inventory Branch. Office of Air and Radiation. Office of Air Quality Planning and Standards. U. S. Environmental Protection Agency, Research Triangle Park, North Carolina, October, 1993.

4.0 DEVELOPMENT OF EMISSION ESTIMATION METHODS

The following chapter presents the test data reviewed and the methodology used to develop air pollutant emission factors, default values, and mass balance methods for MSW landfills.

4.1 DATA REVIEW

As discussed in Chapter 3.0, data were obtained during literature searches and submittals to EPA and reviewed to identify a reduced subset of emissions data. The reduced data subset was then reviewed and ranked for quality. The references reviewed are listed in the reference section of this chapter.1-110

A large number of the data references reviewed for use in deriving emission factors and default values are from compliance test reports submitted to the South Coast Air Quality Management District (SCAQMD) in California. While there may be an inherent data bias because of the disproportionate number of landfill test data being from California, varying controls, waste composition, operation and maintenance levels, and anaerobic states are expected from these compliance tests. Therefore, elimination of SCAQMD compliance data because of a location bias was not done because it was believed that the merit of these data references outweigh their bias. Generally, the compliance test reports are well documented source tests that follow SCAQMD test sampling method and analysis guidelines and are therefore comparable to data based on EPA methods. Other references reviewed were 114 survey responses requested by the U.S. EPA in the development of the New Source Performance Standard (NSPS) for landfills. Most of these survey responses were eliminated from the database due to their lack of supporting data. Those not eliminated had to provide sufficient detail on test methods to be judged adequate for use in emission factor development.

The remaining data references reviewed are research-based data and compliance data for areas outside of Southern California. Research data references were evaluated separately to determine whether an elimination of a data reference was necessary to eliminate an obvious bias. Bias found in some of the research references includes special study cases where optimum conditions may exist, or where a known, unrepresentative landfill waste composition may exist; these references were removed from the data set.

4-1

References were also excluded if source processes and/or control status were not clearly identified, or if the data were not convertible to selected reporting units. Illegible documents were also excluded. Table 4-1 presents data references excluded for the above reasons.

For the 1997 revision to the AP-42 Section 2.4, data from the review of an additional 58 source test reports were included. As mentioned in Chapter 3, 41 of these tests were gathered by AEERL.⁵³⁻⁹³ An additional 17 test reports were submitted following a peer review of a 1995 draft of the AP-42 section and background report. Data from these reports were included as appropriate.⁹⁴⁻¹¹⁰

Appendix A presents a summary of the test data used to derive MSW LFG emission factors. As mentioned previously, many of the California test reports were conducted by the SCAQMD as part of a program to monitor controlled emissions of vinyl chloride, toluene, benzene, and other selected compounds. Gas samples were generally collected using a series of evacuated 2-liter (0.5 gallon) gas bulbs. Gas samples were analyzed by gas chromatography and total combustion analysis at the District laboratory.

Once the subset of data were developed (by removing inappropriate data sources), the emissions data were ranked for quality. Quality ranking of the data, as discussed in Chapter 3.0, is presented in Table 4-2. All tests that were assigned as A rating were considered to have used sound testing methodologies with enough detail (i.e., background information) to validate the data. Tests that were assigned a B or C rating were qualified based on the reasoning for that rating. The only D-rated test

Table 4-1. REFERENCE DATA TESTS EXCLUDED

Reference Number*	Criteria for Exclusion
2	Questionable duplication of source tests.
3	Only controlled data used; uncontrolled data represent pretreated gas or gas from peripheral wells.
11	Samples considered invalid.
14	No process description or background information.
16	Sampling method unclear, illegible copy.
21	Pretreated gas.
25	Biased study - microbiological.
28	No data support.
29	Measurements for gas condensate only.
30	Biased - known to be a polychlorinated biphenyl (PCB) containing landfill.
31	Maximum concentrations only.
32	Biased - study after PCB remedial clean-up measures.
34	Composite of test data. Unable to validate.
38-39, 40,42,44	Questionnaire responses - reported modeled, duplicate SCAQMD, or poorly supported data.
71-73,75,76, 83-87,89-93,110	Missing process data - fuel feed rates, fuel composition.
74	No support data.
77	Mixed fuel use.
78-79	Duplicate test data.
80-81,88	Poorly supported data.
82	Test conducted during non-normal conditions.

 * Reference numbers 33, 35-37, 45-47, and 52 are not reference tests. Source: References 1 through 82.

data used to derive emission factors were from survey responses that presented information on specific compounds of interest that were not reported in any other references.

During the latest revision to this document and AP-42 Section, several sources of information were reviewed regarding the presence of mercury (Hg) in LFG.94-97,103 The results of this analysis are presented in the following section.

4.2 RESULTS OF DATA ANALYSIS AND RECOMMENDED USAGE FOR UNCONTROLLED EMISSIONS

Once the data subset was ranked, the data were evaluated for derivation of emission factors and default values. The following sections present equations for estimating emissions from landfills, suggested inputs to the equations (i.e., default values), and the derivation of emission factors for MSW landfills.

4.2.1 Estimation Methods for Uncontrolled Emissions

To estimate uncontrolled emissions of the various compounds present in LFG, total LFG emissions must first be estimated. Emissions for the LFG depend on several factors including: (1) the size, configuration, and operating conditions of the landfill; and (2) the characteristics of the refuse such as moisture content, age, and composition. Uncontrolled CH4 emissions may be estimated for individual landfills by using a theoretical first-order kinetic model of methane production. This method of estimating emissions could result in conservative (i.e., high) estimates of emissions, since it provides estimates of LFG generation and not LFG release to the atmosphere. Some capture and subsequent microbial degradation of organic LFG constituents within the landfill's surface layer is likely to occur, however no data were identified to adequately quantify this process. For the purposes of emission estimation, biodegradation of LFG constituents is assumed to be negligible.

Reference Number	Ranking (A-D)
1	Α
3	A - for controlled gas only.
4-6	Α
7	C - no process description.
8-12	А
13	B - calculation sheet illegible.
15	Α
17-20	Α
22-24	Α
26-27	Α
41	А
43	D - survey response; calculations not included.
48-51	А
53	B - lacking some process data and calculations.
54-55	А
56	C - lacking field data and calculations.
57	B - lacking some process data and calculations.
58	C - lacking field data and calculations.
59-64	А
65	C - calculations not included.
66-69	А
70	C - lacking field data and calculations.
94	C - lacking field data.
95	C - lacking field data.
96	А
97	А
98	А
99	B - lacking calculations.
100	D - summary tables only.
101	D - summary tables only.
102	D - summary tables only.

 Table 4-2.
 RANKING OF REFERENCE DATA TESTS

		-
Reference Number	Ranking (A-D)	
103	Α	
104	Α	
105	Α	
106	C - variability in test results	
107	Α	
108	Α	
109	А	

 Table 4-2.
 RANKING OF REFERENCE DATA TESTS

Note: A-rated data were considered to be the best data and are not qualified. B through C-rated data are qualified to identify shortcomings of the data. D-rated data were excluded prior to data ranking. References 34 through 37, 45 through 47, and 52 are background information documents. Source: References 1 through 110.

A computer program that uses the theoretical model mentioned above is known as the Landfill Air Emissions Estimation Model (hereafter referred to as "the landfill model"), and can be accessed from the Office of Air Quality Planning and Standards Technology Transfer Network Website (OAQPS TTN Web) in the Clearinghouse for Inventories and Emission Factors (CHIEF) technical area (URL

http://www.epa.gov/ttn/chief). The landfill model equation is as follows:45

$$Q_{CH} = L_0 R (e^{-kc} - e^{-kt})$$
⁽¹⁾

where:

$$Q_{CH} = Methane generation rate at time t, m3/yr;$$

- $L_0 =$ Methane generation potential, m³ CH₄/Mg refuse;
- R = Average annual refuse acceptance rate during active life, Mg/yr;
- e = Base log, unitless;
- k = Methane generation rate constant, yr⁻¹;

c = Time since landfill closure, yrs (c=0 for active landfills); and

t = Time since the initial refuse placement, yrs.

Emissions can be converted to English units by multiplying Q_{CH4} by 35.31 to obtain ft³/yr, L_0 by 32.0 to obtain ft³ CH4/ton, and R by 1.1 to obtain tpy.

Site-specific landfill information is generally available for variables R, c, and t. When refuse acceptance rate information is scant or unknown, R can be estimated by dividing the refuse in place by the age of the landfill.⁴⁵ If a facility has documentation that a certain segment (cell) of a landfill has received <u>only</u> nondegradable refuse, then the waste from this segment of the landfill can be excluded from the calculation of R. Nondegradable refuse includes, but is not limited to, concrete, brick, stone, glass, plaster, wallboard, piping, plastics, and metal objects. The average annual acceptance rate should only be estimated by this method when there is inadequate information available on the actual annual acceptance rate. [NOTE: Greater precision in emission rates can be achieved with the use of site-specific data and EPA's the landfill model, since the model can compute methane generation based on the age of each landfill segment.]

Values for the variables L₀ and k must be estimated.

The potential CH4 generation capacity of refuse (L_0) is dependent on the organic (primarily cellulose) content of the refuse and can vary widely [6.2 to 270 m³ CH4/Mg refuse (200 to 8670 ft³/ton)].⁴⁵ The value of the CH4 generation constant (k) is dependent on moisture, pH, temperature, and other environmental factors, as well as landfill operating conditions.⁴⁵ Site-specific LFG generation constants can be determined with EPA Reference Method 2E.⁴⁵

The landfill model includes both regulatory default values and recommended AP-42 default values for L_0 and k (see below). The regulatory defaults were developed for regulatory compliance purposes (NSPS and Emission Guideline) and to provide conservative default values on a national basis for the proposed regulation. As a result, the regulatory L_0 and k default values may not be representative of specific landfills, and may not be appropriate for use in an emissions inventory. Therefore, different L_0 and k values may be appropriate in estimating emissions for particular landfills.

The use of site-specific data rather than either set of landfill model defaults is preferred. To do this, the landfill operator would need to select an appropriate value of L_0 from the literature and then use EPA Method 2E to determine k.

Recommended AP-42 defaults include a k value of 0.04/yr for areas recieving more than 25 inches of rainfall per year, and 0.02/yr for dry areas (<25 inches of rainfall per year). These recommendations are based on a comparison of gas-yield forecasts with LFG recovery data.

A default L_0 value of 100 m³/Mg (3,530 ft³/ton) refuse is recommended for emission inventory purposes.⁴⁶ This value is recommended because it provided better agreement of emissions derived from empirical (measured) data to predicted emissions when k was set to 0.04. The results of this comparison are depicted in Table 4-3. It must be emphasized that in order to comply with the NSPS and Emission Guideline, the regulatory defaults for k and L_0 must be applied as specified in the final rule.

When gas generation reaches steady-state conditions, sampled LFG consists of approximately 40 percent CO₂; 55 percent CH₄; up to 5 percent nitrogen (and other atmospheric gases due to infiltration from the LFG collection system or sample dilution); and only trace amounts of NMOC (typically, less than 2 percent). Therefore, the estimate derived for CH₄ generation using the landfill model can also be used to estimate CO₂ generation (i.e., $CO_2 = 40/55 \times CH_4$).⁴⁵ The sum of the CH₄, nitrogen, and CO₂ emissions will yield an estimate of total LFG emissions.

Emissions of NMOCs result from their volatilization in the landfilled waste, and by their creation from biological processes and chemical reactions within the landfill.⁴⁵ Test reports gathered during the literature retrieval process provided concentrations of total NMOCs and speciated NMOCs in LFG.

If site-specific data are to be used to develop emission estimates, the concentrations for total NMOC and speciated NMOCs should be corrected for air infiltration. Air infiltration can occur via two different mechanisms: LFG sample dilution and air intrusion into the landfill (i.e., air pulled in from overdraw of the LFG collection system). LFG constituent concentrations should be corrected for sample dilution as described below if the ratio of N₂ to O₂ is less than or equal to 4.0 (i.e., the ratio in ambient air is 3.76). If the ratio is greater than 4.0, then the LFG constituent concentrations should be corrected for air intrusion (also described below).

For the purposes of developing default LFG constituent concentrations, it was assumed that air intrusion was minimal and the data were corrected for sample dilution only. This

4-8

	Predicted CH ₄	Predicted/		Predicted CH ₄	Predicted/
	$(10^6 \text{ m}^3/\text{yr})$	Empirical CH ₄		$(10^6 \text{ m}^3/\text{yr})$	Empirical CH ₄
Landfill ^b			Landfill ^b		
а	37.6	0.68	u	4.62	0.63
b	39.9	0.77	V	10.5	1.44
с	31.8	0.73	W	4.28	0.72
d	49.8	1.51	Х	5.62	0.96
e	12.1	0.53	У	2.39	0.44
f	17.3	0.82	Z	9.59	1.84
g	23.6	1.28	aa	5.08	1.08
h	8.61	0.49	bb	4.93	1.15
i	14.9	0.93	сс	3.93	0.93
j	14.5	0.94	dd	2.74	1.03
k	14.2	0.96	ee	8.37	3.23
1	7.16	0.50	ff	117	0.83
m	18.0	1.31	gg	14.4	0.58
n	8.57	0.76	hh	23.0	1.44
0	4.56	0.48	ü	29.6	2.19
р	17.4	1.87	jj	19.3	1.47
q	10.2	1.21	kk	22.4	1.71
r	6.95	0.87	11	41.3	4.00
S	2.29	0.29	mm	7.14	0.81
t	3.49	0.45	nn	1.07	0.29
Average			1.10		
	Maximum			3.23	
	Minimum			0.29	
	Standard Dev.			0.73	

Table 4-3.

COMPARISON OF MODELED AND EMPIRICAL LFG GENERATION DATA^a

^a k = 0.04

^b Landfill names are considered to be confidential.

assumption may have biased the default concentrations slightly high in cases where air intrusion to the landfill was significant. The correction for sample dilution was done by assuming that CO₂ and CH₄

were the primary (approximately 100percent) constituents of the LFG and using the following equation:

$$\boldsymbol{C}_{\boldsymbol{F}_{cor}} = \frac{\boldsymbol{C}_{\boldsymbol{P}} (1 \times 10^{6})}{\boldsymbol{C}_{\boldsymbol{C}\boldsymbol{\Omega}_{2}} + \boldsymbol{C}_{\boldsymbol{C}\boldsymbol{S}_{2}}}$$
(2)

where:

$$CP_{cor} = Sample dilution corrected concentration of the pollutant of interest, P, in LFG, ppmv;
$$CP = Concentration of the pollutant of interest, P, in LFG, (i.e., NMOC as hexane) ppmv;
$$C_{CO2} = CO_2 \text{ concentration in LFG, ppmv;} C_{CH4} = CH4 \text{ concentration in LFG, ppmv; and} \\ 1x10^6 = Constant used to maintain pollutant concentration units in ppmv.}$$$$$$

In order to correct the constituent concentrations for air intrusion into the landfill, the concentration of N₂ (i.e., C_{N_2}) needs to be added to the denominator of equation 2. Values for C_{CO_2} and C_{CH_4} were available for most landfills.

The Landfill Air Emissions Estimation model contains a regulatory default value for total NMOC expressed as hexane.

However, there is a wide range for total NMOC values from landfills as will be shown in the following section. The regulatory default value for NMOC concentration was developed for regulatory

compliance purposes and to provide for a conservative default value on a national basis. For emission inventory purposes, it is always preferable that site-specific information be taken into account when determining the total NMOC concentration (i.e., NMOC, CO₂, N₂ and CH₄ sampling and analysis). The derivation of AP-42 default concentrations is described in the following sections.

4.2.2 Derivation of AP-42 Default Concentrations

Test reports containing speciated NMOC data were reviewed to determine uncontrolled emission concentrations for specific NMOCs. Appendix B presents the speciated test data. As shown in Appendix B, the data also reflect the co-disposal history of the landfill to the extent known. Landfills known to have accepted non-residential wastes and those known to have never accepted non-residential wastes are delineated. For most landfills, the disposal history is unknown. The speciated NMOC concentrations were then adjusted for air infiltration, as described above, based on sample-specific values for C_{CO2} and C_{CH4} at each landfill.

Summary statistics are also given in Table 4-5 for each compound. These statistics are derived from the average concentrations for each landfill (i.e., a data point is a site average often based on many test results). For each compound, a normality test was performed. A probability (p value) for the normality test statistic of $\star 0.05$ indicates that the data are likely not to be normally distributed. For many compounds, the data were found not to be normally distributed. For those compounds where data were normally distributed, the mean was selected as the best estimator of central tendency (default concentration).

For those compounds that were not normally distributed, another statistical assessment was performed to determine if the data were log normally distributed. Data on the concentrations of the following nine compounds were shown to approximate log normal distributions: 1,2-dichloropropane, acrylonitrile, benzene (at co-disposal sites), chlorodifluoromethane, chloroethane, chloroform, dichlorofluoromethane, methyl isobutyl ketone, and methyl mercaptan. For these LFG constituents, the geometric mean was selected as the default concentration. For the remaining constituents with non-normally distributed data, the median of the normal distribution was selected as the default concentration.
Several sources of data on the mercury (Hg) content of LFG were reviewed in order to develop a default concentration for use in AP-42.94-97,103 The tests that are documented in these sources were performed using a variety of test methods (i.e., sample collection using gold amalgam traps or potassium permanganate solution). In addition, the level of detail in process description was often lacking (i.e., level of gas processing prior to the point of sample collection). In addition, full test reports were often not available. Due to these limitations, the default concentration presented below should be used with caution.

The available Hg data represent information from 14 landfills, however nine of these were represented by a single average concentration. For all 14 landfills, total Hg concentrations in raw LFG (no data were available for making air infiltration corrections) ranged from 1.27×10^{-5} to 1.49×10^{-3} ppmv. The high end of the range is based on data from one landfill. Most of the data showed total Hg concentrations to be in the 10^{-4} to 10^{-5} ppmv range (no speciation data were available for elemental versus organic forms of Hg). The nature of the available data precluded an assessment of default concentration as described above. The arithmetic mean total Hg concentration of all 14 sites was selected as the default (2.53×10^{-4} ppmv). Although the data set (i.e., most current and with the best documentation). Therefore, it was not considered to be an outlier (in which case, the median would have been selected as the default).

The ratings assigned to defaults in Tables 4-5 and 4-6 were derived using the criteria below. Additional downward adjustments of one letter were made to defaults where the data was highly variable (i.e., standard deviation greater than twice the default concentration) or based on data that may not be representative of the entire population.

Data Rating	# of Data Points
А	>20
В	10 - 19
С	6 - 9
D	3 - 5
Е	<3

4-12

4.2.3 Assessment of Default Concentrations for Selected Constituents by Co-Disposal History

An analysis was performed for selected compounds to determine if the default LFG constituent concentrations differed significantly between landfills based on their co-disposal history with non-residential wastes. LFG constituents were selected for analysis based on their potential to be associated with co-disposal of non-residential wastes and the availability of sufficient data. These compounds are presented in Table 4-4. Default concentrations for the remaining LFG constituents are presented in Table 4-5.

Because the majority of the data available for each of the eight constituents selected for analysis are coded as unknown ("U") for their co-disposal history, unequal sample sizes for statistical tests result. Furthermore, tests for normality showed that the concentration data for all of these compounds were not normally distributed. Therefore, nonparametric statistical tests were applied to the data.

The Kruskal-Wallis K-Sample Test was employed to compare the differences between the multiple mean rank scores (K=3) for the eight constituents shown in Table 4-4 for which there were sufficient data for analysis. Table 4-4 shows that, of the eight constituents tested, only the benzene data suggest significant differences in the mean rank scores (i.e., p•0.05). However, along with the Kruskal-Wallis K-Sample Test, the Tukey Multiple Comparisons Test was performed. This technique can be used to

Compound	Co-disposal?	Sample size (N)	P-Value of K-Sample Test Statistic	Two-Sample Test	P-Value of Two-Sample Test Statistic
Benzene	v	6		V ve N	0.144
Delizene	I N	5	0.042	V vs II	0.016
	I	41	0.042	N vs. U	0.010
	U	41		V vs. UN	0.458
NIMOC	V	E		V N	0.121
NMOC	Y N	5	0.1274	Y VS. N	0.121
	IN L	0	0.1374	I VS. U	0.082
	U	12		IN VS. U	0.606
				Y vs. UN	0.057
Toluene	Y	5		Y vs. N	0.171
	Ν	6	0.1882	Y vs. U	0.081
	U	45		N vs. U	0.736
				Y vs. UN	0.075
Vinyl chloride	Y	6			
	Ν	5	0.167		
	U	42			
Trichloroethylene	Y	6			
memoroeurytene	N	5	0 2685		
	I	46	0.2003		
Tetrachloroethene	v	6			
rendemoroeulene	I N	8	0.436		
	II	45	0.430		
1117:11 4	U	40			
1,1,1-1richloroethane	Y	6	0.0701		
	N	5	0.8781		
	U	31			
Carbon tetrachloride	Y	4			
	Ν	5	0.9185		
	TT	10			

Table 4-4. RESULTS OF NON-PARAMETRIC ANALYSIS

U = Co-disposal history unknown. Y = Known to have co-disposal of non-residential wastes. N = Known to have no co-disposal of non-residential wastes.

	D	efault Concentrati	on	
Compound	Molecular	(ppmv)	Data	Rating
	Weight		Points ^a	
1,1,1-Trichloroethane				
(methyl chloroform) ^b	133.42	0.48	42	В
1,1,2,2-Tetrachloroethane ^b	167.85	1.11	8	С
1,1-Dichloroethane				
(ethylidene dichloride) ^b	98.95	2.35	31	В
1,1-Dichloroethene				
(vinylidene chloride) ^b	96.94	0.20	21	В
1,2-Dichloroethane				
(ethylene dichloride) ^b	98.96	0.41	27	В
1,2-Dichloropropane				
(propylene dichloride) ^b	112.98	0.18	8	D
2-Propanol				
(isopropyl alcohol)	60.11	50.1	2	Е
Acetone	58.08	7.01	19	В
Acrylonitrile ^b	53.06	6.33	4	D
Bromodichloromethane	163.83	3.13	7	С
Butane	58.12	5.03	15	С
Carbon disulfide ^b	76.13	0.58	8	С
Carbon monoxide ^c	28.01	141	2	Е
Carbon tetrachloride ^b	153.84	0.004	22	В
Carbonyl sulfide ^b	60.07	0.49	6	D
Chlorobenzene ^b	112.56	0.25	14	С
Chlorodifluoromethane	86.47	1.30	13	С
Chloroethane				
(ethyl chloride) ^b	64.52	1.25	25	В
Chloroform ^b	119.39	0.03	22	В
Chloromethane	50.49	1.21	21	В
Dichlorobenzene ^d	147	0.21	2	Е
Dichlorodifluoromethane	120.91	15.7	25	А
Dichlorofluoromethane	102.92	2.62	5	D
Dichloromethane				
(methylene chloride) ^b	84.94	14.3	37	А
Dimethyl sulfide				
(methyl sulfide)	62.13	7.82	10	С
Ethane	30.07	889	9	С
Ethanol	46.08	27.2	2	Е
Ethyl mercaptan			—	_
(ethanethiol)	62.13	2.28	3	D
Ethylbenzene ^b	106.16	4.61	39	B
Ethylene dibromide	187.88	0.001	2	F

Table 4-5. DEFAULT CONCENTRATIONS FOR LFG CONSTITUENTS

References 1-110

	Ι	Default Concentratio	n	
Compound	Molecular	(ppmv)	Data	Rating
	Weight		Points ^a	
Fluorotrichloromethane	137.38	0.76	27	В
Hexane ^b	86.18	6.57	19	В
Hydrogen sulfide	34.08	35.5	15	В
Mercury (total) ^{b,e}	200.61	2.53 x 10 ⁻⁴	14	Е
Methyl ethyl ketone ^b	72.11	7.09	22	А
Methyl isobutyl ketone ^b	100.16	1.87	15	В
Methyl mercaptan	48.11	2.49	8	С
Pentane	72.15	3.29	17	С
Perchloroethylene				
(tetrachloroethylene) ^b	165.83	3.73	59	В
Propane	44.09	11.1	21	В
t-1,2-dichloroethene	96.94	2.84	36	В
Trichloroethylene				
(trichloroethene) ^a	131.38	2.82	57	В
Vinyl chloride ^b	62.50	7.34	53	В
<u>Xylenes^b</u>	106.16	12.1	40	<u> </u>

Table 4-5. DEFAULT CONCENTRATIONS FOR LFG CONSTITUENTS

References 1-110

NOTE: This is not an all-inclusive listing of LFG constituents. It is only a listing of constituents for which data were available at multiple sites.

^a A data point is a single site average which may have been composited from many more source test results (see Appendix B).

^b Hazardous Air Pollutants listed in Title III of the 1990 Clean Air Act Amendments.

^c Carbon monoxide is not a typical constituent of LFG, but does exist in instances involving landfill (underground) combustion. Therefore, this default value should be used with caution. Of 18 sites where CO was measured, only 2 showed detectable levels of CO in LFG.¹⁻⁵¹

^d Source tests did not indicate whether this compound was the para- or ortho- isomer. The paraisomer is a Title III-listed HAP.

^e No data were available to speciate total Hg into the elemental versus organic forms

simultaneously compare the means of each pair of groups (i.e., Y and N, N and U).

The results of the Tukey Multiple Comparisons Test suggest that significant differences exist

between the means of "Y" sites and the means of "U" or "N" sites for benzene, toluene, and NMOC.

The Wilcoxon-Mann-Whitney Two Sample Test was then applied to the paired combinations of "Y",

"N", "U", and "UN" (combined data from unknown and no co-disposal sites) for benzene, toluene, and

NMOC. As shown in Table 4-4, the results of this test showed that there were significant differences

(at the <0.10 level of significance) between "Y" and "U" sites, but not between "Y" and

Table 4-6. UNCONTROLLED CONCENTRATIONS OF BENZENE, NMOC,

AND TOLUENE BASED ON WASTE DISPOSAL HISTORY

		Default	No. Of	Emission
	Molecular	Concentration	Data	Factor Rating
Compound	Weight	(ppmv)	Points	
Benzene ^a	78.11			
Co-disposal		11.1	6	D
No or Unknown		1.91	46	В
NMOC (as hexane) ^b	86.18			
Co-disposal		2420	5	D
No or Unknown		595	18	В
Toluene ^a	92.13			
Co-disposal		165	5	D
No or Unknown		39.3	51	А

References 1-110

^a Hazardous Air Pollutants listed in Title III of the 1990 Clean Air Act Amendments.

^b For NSPS/EG compliance purposes, the default concentration for NMOC as specified in the final rule must be used. For purposes not associated with NSPS/EG compliance, the default VOC content at co-disposal sites = 85% by weight (2060 ppmv as hexane); at No or Unknown sites = 39% by weight (235 ppmv as hexane).

"N" sites. For toluene and NMOC, the "Y" versus "UN" pairing produced even higher statistical differences.

Although these results are based on a limited database, they lead to the following conclusions:

- No significant differences have been identified in concentrations in LFG of the following compounds regardless of their co-disposal history: trichloroethylene, vinyl chloride, 1,1,1,-trichloroethane, carbon tetrachloride, and tetrachloroethene (perchloroethylene).
- Benzene, toluene, and NMOC concentrations are significantly different among landfills where (A) it is known that non-residential wastes were accepted in the past, and (B) it is

unknown whether or not non-residential wastes were accepted in the past and where it is known that these wastes were not accepted.

Two unique concentrations can be developed for benzene, toluene, and NMOC corresponding to the co-disposal history of the landfill (i.e., one for co-disposal and one for unknown and no co-disposal sites).

Default concentrations for benzene, toluene, and NMOC based on the landfill's co-disposal history are presented in Table 4-6.

As discussed in Chapter 3.0, the default concentrations were rated based on the test series used for their derivation. It should be emphasized that a large number of LFG test reports were from California, and a number of site-specific variables could not be accounted for (i.e., waste composition, landfill size, climatic conditions, etc.).

Another source of uncertainty is the overall representativeness of the samples in terms of their characterization of LFG that would be emitted from an uncontrolled landfill. Most of the samples were taken from LFG collection equipment in such a way as to characterize the inlet stream to a control device (i.e., flare inlet concentrations for determination of destruction efficiency). This location for sample collection may not be representative of the raw landfill gas, since some condensation and compression has often taken place (e.g., water knock-out drums). LFG constituents are often captured to some degree in the LFG condensate which may be treated on-site, reinjected to the landfill, or sent off-site for treatment. LFG constituents for which this issue if of greatest concern are those with higher molecular weights and water solubilities. For the purposes of emission estimation, it is assumed that these losses to condensate are small and that subsequent revolatilization of these constituents (either on-or off-site) will negate any significant overstatement of emissions.

EPA received additional summary data on Tier 2 NSPS/EG NMOC testing at eleven sites outside of California too late for inclusion in this version of the AP-42 section.¹¹¹ These data are taken directly from the landfill subsurface and appear to have come from either no or unknown co-disposal sites. The average NMOC as hexane concentration of 557 ppmv agrees well with the default value of 595 ppmv presented in Table 4-6.

4.2.4 Estimation of Uncontrolled Compound-Specific Emissions

Compound-specific emissions can be estimated from the default concentrations presented in Tables 4-5 and 4-6 and the estimated total amount of LFG generated. As mentioned previously, the Landfill model can be used to estimate methane emissions, assuming that the LFG production has

4-19

reached steady-state conditions. Data from 12 landfills in seven states were used to derive a default LFG concentration of 55 percent CH4 and 45 percent CO₂ and other constituents (after adjusting for sample dilution). Based on this assumed composition, emissions of specific LFG constituents can be estimated with the use of the following equation:

$$Q_{p} = 1.82 Q_{CH_{1}} * \frac{C_{p}}{(1 \times 10^{6})}$$
 (3)

where:

Qp	=	Emission rate of pollutant P (i.e., NMOC as hexane), m ³ /yr;
QCH ₄	=	CH4 generation rate, m ³ /yr (from the Landfill model);
Ср	=	Concentration of P in landfill gas, ppmv; and
1.82	=	Multiplication factor (assumes that approximately 55 percent of landfill
		gas is CH ₄ and 45 percent is CO ₂ and other constituents).

Emissions can be converted to English units by multiplying both Qp and Q_{CH4} by 35.31 to obtain ft³/yr. Uncontrolled mass emissions per year of total NMOC (as hexane), CO₂, CH₄, and speciated organic and inorganic compounds can be estimated by the following equation:

$$\mathbf{LM}_{\mathbf{p}} = \mathbf{Q}_{\mathbf{p}} * \left[\frac{\mathbf{M}\mathbf{W}_{\mathbf{p}} * \mathbf{P}}{\mathbf{R} \mathbf{T} (\mathbf{1000g/kg})} \right]$$
(4)

where:

$UM_P =$	Uncontrolled (total) mass emissions of the pollutant of interest (i.e., NMOC as
	hexane)(kg/yr);
P =	Ambient pressure, 1 atm assumed;
Q _p =	Pollutant emission rate, m ³ /yr;
R =	Ideal gas constant, 8.205 x 10 ⁻⁵ m ³ -atm/gmol-°K;
T =	Temperature of LFG, °K (i.e., 273 + °C); and
MW _P =	Molecular weight of P (i.e., 86.18 for NMOC as hexane), g/gmol;

For this equation, it is assumed that the operating pressure of the system is approximately 1 atmosphere. If the temperature of the LFG is not known, a temperature of 25° C (77°F) is recommended. Emissions can be converted to English units by multiplying UMp by 1.102×10^{-3} to obtain tpy.

A default weight fraction for volatile organic compounds (VOC) was derived for both No/Unknown co-disposal sites and co-disposal sites. This was done by assuming that a typical landfill generates gas with a composition consistent with the default concentrations in Tables 4-5 and 4-6 (i.e., NMOC at a co-disposal site is present at 2,420 ppmv versus 595 ppmv at No/Unknown sites). In a specific volume of LFG for each type of site, the mass of negligibly reactive compounds was subtracted from the mass of NMOC in order to derive the VOC content. For No/Unknown co-disposal sites, the default VOC content is 39 percent by weight or 235 ppmv as hexane. For co-disposal sites, the default VOC content is 85 percent by weight or 2,060 ppmv as hexane. Extreme caution should be used in the use of these default VOC contents, since they are driven in large part by the default value assumed for ethane (especially the no/unknown co-disposal value). The ethane default concentration (889 ppmv) is based on data from only nine landfills and is the mean value of a distribution with a range of 21.9 to 1,802 ppmv (see Appendix B).

4.3 RESULTS OF DATA ANALYSIS AND RECOMMENDED USAGE FOR CONTROLLED EMISSIONS

Emissions from landfills are typically controlled by installing a gas collection system. The collected gas is combusted through the use of internal combustion engines, flares, turbines, or boilers. Because gas collection systems are not 100 percent efficient in collecting LFG, emissions of uncollected CH4, CO₂, and NMOCs must be estimated. Control (destruction) efficiencies can be used to estimate emissions of non-combusted NMOCs from the control devices. Also, emission factors can be used to estimate emissions of secondary pollutants from control devices.

Background data used to derive default control efficiencies and secondary pollutant emission factors are presented in Appendix C. Similar methods for determination of the best estimate of central tendency to those described above for default concentrations were used for these defaults. In general, when more than three data points were available, the default was selected among the arithmetic mean, the median, and the geometric mean. If fewer than four data points were available, either the arithmetic mean or the median was selected as the default.

A data point can be an average value from a single device or a composite of these averages among multiple similar devices. Data points were composited in this way when devices were known to be identical (i.e., same manufacturer and model number), located at the same site, and fired on the same LFG (i.e., devices were not fired on gas collected from differing sections of the landfill). The only exception to this was for flares. For flares, it was assumed that equipment operation and maintenance was similar among devices and that any differences in LFG composition at a given site were negligible. Given these assumptions, variability in emission rates due to differences in equipment construction at a given site were assumed to be negligible. Another reason for compositing some of the data from devices at the same site was to remove bias that would have resulted due to the preponderance of data received from certain sites.

To estimate controlled emissions of CH4, NMOCs, and other constituents in LFG, the collection efficiency of the system must first be estimated. Several factors in the design and operation are influential in determining the collection efficiency. These factors include (1) gas moving equipment capable of handling the LFG at its maximum generation rate; and (2) collection wells and trenches configured so the gas is effectively collected from all areas of the landfill.⁴⁵ Reported gas collection efficiencies typically range from 60 to 85 percent, with an average of 75 percent most commonly assumed.⁵² Higher efficiencies may be achieved at some sites (i.e., at lined landfills with well-designed

4-22

collection systems). If a site-specific collection efficiency is available (i.e., derived from a surface sampling program), it should be used instead of the 75 percent average.

Controlled emission estimates also need to take into account the control efficiency of the control device. Control efficiencies for the combustion of NMOC, halogenated (i.e., chlorinated), and nonhalogenated organics with differing control devices are presented in Table 4-7. A CH4 control efficiency of 99.9% can be assumed for any well operated and maintained LFG combustion equipment in lieu of a guarantee from an equipment vendor.¹¹² Emissions from the control devices need to be added to the uncollected emissions to estimate total controlled emissions.

4.3.1 Controlled CH4, NMOC, and Speciated Organic Emissions

Controlled CH4, NMOC, and speciated organic emissions can be calculated with equation 5. It is assumed that the LFG collection and control system operates 100 percent of the time. Minor durations of system downtime associated with routine maintenance and repair (i.e., 5 to 7 percent) will not appreciably effect emission estimates.¹¹² Also, control and utilization equipment are often served by back-up flares which limit uncontrolled emissions when the primary combustion device is under repair. The first term in equation 5 accounts for emissions from uncollected LFG, while the second term accounts for emissions of the pollutant that were collected but not combusted in the control or utilization device:

$$\mathbf{CM}_{\mathbf{p}} = \left| \mathbf{OM}_{\mathbf{p}} * \left[1 - \frac{\eta_{\mathbf{col}}}{100} \right] \right| + \left| \mathbf{OM}_{\mathbf{p}} * \frac{\eta_{\mathbf{col}}}{100} * \left[1 - \frac{\eta_{\mathbf{cast}}}{100} \right] \right|$$
(5)

where:

CMp = Controlled mass emissions of the pollutant of interest, P, kg/yr;

UMp = Uncontrolled mass emissions of P, kg/yr (from equation 4 or the Landfill model);

Ocol = Collection efficiency of the LFG collection system, percent; and

Ocnt = Control efficiency of the LFG control or utilization device, percent.

Emissions can be converted to English units by multiplying both CMp and UMp by 1.102×10^{-3} to obtain tpy. The efficiencies of the control devices are presented in Table 4-7. Control efficiencies were calculated using the following equation:

$$\eta_{ext} = \frac{In - Out}{In} + 100$$
(6)

where:

Out = Mass rate of compound exiting the control device.

The inlet mass rates are calculated the same way as the controlled or outlet mass emission rates described below.

The emission rate of each compound from the control device was calculated using the following equation:

$$\mathbf{M} = \frac{\mathbf{C}_{e} * \mathbf{MW} * \mathbf{Q} * 60 * 10^{-6}}{22.39}$$
(7)

where:

M = mass emission rate, kg/hr;

Q = Volumetric flow rate of exhaust, in dscm/min;

 C_c = Concentration of compound C, in ppmv;

60 = Conversion factor, min/hr;

 10^{-6} = Conversion factor (ppmv to volume fraction), ppmv⁻¹;

22.39 = Standard gas volume, dscm/kgmol.

Control Device		Control Effi	ciency ^b (%)	Data	
(SCC)	Constituent ^a	Typical	Range	Points ^c	Rating
Boiler/Steam	-NMOC	98.0	<u>96-99+</u>	3	D
Turbine	Halogenated species				
(50100306)		99.6	87-99+	4	D
(50100406)	Non-Halogenated				
(*******)	species	99.8	67-99+	4	D
Flare ^d	NMOC	99.2	90-99+	14	В
(50100303)	Halogenated species				
(50100403)		99.2	91-99+	8	С
(20100102)	Non-Halogenated				
	species	99.7	38-99+	8	С
Gas Turbine	-NMOC	94.4	<u>90-99</u> +	2	E
(50100305)	Halogenated species				
(50100405)		99.7	98-99+	2	E
(30100403)	Non-Halogenated				
	species	98.2	97-99+	2	E
IC Engine	NMOC	97.2	94-99+	3	E
(50100304)	Halogenated species	93.0	90-99+	2	E
(50100404)	Non-Halogenated	86.1	25-99+	2	E
	species				

Table 4-7. CONTROL EFFICIENCIES FOR LFG CONSTITUENTS

^a Halogenated species are those containing atoms of chlorine, bromine, fluorine, or iodine. See sections 4.3.2 and 4.3.3 for methods to estimate emissions of SO_2 , CO_2 , and HCl from control equipment. A control efficiency of 0 should be assumed for mercury.

 ^b Background data are given in Appendix C.
 ^c Data points are site averages for flares and equipment averages for other equipment that are identical, located at the same site, and fired on the same LFG.

^d Where information was available on the equipment tested, the data were for enclosed flares. The defaults are assumed to be equally representative of open flares.

Emission factors for secondary compounds exiting a control device are presented in Table 4-8. These emission factors were calculated by dividing the emission rate of each compound (kg/hr) by the volumetric flow rate of methane (dscm/min) entering the control device. The volumetric flow rate of methane entering the control device was calculated by the following equation:

$$\boldsymbol{V}_{CEF_{a}} = \boldsymbol{V}_{1for} \left(\frac{\boldsymbol{C}_{CEF_{a}}}{1 \times 10^{6}} \right)$$
(8)

where:

V_{CH4} = Volumetric flow rate of CH4, dscm/min;

Vlfg = Volumetric flow rate of LFG, dscm/min; and

 C_{CH4} = Concentration of CH4 in LFG, ppmv.

Emissions can be converted to English units by multiplying both V_{CH4} and V_{gas} by 35.31 to obtain ft³/min.

4.3.2 Controlled Emissions of CO₂ and SO₂

Controlled emissions of CO₂ and sulfur dioxide (SO₂) are best estimated using site-specific LFG constituent concentrations and mass balance methods. If site-specific data are not available, data in Tables 4-5 through 4-7 can be used with the mass balance methods that follow.

Controlled CO₂ emissions include emissions from the CO₂ component of LFG (equivalent to uncontrolled emissions) and additional CO₂ formed during the combustion of LFG. The bulk of the CO₂ formed during LFG combustion comes from the combustion of the CH₄ fraction. Small quantities will be formed during the combustion of the NMOC fraction, however, this typically amounts to less than 1 percent of total CO₂ emissions by weight. Also, the formation of CO through incomplete combustion of LFG will result in small quantities of CO₂ not being formed. This contribution to the overall mass balance picture is also very small and does not have a significant impact on overall CO₂ emissions.¹¹²

			Emission Rate			
	_	(k	g/hr/dscmm Methano	e)	_ No. of Data	
(SCC)	Pollutant ^a	Minimum	Typical ^b	Maximum	Points ^c	Rating
Flare	NO _x	0.013	0.039	0.077	11	С
(50100410) (50300601)	CO PM	4.1 x 10 ⁻³ 0.013	0.72 <u>0.016</u>	$\begin{array}{c} 1.8\\ 0.030\end{array}$	15 5	C D
IC Engine	NO _x	0.15	<u>0.24</u>	0.81	6	D
(50100421)	CO PM	0.38 0.046	0.45 0.046	0.56 0.046	5 1	C E
Gas Turbine	NO _x	0.027	0.083	0.17	4	D
(50100420)	CO PM	0.092 0.013	<u>0.22</u> 0.021	0.77 0.030	4 2	E E
Boiler/Steam Turbine ^d	NO _x	0.026	0.032	0.045	4	D
(50100423)	CO PM	7.4 x 10 ⁻⁴ 6.8 x 10 ⁻³	5.4 x 10 ⁻³ 7.9 x 10 ⁻³	0.011 8.6 x 10 ⁻³	33	E D

^a NO_x is expressed as nitrogen dioxide. PM is total particulate, however based on data from other gas-fired combustion sources, most of the particulate matter will be less than 2.5 microns in diameter. See sections 4.3.2 and 4.3.3 for methods to estimate emissions of SO₂,

 $^{\text{b}}$ The arithmetic mean is used as the typical emission rate, unless otherwise denoted. Underlined values indicate the median and double underlined values indicate the geometric mean. Background data and summary statistics are given in Appendix C.

^c Data points can be averages of identical devices located at the same site (e.g., boilers) and fired on the same LFG. For flares,

equipment located at the same site are were assumed to be similar and site averages serve as data points. ^d All source tests were conducted on boilers, however, emission factors should also be representative of steam turbines. Emission rates are representative of boilers equipped with low-NO_x burners and flue gas recirculation. No data were available for uncontrolled NO_x emissions.

The following equation which assumes a 100 percent combustion efficiency for CH4 can be

$$CM_{CO_2} = UM_{CO_2} + \left[UM_{CH_4} * \frac{\eta_{eol}}{100} * 2.75 \right]$$
 (9)

used to estimate CO₂ emissions from controlled landfills:

where:

$CM_{CO_2} =$	Controlled mass emissions of CO ₂ , kg/yr;
$UM_{CO_2} =$	Uncontrolled mass emissions of CO2, kg/yr (from equation 4 or the Landfill Air
	Emission Estimation Model);
UM _{CH4} =	Uncontrolled mass emissions of CH4, kg/yr (from equation 4 or the Landfill Air
	Emission Estimation Model);
O _{col} =	Efficiency of the LFG collection system, percent; and
2.75 =	Ratio of the molecular weight of CO ₂ to the molecular weight of CH ₄ .

Emissions can be converted to English units by multiplying CM_{CO2} , UM_{CO2} and UM_{CH4} by 1.102 x 10⁻³ to obtain tpy.

To prepare estimates of SO₂ emissions, data on the concentration of reduced sulfur compounds within the LFG are needed. The best way to prepare this estimate is with site-specific information on the total reduced sulfur content of the LFG. Often these data are expressed in ppmv as sulfur (S). Equations 3 and 4 should be used first to determine the uncontrolled mass emission rate of reduced sulfur compounds as sulfur. Then, the following equation can be used to estimate SO₂ emissions:

$$CM_{SO_2} = UM_S + \frac{\eta_{col}}{100} + 2.00$$
 (10)

where:

CM_{SO2} = Controlled mass emissions of SO₂, kg/yr; UM_S = Uncontrolled mass emissions of reduced sulfur compounds as sulfur, kg/yr (from eqs. 3 and 4); O_{col} = Efficiency of the LFG collection system, percent; and

2.00 = Ratio of the molecular weight of SO₂ to the molecular weight of S.

Emissions can be converted to English units by multiplying both CM_{SO_2} and UM_S by 1.102 x 10⁻³ to obtain tpy.

The next best method to estimate SO₂ concentrations, if site-specific data for total reduced sulfur compounds as sulfur are not available, is to use site-specific data for speciated reduced sulfur compound concentrations. These data can be converted to ppmv as S with equation 11. After the total reduced sulfur as S has been obtained from equation 11, then this value can be used in equation 10 to derive SO₂ emissions.

$$\mathbf{C}_{\mathbf{S}} = \sum_{\mathbf{j=1}}^{n} \mathbf{C}_{\mathbf{p}} * \mathbf{S}_{\mathbf{p}}$$
(11)

where:

- C_S = Concentration of total reduced sulfur compounds, ppmv as S (for use in equation 3); C_P = Concentration of each reduced sulfur compound, ppmv;
- Sp = Number of moles of S produced from the combustion of each reduced sulfur compound (i.e., 1 for sulfides, 2 for disulfides); and

n = Number of reduced sulfur compounds available for summation.

If no site-specific data are available, a value of 46.9 can be assumed for CS. This value was obtained by using the default concentrations presented in Table 4-5 for reduced sulfur compounds and equation 11. It should be noted that the use of this default value will likely underestimate SO₂ emissions since it is not based on all of the reduced sulfur compounds that may be present in LFG.

4.3.3 Hydrochloric Acid [Hydrogen Chloride (HCl)] Emissions

HCl emissions are formed when chlorinated compounds in LFG are combusted in control equipment. The best methods to estimate emissions are mass balance methods that are analogous to those presented above for estimating SO₂ emissions. Hence, the best source of data to estimate HCl emissions is site-specific LFG data on total chloride [expressed in ppmv as the chloride ion (CF)]. If these data are not available, then total chloride can be estimated from data on individual chlorinated species using equation 12 below. However, emission estimates may be underestimated, since not every

chlorinated compound in the LFG will be represented in the laboratory report (i.e., only those that the analytical method specifies).

$$\mathbf{C}_{\mathbf{C}\mathbf{I}} = \sum_{\mathbf{i}=1}^{\mathbf{n}} \mathbf{C}_{\mathbf{p}} * \mathbf{C}_{\mathbf{p}}^{\mathbf{i}}$$
(12)

where:

$C_{Cl} =$	Concentration of total chloride, ppmv as CF (for use in equation 3);
CP =	Concentration of each chlorinated compound, ppmv;
Clp =	Number of moles of Ct produced from the combustion of each chlorinated
	compound (i.e., 3 for 1,1,1-trichloroethane); and
n =	Number of chlorinated compounds available for summation.

After the total chloride concentration (C_{Cl}) has been estimated, equations 3 and 4 should be used to determine the total uncontrolled mass emission rate of chlorinated compounds as chloride ion (UM_{Cl}). This value is then used in equation 13 below to derive HCl emission estimates:

$$CM_{EC1} = UM_{C1} + \frac{\eta_{eol}}{100} + 1.03 + \left(1 - \frac{\eta_{ext}}{100}\right)$$
 (13)

where:

CM _{HCl} =	Controlled mass emissions of HCl, kg/yr;
$UM_{Cl} =$	Uncontrolled mass emissions of chlorinated compounds as chloride, kg/yr (from
	eqs. 3 and 4);
O _{col} =	Efficiency of the LFG collection system, percent;
1.03 =	Ratio of the molecular weight of HCl to the molecular weight of CF; and

Emissions can be converted to English units by multiplying both CM_{HC1} and UM_{C1} by 1.102 x 10⁻³ to obtain tpy.

In estimating HCl emissions, it is assumed that all of the chloride ion from the combustion of chlorinated LFG constituents is converted to HCl. If an estimate of the control efficiency, O_{cnt} , is not available, then the high end of the control efficiency range for the equipment listed in Table 4-7 should be used. This assumption is recommended so that HCl emissions are not under-estimated.

4-30

If site-specific data on total chloride or speciated chlorinated compounds are not available, then a default value of 42.0 ppmv can be used for C_{Cl} . This value was derived from the default LFG constituent concentrations presented in Table 4-5. As mentioned above, use of this default may produce underestimates of HCl emissions since it is based on only those compounds for which analyses have been performed. The constituents listed in Table 4-5 are likely not all of the chlorinated compounds present in LFG.

REFERENCES TO CHAPTER 4.0

- Source Test Report No. 86-0375, Vinyl Chloride, Benzene, Toluene (and other Selected Chlorinated Hydrocarbon Compounds) Present in Landfill Gas Before and After Flaring, South Coast Air Quality Management District, October 29, 1986.
- 2. Hazardous Pollutants in Class II Landfills, J.A. Wood and M.L. Porter, South Coast Air Quality Management District, December 1986.
- 3. Emissions from a Landfill Gas-Fired Turbine/Generator Set, March 6, 1984, Source Test Report C-84-33 conducted at L.A. County Sanitation District by South Coast Air Quality Management District, June 28, 1984.
- Report of Stack Testing at County Sanitation District of Los Angeles Puente Hills landfill, July 31 and August 3, 1984, prepared by Engineering-Science for County Sanitation District of Los Angeles, August 15, 1984.
- 5. Vinyl Chloride (and Other Organic Compounds) Content of Landfill Gas Vented to an Inoperative Flare, October 15, 1984, Source Test Report 84-496 conducted at David Price company by South Coast Air Quality Management District, November 30, 1984.
- 6. Landfill Gas Composition, February 15, 1985, Source Test Report 85-102 Conducted at Bradley Pit Landfill by South Coast Air Quality Management District, May 22, 1985.
- Vinyl Chloride and Other Selected Compounds Present in A Landfill Gas Collection System Prior to and after Flaring, July 31, 1985, Source Test Report 85-369, conducted at L.A. County Sanitation District by South Coast Air Quality Management District, October 9, 1985.
- 8. Emissions from a Landfill Exhausting Through a Flare System, September 11, 1985, Source Test Report 85-461, conducted at Operating Industries by South Coast Air Quality Management District, October 14, 1985.
- Emissions from a Landfill Gas Collection System, November 5, 1985, Source Test Report 85-511, conducted at Sheldon Street Landfill by South Coast Air Quality Management District, December 9, 1985.
- Vinyl Chloride and Other Selected Compounds Present in a Landfill Gas Collection System Prior to and after Flaring, December 6, 1985, Source Test Report 85-597, conducted at L.A. County Sanitation District's Mission Canyon Landfill by South Coast Air Quality Management District, January 16, 1986.
- 11. Emissions from a Landfill Gas-Fired Flare and Sales Gas Constituents from a Landfill Gas Treatment Plant, May 7, 1986, Source Test Report 86-220, conducted at Azusa Land Reclamation by South Coast Air Quality Management District, June 30, 1986.

- 12. Evaluation Test on a Landfill Gas-Fired Flare at the BKK Landfill Facility, West Covina, California, ARB-SS-87-09, California Air Resources Board, July 1986.
- Gaseous Composition from a Landfill Gas Collection System and Flare, July 10, 1986, Source Test Report 86-0342, conducted at Syufy Enterprises by South Coast Air Quality Management District, August 21, 1986.
- 14. Emissions for Flare #3 Inlet Fuel Gas Line, April 1, 1987, Source Test Summary 87-0110, conducted at Pacific Lighting Energy Systems (Penrose Landfill) by South Coast Air Quality Management District, August 5, 1987.
- 15. Analytical Laboratory Report for Source Test, Azusa Land Reclamation, June 30, 1983, South Coast Air Quality Management District.
- 16. Analytical Laboratory Report for Source Test, Mission Canyon Landfill, West L.A. and Mountain Gate, April 11, 1984, South Coast Air Quality Management District.
- 17. Source Test Report C-84-202, Bradley Pit Landfill, May 25, 1984, South Coast Air Quality Management District.
- 18. Source Test Report 84-315, Puente Hills Landfill, February 6, 1985, South Coast Air Quality Management District.
- 19. Source Test Report 84-596, Bradley Pit Landfill, March 11, 1985, South Coast Air Quality Management District.
- 20. Source Test Report 84-373, L.A. By-Products, March 27, 1985, South Coast air Quality Management District.
- 21. Source Test Report 85-36, Azusa Land Reclamation, August 13, 1985, South Coast Air Quality Management District.
- 22. Source Test Report 85-403, Palos Verdes Landfill, September 25, 1985, South Coast Air Quality Management District.
- 23. Source Test Report 86-0234, Pacific Lighting Energy Systems, July 16, 1986, South Coast Air Quality Management District.
- 24. Evaluation Test on a Landfill Gas-Fired Flare at the Los Angeles County Sanitation District's Puente Hills Landfill Facility, CA, July 1986, [ARB/SS-87-06], South Coast Air Quality Management District, Sacramento, CA, July 1986.
- Gas Characterization, Microbial Analysis, and Disposal of Refuse in GRI Landfill Simulators, [EPA/600/2-86/041], Hazardous Waste Engineering Research Laboratory, Cincinnati, OH, April 1986.

- Analysis of Factors Affecting Methane Gas Recovery from Six Landfills, [EPA-600/2-91-055], U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, Research Triangle Park, NC, September 1991.
- 27. Source Test Report, Browning-Ferris Industries, Lyon Development Landfill, August 21, 1990.
- 28. Source Test Report, Browning-Ferris Industries, Azusa Landfill.
- 29. Municipal Landfill Gas Condensate, EPA/600/2-87/090, U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, October 1987.
- 30. Measurement of Fugitive Atmospheric Emissions of Polychlorinated Biphenyls from Hazardous Waste Landfills, Environmental Science and Technology, v19n10 p 986-991. October 1985.
- 31. Barboza M.J., P.E., Air Emissions Study of the Blydenburgh Road Landfill, Paulus Sokolowski and Sartor, Inc., Malcolm Pirnie, Inc, Mahwah, NJ, April 13, 1991.
- 32. Ambient Monitoring for PCB after Remedial Cleanup of Two Landfills in the Bloomington, Indiana Area, EPA/600/4-86/018, U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Research Triangle Park, NC, March 1986.
- 33. Barboza M.J., P.E., An Integrated Study of Air Toxics Emissions from an MSW Landfill, Presented at the National Conference on Environmental Engineering, Paulus, Sokolowski and Sartor, Inc., Reno, NV, July 8-10, 1991.
- 34. Study of Vinyl Chloride Formation at Landfill Sites in California, Battelle Pacific Northwest labs, Prepared for California State Air Resources Board, Sacramento, CA, January 1987.
- In-Situ Methods to Control Emissions from Surface Impoundments and Landfills, EPA/600/2-85/124, U.S. Environmental Protection Agency, Hazardous Waste Engineering Research Laboratory, Cincinnati, OH, October 1985.
- 36. Trace-Chemical Characterization of Pollutants Occurring in the Production of Landfill Gas from the Shoreline Regional Park Sanitary Landfill, Mountain View, California, U.S. Department of Energy and Pacific Gas and Electric Company, April 1, 1981, DOE/CS/20291--T1.
- Leachate Collection and Gas Migration and Emission Problems at Landfills and Surface Impoundments, EPA/600/2-86/017, U.S. Environmental Protection Agency, Office of Research and Development Cincinnati, OH, January 1986.
- 38. D. Antignano, Energy Tactics Inc., to J.R. Farmer, OAQPS:ESD, November 25, 1987, Response to questionnaire.
- 39. G. Rodriguez, Pacific Lighting Energy Systems, to J.R. Farmer, OAQPS:ESD, December 1, 1987, Response to questionnaire.

- 40. R. W. Van Bladeren, BioGas Technology, Inc., to J.R. Farmer, OAQPS:ESD, December 2, 1987, Response to questionnaire.
- 41. M. Nourot, Laidlaw Gas Recovery Systems, to J.R. Farmer, OAQPS:ESD, December 8, 1987, Response to questionnaire.
- 42. K.A. Flanagan, GSF Energy Inc., to S.A. Thorneloe, OAQPS:EPA:CPB, January 27, 1988, Response to questionnaire.
- 43. D.A. Stringham and W.H. Wolfe, Waste Management of North America, Inc., to J.R. Farmer, OAQPS:ESD, January 29, 1988, Response to Section 114 questionnaire.
- 44. D.L. Kolar, Browning-Ferris Industries, to J.R. Farmer, OAQPS:ESD, February 4, 1988, Response to questionnaire.
- 45. Air Emissions from Municipal Solid Waste Landfills Background Information for Proposed Standards and Guidelines, EPA-450/3-90-011a, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, March 1991.
- 46. Pelt, R., Memorandum "Methodology Used to Revise the Model Inputs in the Solid Waste Landfills Input Data Bases (Revised)", to the Municipal Solid Waste Landfills Docket No. A-88-09, April 28, 1993.
- 47. Landfill Gas Production Curves, Myth Versus Reality, S.W. Zison, Pacific Energy.
- 48. Source Test Report 87-0318, Calabasas Landfill, December 16, 1987, South Coast Air Quality Management District.
- 49. Source Test Report 87-0329, Scholl Canyon Landfill, December 4, 1987, South Coast Air Quality Management District.
- 50. Source Test Report 87-0391, Puente Hills Landfill, February 5, 1988, South Coast Air Quality Management District.
- 51. Source Test Report 87-0376, Palos Verdes Landfill, February 9, 1987, South Coast Air Quality Management District.
- 52. Augenstein, D. and J. Pacey, Modeling Landfill Methane Generation, EMCON Associates, San Jose, CA, 1992.
- 53. Landfill Gas Characterization, Correspondence between C. Choate and J. Swanson, Waste Management of North America, Inc, Permit Services Division, Bay Area Quality Management District, Oakland, CA, 1988.
- 54. Emission Testing at BFI's Arbor Hills Landfill, Northville, Michigan, September 22 through 25, 1992, Steiner Environmental, Inc., Bakersfield, CA, December 1992.

- 55. Emission Test Report Performance Evaluation Landfill-Gas Enclosed Flare, Browning Ferris Industries, PEI Associates, Inc., Chicopee, MA, 1990.
- 56. Source Test Report Boiler and Flare Systems, Prepared for Laidlaw Gas Recovery Systems, Coyote Canyon Landfill, Irvine, CA, by Kleinfelder Inc., Diamond Bar, CA, 1991.
- 57. McGill Flare Destruction Efficiency Test Report for Landfill Gas at the Durham Road Landfill, Waste Management of North America, Inc, Bay Area Quality Management District, Oakland, CA, 1988.
- 58. Solid Waste Assessment for Otay Valley/Annex Landfill, Correspondence between R. Yelenosky and B. McEntire., San Diego Air Pollution Control District, San Diego, CA, December 1988.
- 59. Emission Test Report Performance Evaluation Landfill Gas Enclosed Flare, Disposal Specialists Inc., PEI Associates, Inc., Rockingham, VT, September 1990.
- 60. Gas Flare Emissions Source Test for Sunshine Canyon Landfill, Browning Ferris Industries, Sylmar, CA, 1991.
- 61. Methane and Nonmethane Organic Destruction Efficiency Tests of an Enclosed Landfill Gas Flare, Scott Environmental Technology, April 1992.
- 62. Air Pollution Emission Evaluation Report for Ground Flare at Browning Ferris Industries Greentree Landfill, Kersey, Pennsylvania, BCM Engineers, Planners, Scientists and Laboratory Services, Pittsburgh, PA, May 1992.
- 63. Stack Emissions Test Report for Ameron Kapaa Quarry, EnvironMETeo Services Inc., Correspondence between C. How and F. Enos., Waipahu, HI, January 1994.
- 64. Report of Emission Levels and Fuel Economies for Eight Waukesha 12V-AT25GL Units Located at the Johnston, Rhode Island Central Landfill, Waukesha Pearce Industries, Inc. Houston TX, July 19, 1991.
- 65. Gaseous Emission Study Performed for Waste Management of North America, Inc., CID Environmental Complex Gas Recovery Facility, August 8, 1989, Mostardi-Platt Associates, Inc., Chicago, IL, August 1989.
- 66. Gaseous Emission Study Performed for Waste Management of North America, Inc., at the CID Environmental Complex Gas Recovery Facility, July 12-14, 1989, Mostardi-Platt Associates, Inc., Chicago, IL, July 1989.
- 67. Final Report for Emissions Compliance Testing of One Waukesha Engine Generator, Browning-Ferris Gas Services, Inc., Chicopee, MA, February 1994.

- 68. Final Report for Emissions Compliance Testing of Three Waukesha Engine Generators, Browning-Ferris Gas Services, Inc., Richmond, VA, February 1994.
- 69. Emission Factors for Landfill Gas Flares at the Arizona Street Landfill, Correspondence between D. Byrnes, A. dela Cruz, and M.R. Lake, Prepared by South Coast Environmental Company (SCEC) for the San Diego Air Pollution Control District, San Diego, CA, November 1992.
- Emission Tests on the Puente Hills Energy from Landfill Gas (PERG) Facility Unit 400, September 1993, Prepared for County Sanitation Districts of Los Angeles County by Carnot, Tustin, CA, November 1993.
- Gaseous Emission Studies Performed for Waste Management of North America, Inc., at the CID Facility Centaur Turbine Stack 3, Chicago, Illinois, February 16, 1990, Mostardi-Platt Associates, Inc., Bensenville, IL, February 1990.
- 72. Gaseous Emission Study Performed for Waste Management of North America, Inc., at the Tazewell County Landfill, Peoria, Illinois, No. 1 Gas Recovery Engine Stack, February 22-23, 1990, Mostardi-Platt Associates, Inc., Bensenville, IL, February 1990.
- 73. Gaseous Emission Study Performed for Waste Management of North America, Inc., at the Monroe Livingston Power Production Plant, Scottsville, New York, No. 2 Gas Recovery Engine Stack, May 2, 1990, Mostardi-Platt Associates, Inc., Bensenville, IL, May 1990.
- 74. Emissions Test Report for the Tripoli Landfill. Correspondence between J. Tice, Diesel and Gas Engineering Company, and S. Drake, Beaver Dams, NY, April 1989.
- 75. Compliance Test Report Landfill Gas Fired Internal Combustion Engine, Oceanside Landfill Gas Recovery Facility, Energy Tactics, Inc., Oceanside, NY, November 2, 1992.
- 76. Compliance Test Report Landfill Gas Fired Internal Combustion Engine, Dunbarton Road Landfill, Manchester, New Hampshire, ROJAC Environmental Services, Inc., Hartford, CT, June 1990.
- 77. Summary of Source Test Results for Palo Alto Emission Inventory Test, Bay Area Air Quality Management District, San Francisco, CA, June 1993.
- 78. Final Test Report for: Northeast Landfill Power-Joint Venture Engine No. 5 at the Rhode Island Central Landfill, Johnston, Rhode Island, Environmental Science Services, Providence, RI, May 1994.
- 79. Report of Emission Levels and Fuel Economies for Eight Waukesha 12V-AT25GL Units Located at the Johnston, Rhode Island Central Landfill, Waukesha Pearce Industries, Inc., Houston TX, November 30, 1990.

- Landfill Gas Fired Flare Emission Factors for the Bonsall Location, Correspondence between M. Lake, and D. Byrnes. South Coast Air Quality Management District, CA, April 1994.
- Landfill Gas Fired Flare Emission Factors for the Hillsborough Location, Correspondence between M. Lake, and D. Byrnes, South Coast Air Quality Management District, CA, April 1994.
- 82. Emission Factors for Landfill Gas Flares at the Bell Jr. High School Landfill, Correspondence between D. Byrnes, A. dela Cruz, and M.R. Lake, Prepared by South Coast Environmental Company (SCEC) for the San Diego Air Pollution Control District, San Diego, CA, November 1992.
- 83. Source Test Results for Emission Testing of Landfill Energy Partners Engine No. 1 at San Marcos Landfill, Carnot, Tustin, CA, October 1993.
- 84. Emission Factors for the Landfill Gas Fired Internal Combustion Engine at Otay Landfill, Operated by Pacific Energy, Correspondence between D. Byrnes and L. Kramer, San Diego County Air Pollution Control District, San Diego, CA, October 1991.
- 85. Testing of Monitored Pollutants in Exhaust Gases at the San Marcos Landfill, San Diego Air Pollution Control District, San Diego, CA, October 1989.
- 86. Staff Report, Proposed Amended Rule 431.1, Sulfur Content of Gaseous Fuels, South Coast Air Quality Management District, Rule Development Division, El Monte, CA, April 1990.
- 87. Engineering Report: Puente Hills Landfill, Flare #11, Dioxin, Furan, and PCB Test Results, Sierra Environmental Engineering Inc., Costa Mesa, CA, February 1986.
- 88. Compliance Testing for Spadra Landfill Gas-to-Energy Plant, July 25 and 26, 1990, Pape & Steiner Environmental Services. Bakersfield, CA, November 1990.
- 89. AB2588 Source Test Report for Oxnard Landfill, July 23-27, 1990, by Petro Chem Environmental Services, Inc., for Pacific Energy Systems, Commerce, CA, October 1990.
- 90. AB2588 Source Test Report for Oxnard Landfill, October 16, 1990, by Petro Chem Environmental Services, Inc., for Pacific Energy Systems, Commerce, CA, November 1990.
- 91. Engineering Source Test Report for Oxnard Landfill, December 20, 1990, by Petro Chem Environmental Services, Inc., for Pacific Energy Systems, Commerce, CA, January 1991.
- 92. AB2588 Emissions Inventory Report for the Salinas Crazy Horse Canyon Landfill, Pacific Energy, Commerce, CA, October 1990.
- 93. Newby Island Plant 2 Site IC Engine's Emission Test, February 7-8, 1990, Laidlaw Gas Recovery Systems, Newark, CA, February 1990.

- 94. Landfill Methane Recovery Part II: Gas Characterization, Final Report, Gas Research Institute, December 1982.
- 95. Letter from J.D. Thornton, Minnesota Pollution Control Agency, to R. Myers, U.S. EPA, February 1, 1996.
- 96. Letter and attached documents from M. Sauers, GSF Energy, to S. Thorneloe, U.S. EPA, May 29, 1996.
- 97. Landfill Gas Particulate and Metals Concentration and Flow Rate, Mountaingate Landfill Gas Recovery Plant, Horizon Air Measurement Services, prepared for GSF Energy, Inc., May 1992.
- 98. Landfill Gas Engine Exhaust Emissions Test Report in Support of Modification to Existing IC Engine Permit at Bakersfield Landfill Unit #1, Pacific Energy Services, December 4, 1990.
- 99. Addendum to Source Test Report for Superior Engine #1 at Otay Landfill, Pacific Energy Services, April 2, 1991.
- 100. Source Test Report 88-0075 of Emissions from an Internal Combustion Engine Fueled by Landfill Gas, Penrose Landfill, Pacific Energy Lighting Systems, South Coast Air Quality Management District, February 24, 1988.
- Source Test Report 88-0096 of Emissions from an Internal Combustion Engine Fueled by Landfill Gas, Toyon Canyon Landfill, Pacific Energy Lighting Systems, South Coast Air Quality Management, March 8, 1988.
- 102. Letter and attached documents from C. Nesbitt, Los Angeles County Sanitation Districts, to K. Brust, E.H. Pechan and Associates, Inc., December 6, 1996.
- 103. Determination of Landfill Gas Composition and Pollutant Emission Rates at Fresh Kills Landfill, revised Final Report, Radian Corporation, prepared for U.S. EPA, November 10, 1995.
- 104. Advanced Technology Systems, Inc., Report on Determination of Enclosed Landfill Gas Flare Performance, Prepared for Y & S Maintenance, Inc., February 1995.
- 105. Chester Environmental, Report on Ground Flare Emissions Test Results, Prepared for Seneca Landfill, Inc., October 1993.
- 106. Smith Environmental Technologies Corporation, Compliance Emission Determination of the Enclosed Landfill Gas Flare and Leachate Treatment Process Vents, Prepared for Clinton County Solid Waste Authority, April 1996.
- 107. AirRecon®, Division of RECON Environmental Corp., Compliance Stack Test Report for the Landfill Gas FLare Inlet & Outlet at Bethlehem Landfill, Prepared for LFG Specialties Inc., December 3, 1996.

- 108. ROJAC Environmental Services, Inc., Compliance Test Report, Hartford Landfill Flare Emissions Test Program, November 19, 1993.
- 109. Normandeau Associates, Inc., Emissions Testing of a Landfill Gas Flare at Contra Costa Landfill, Antioch, California, March 22, 1994 and April 22, 1994, May 17, 1994.
- 110. AirRecon, Compliance Stack Emission Evaluation, Gloucester County Solid Waste Complex, May 14, 1996.
- 111. Letter and attached documents from R. Oakley, BFI, to S. Thorneloe, U.S. EPA, January 22, 1997.
- 112. Roe, S.M., et. al., Methodologies for Quantifying Pollution Prevention Benefits from Landfill Gas Control and Utilization, Prepared for U.S. EPA, Office of Air and Radiation, Air and Energy Engineering Laboratory, EPA-600/R-95-089, July 1995.

5.0 AP-42 SECTION 2.4

Section 2.4 of AP-42 is presented in the following pages as it would appear in the document.

Appendix A

Summary of Test Report Data

The Lotus (APPXAX~.WK3) or Excel (APPXAX~.XLS) Spreadsheet contains the Appedix A information.

Appendix B

Background Data for Default LPG Constituent Concentrations

The Lotus 1-2-3 (LFBKAPPB.WK3) or the Excel (LFBKAPPB.XLS) Speradsheet contains the Appendix B information.

Appendix C

Background Data for Secondary Pollutant Emission Factors and Control Efficiencies

Appendix C information is contained in the files:

SECOND.XLS (Excel) or SECOND.WK3 (Lotus) - Secondary Pollutant emission factors for flares, boilers, engines and turbines.

LFGVOC~1.XLS (Excel) or LFGVOC~1.WK3 (Lotus) - Derivation of default VOC concentrations for landfill NMOC's.

CONTRO~2.XLS (Excel) or CONTRO~2.WK3 (Lotus) - Development of default control efficiencies for flares, boilers, engines and turbines.

CHLORI~2.XLS (Excel) or CHLORI~2.WK3 (Lotus) - Derivation of Chlorine defaults.

Ref. Landfill No. Name 43 34- Confidential	Location Confidential	Appendix A. Compounds Tested (Uncontrolled) TCA 1,1,2.2.7etra-chloroethane 1,1.2.Trichloroethane 1,1-Dichloroethane 1,2.Dichlorobenzene 1,2.Dichloropenzene 1,2.Dichloropenzene	Summary of Control Device Varies uncontrolled data only.	Test Report Data Compounds Tested (Controlled)	Comments
		1,3-Dichloropropane 1,3-Dichloropropane 2-Chloroethylvinyl ether Acetone Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane			
		Butane Carbon dioxide Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chlorodifluoromethane Chlorothane Chloroform Chlorodifluoromethane Dichlorodifluoromethane			
		Ethanol Ethylbenzene Flurotrichloromethane Hexane Methane Methyl ethyl ketone Methyl isobutyl ketone Methylene chloride Pentane			
		Propane t-1,2-Dichloroethene Tetrachloroethene Toluene Trichloroethene Vinyl chloride Xulono			
48 Calabasas Landfill	California	Ayiene TCA Benzene Carbon dixide Carbon monoxide Carbon tetrachloride Carbon tetrachloride Carbonyl sulfide Chloroform Dimethyl sulfide Hydrogen sulfide Methane Methyl mercaptan PCE TCE TNMHC Toluene Vinyl chloride	Flare	TCA Benzene Carbon dioxide Carbon monoxide Carbon tetrachloride Carbonyl sulfide Chloroform Dimethyl sulfide Hydrogen sulfide Methane Methyl mercaptan PCE TCE TNMHC Toluene Vinyl chloride	Test date 10/9/87. Active landfill; 6 flares, 3 operational day of testing.

Ref. Landfill	Location	Appendix A. Compounds Tested	Summary of Control	Test Report Data Compounds Tested	Comments
49 Scholl Canyon	California	TCA Benzene Carbon dioxide Carbon monoxide Carbon monoxide Carbonyl sulfide Chloroform Dimethyl sulfide Hydrogen sulfide Hydrogen sulfide Methane PCE TCE TNMHC Toluene Vinyl chloride Xylene	Flare	TCA Benzene Carbon dioxide Carbon monoxide Carbon monoxide Carbon tetrachloride Carbonyl sulfide Chloroform Dimethyl sulfide Hydrogen sulfide Methane PCE TCE TNMHC Toluene Vinyl chloride Xylene	Test date 10/15/87. Active landfill, 4 operational flares and 2 standbys. Flare #2 tested.
50 Puente Hills	California	TCA 1,2 Dichloroethane Benzene Carbon disulfide Carbon disulfide Carbon tetrachloride Carbonyl sulfide Chloroform Dimethyl sulfide Hydrogen sulfide Methane Methyl mercaptan PCE t-1,2 Dichloroethene TCE TNMHC Toluene Trichloroethane Vinyl chloride Xvlene	Turbine/flare	TCA 1.2 Dichloroethane Benzene Carbon dioxide Carbon dioxide Carbon tetrachloride Carbonyl sulfide Chloroform Dimethyl sulfide Hydrogen sulfide Methane Methyl mercaptan PCE t-1,2 Dichloroethene TCE TNMHC Toluene Trichloroethane Vinyl chloride Xylene	Test date 12/1/87. Active landfill, tested flare #23 and solar turbine tested.
51 Palos Verdes	California	TCA Benzene Carbon tetrachloride Chloroform Hydrogen sulfide Methane PCE TCE TCE TNMHC Toluene Vinyl chloride Xylene	Flare	TCA Benzene Carbon dioxide Carbon monoxide Carbon tetrachloride Chloroform Hydrogen sulfide Methane PCE TCE TNMHC Toluene Vinyl chloride Xylene	Test date 11/16/87. Inactive landfill, 3 flare stations (flare station 1 not operating day of testing). Flare stations 2 and 3 tested.
53 Altamont	California	1,2-Dichloroethane Benzene Carbon dioxide Carbon tetrachloride Chloroform Ethylene dibromide Methylene dibromide Methyl chloroform Methyl chloroform Methylene chloride Nitrogen Oxygen PCE TCA TCE Vinyl chloride	Flare	Carbon dioxide Carbon monoxide NOx Oxygen THC TNMOC	Test date: 4/7/88. O2 determined by BAAQMD Method ST-14. CO2 determined by BAAQMD Method ST-5. NOx determined by BAAQMD Method ST-13A. THC and THMOC determined by BAAQMD Method ST-7. CO determined by BAAQMD Method ST-C.

Ref. Landfill No. Name 54 Arbor Hills	Location Michigan	Appendix A. Compounds Tested (Uncontrolled) 1,1-Dichloroethane 1,2-Dichloroethane Benzene Carbon disulfide Carbon tetrachloride Carbonyl sulfide Chlorobenzene Chloroform Dimethyl disulfide Dimethyl disulfide Ethylenzene Ethylenzene Ethylenzene Ethylenzene Ethylenzene Hydrogen sulfide Methyl chloroform Methyl ene calbromide PCE TCE Toluene Vinyl chloride Vinylidene chloride Xylenes	Summary of Control Device Flare	Test Report Data Compounds Tested (Controlled) 1,1-Dichloroethane 1,2-Dichloroethane Benzene Carbon monoxide Carbon monoxide Carbon tetrachloride Carbonyl sulfide Chloroform Dimethyl sulfide Dimethyl disulfide Dimethyl disulfide Dimethyl disulfide Ethylbenzene Ethylene dibromide HCL Hydrogen sulfide Methyl chloroform Methyl encaptan Methyl encaptan Methylene chloride NOx PCB PCE Quartz TCE TNMOC Toluene	Comments
55 BFI Facility, Chicop	ee MA	1,1-Dichloroethane 1,2-Dichloroethane Benzyl chloride Carbon tetrachloride Chlorobenzene Chloroform Dichlorobenzene Dimethyl sulfide Ethyl mercaptan Hydrogen sulfide Methyl chloroform Methyl mercaptan PCE TCE Toluene Vinyl chloride Vinyl idloride Vinylidene chloride Xylene	Flare	Vinylidene chloride Xylenes Zinc 1,1-Dichloroethane 1,2-Dichloroethane Benzene Benzyl chloride Carbon monoxide Carbon tetrachloride Chlorobenzene Chlorobenzene Dichloromethane Dichloromethane Dichloromethane Dimethyl sulfide Ethyl mercaptan HCl Hydrogen sulfide Methyl chloroform Methyl nercaptan NOx PCE TCE Toluene Vinyl chloride Vinyl ichloride Vinyl ichloride Vinyl idene chloride Xylene	Test date: 7/15/90. NOx determined by EPA Method 7A.

57 Durham Rd. California 1,2-Dichloroethane Flare 1,2-Dichloroethane Test date: 9/1/88. 57 Durham Rd. California 1,2-Dichloroethane Flare 1,2-Dichloroethane Test date: 9/1/88. 58 Benzene Benzene O2 and CO2 determined H Carbon dioxide Carbon dioxide BAAQMD Method ST-24. Carbon dioxide Carbon dioxide BAAQMD Method ST-24. Carbon dioxide Carbon tetrachloride Chloroform Ethylene dibromide Methyl chloroform BAQMD Method ST-24. Carbon form Chloroform Chloroform Methyl chloroform Methane Methane Methyl chloroform Methyl chloroform Methyl chloroform Methyl chloroform Methyl chloroform Methylen chloride Nitrogen Nygen Oxygen Oxygen PCE TCE TCE TCE TCE TCE TCE Total chloride Nitrogen Nitrogen Sygen Total chloride Story California Benzene Engine Benzene Test date: June S7. <th>Ref. Landfill No. Name 56 Coyote Canyon</th> <th>Location California</th> <th>Appendix A. Compounds Tested (Uncontrolled) 1.1-Dichloroethylene 1.2-Dichloroethylene 1.2-Dichloroethylene Acetonitrile Benzene Benzyl chloride Carbon tetrachloride Chlorobenzene Chloroform Dichlorobenzene Dichlorobenzene Dichlorobenzene Dichlorobenzene Dichlorobenzene Dichlorobenzene Dichlorobenzene Dichlorobenzene Dichlorobenzene Birdhorobenzene Dichlorobenzene</th> <th>Summary of Control Device Boiler/Flare</th> <th>Test Report Data (Controlled) 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane Acetonitrile Arsenic Benzene Benzyl chloride Beryllium Carbon disulfide Carbon disulfide Carbon disulfide Carbon disulfide Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chromium Copper Dichloromethane Dimethyl disulfide Dimethyl disulfide Ethyl mercaptan Formaldehyde HCl Hydrogen sulfide Manganese Mercury Methane Methyl chloroform Napthalene Nickel Nitrogen NOx Oxygen PAH</th> <th>Comments Fest date: 6/6 - 14/91. The results were evaluated sperately for Low flow & High flow rate runs. NOx & CO were analyzed using CARB Method 100 (Chamilum & GFC NDIR).</th>	Ref. Landfill No. Name 56 Coyote Canyon	Location California	Appendix A. Compounds Tested (Uncontrolled) 1.1-Dichloroethylene 1.2-Dichloroethylene 1.2-Dichloroethylene Acetonitrile Benzene Benzyl chloride Carbon tetrachloride Chlorobenzene Chloroform Dichlorobenzene Dichlorobenzene Dichlorobenzene Dichlorobenzene Dichlorobenzene Dichlorobenzene Dichlorobenzene Dichlorobenzene Dichlorobenzene Birdhorobenzene Dichlorobenzene	Summary of Control Device Boiler/Flare	Test Report Data (Controlled) 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane Acetonitrile Arsenic Benzene Benzyl chloride Beryllium Carbon disulfide Carbon disulfide Carbon disulfide Carbon disulfide Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chromium Copper Dichloromethane Dimethyl disulfide Dimethyl disulfide Ethyl mercaptan Formaldehyde HCl Hydrogen sulfide Manganese Mercury Methane Methyl chloroform Napthalene Nickel Nitrogen NOx Oxygen PAH	Comments Fest date: 6/6 - 14/91. The results were evaluated sperately for Low flow & High flow rate runs. NOx & CO were analyzed using CARB Method 100 (Chamilum & GFC NDIR).
Carbon tetrachloride Carbon tetrachloride Chloroform Chloroform Ethylene dibromide Ethylene dibromide Ethylene dichloride Ethylene dichloride Methyl chloroform Methyl chloroform	57 Durham Rd. 58 Otay	California California	1,2-Dichloroethane Benzene Carbon dioxide Carbon tetrachloride Chloroform Ethylene dibromide Methyl chloroform Methylene chloride Nitrogen Oxygen PCE TCE Vinyl chloride Benzene Carbon tetrachloride Chloroform Ethylene dibromide Ethylene dichloride Methyl chloroform	Flare Engine	Particulate matter PCE Selenium Sulfur dioxide TCE TGNMO Toluene Total chromium Vinyl chloride Xylenes 1,2-Dichloroethane Benzene Carbon dioxide Carbon tetrachloride Chloroform Ethylene dibromide Methyl chloroform Methylene chloride Nitrogen Oxygen PCE TCE Vinyl chloride Benzene Carbon tetrachloride Chloroform Ethylene dibromide Ethylene dichloride Chloroform Ethylene dibromide Ethylene dichloride Methyl chloroform	Test date: 9/1/88. O2 and CO2 determined by BAAQMD Method ST-24. Test date: June 87.
Ref. Landfill		Appendix A. Compounds Tested	Summary of Control	Test Report Data Compounds Tested	Comments	
---------------------------	---------------------	---	--------------------	---	--	
No. Name 59 Rockingham	Location Vermont	(Uncontrolled) 1,1,2.2. Tetrachloroethane 1,2-Dichloroethane 1,2-Dichloroethane Acetone Acrylonitrile Benzene Carbon tetrachloride Chlorobenzene Chlorobenzene Ethyl benzene Methyl chloroform Methyl ethyl ketone Methyl ene chloride PCE Sulfur dioxide TCE Toluene Vinyl chloride Xylenes	Device Flare	(Controlled) 1,1,2.2.7Etrachloroethane 1,1-Dichloroethane 1,2-Dichloroethane Acetone Acrylonitrile Benzene Carbon tetrachloride Chlorobenzene Chlorobenzene Ethyl benzene HCI HF Methyl chloroform Methyl ethyl ketone Methyl ethyl ketone Methylene chloride NMO PCE Sulfur dioxide TCE TNMOC Toluene Vinyl chloride Xylenes	Test date: 8/9-10/90. SO2 determined by EPA Method 8.	
60 Sunshine Canyon	California	2-Propanol benzene Butane Dimethyl sulfide Ethanol Ethyl benzene Ethyl mercaptan Hydrogen sulfide Methane Methyl mercaptan PCE Phenol Propyl mercaptan TCE Toluene Xylenes	Flare	2-Propanol Butane Carbon monoxide Dimethyl sulfide Ethal benzene Ethyl benzene Ethyl mercaptan HCl Hydrogen sulfide Methane Methyl mercaptan Nitrogen NOx Oxygen PCE Perticulates Phenol Propyl mercaptan SOx TCE TNMOC Toluene	Test date: 5/21-22/90. NOx & CO were analyzed using CARB Method 100.	
61 Pinelands	New Jersey	Methane	Flare	Carbon dioxide Carbon monoxide Methane Oxygen THC TNMOC	Test date: 2/28/92. CO analyzed by EPA Method 10.	
62 Greentree	Pennsylvania		Flare	TNMHC Methane	Test date: 4/22-23/92. NOx determined by EPA Method.	
63 Kappaa Quarry	Hawaii		Gas Turbine	Carbon monoxide NOx Sulfur dioxide	Test date: 12/28/93. NOx & CO were analyzed by EPA Method 20 & 3.	

Ref. No. 64 J	Landfill Name ohnston	Location Rhode Island	Appendix A. Compounds Tested (Uncontrolled) Argon Carbon dioxide Carbon monoxide Ethane Ethane Helium Heptane Hexane Hydrogen Hydrogen sulfide Isobutane Methane n-Pentane Nitrogen NOx Oxygen Propane Propylene ToMHC	Summary of Control Device IC Engine	Test Report Data Compounds Tested (Controlled) Carbon monoxide NOx TNMHC	Comments Test date: 6/4-66/91. Lean combustion. NOX & CO were analyzed by EPA Method 10 &7E (Chemilume & NDIR).
65 C	ID	Illinois	Truine .	Gas Turbine	Carbon monoxide	Test date: 8/8/89. EPA Method
66 C	ID	Illinois		Gas Turbine	NOx Oxygen Sulfur dioxide	Test date: 7/12-14/89. EPA Method 20.
67 B C	FI Facility, hicopee	МА		IC Engine	Carbon monoxide NOx Oxygen Sulfur dioxide TGNMO	Test date: 121493/ Lean combustion. NOx, SO2 & CO determined by EPA Method 7E, 6C and 10.
68 B R	FI Facility, tichmond	Virginia		IC Engine	Carbon dioxide NOx Oxygen	Test date: 4/22-23/92. NOx determined by EPA Method 7E. O2 and CO2 determined by EPA Method 3A. No engine description.
69 A	rizona St.	California	1,2-Dibromoethane 1,2-Dichloroethane Benzene Carbon tetrachloride Chloroform Methyl chloroform Methylene chloride PCE TCE Vinyl chloride	Flare	1,2-Dibromoethane 1,2-Dichloroethane Benzene Carbon monoxide Chloroform Methyl chloroform Methylene chloride NOx Particulates PCE TCE TCE TNMHC Vinyl chloride	Test date: 6/25-26/90. Methane content unknown. NOx and CO determined by SDAPCD Method 20.

Ref. No. 70 Pt	Landfill Name aente Hills	Location California	Appendix A. Compounds Tested (Uncontrolled) TCA 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Acetonitrile Benzene Benzyl chloride Carbon disulfide Carbon disulfide Carbon tetrachloride Carbon tetrachloride Chlorobenzene Chloroform Dimethyl disulfide Dimethyl disulfide Dimethyl disulfide Dimethyl disulfide Ethyl mercaptan Hydrogen sulfide m-Dichlorobenzene m-Xylenes Methane Methyl mercaptan Methyl mercaptan Methylene chloride o+p Xylene TCE PCE PCE Toluene Vinyl chloride	Summary of Control Device Boilers	Test Report Data Compounds Tested (Controlled) TCA 1,1-Dichloroethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dichloroethane 1,2-Dichloroethane Acetonitrile Benzene Benzyl chloride Carbon disulfide Carbon monoxide Carbon disulfide Carbon disulfide Carbon monoxide Carbon disulfide Carbon disulfide Chlorobenzene Chloroform Dimethyl sulfide Dimethyl sulfide Ethyl mercaptan Hydrogen sulfide m-Dichlorobenzene m-Xylenes Methane Methyl mercaptan Methylene chloride NMOC o+p Dichlorobenzene o+p Xylene Sulfur dioxide TCE PCE Toluene Viryl chloride	Comments Test date: 9/29/93. Nox & CO were analyzed using CAQMD Method 100.
71 C	D	Illinois		Turbine	Carbon Oxygen	Test date: 2/16/90. O2 and CO2 determined by EPA Method 3. TGNMO determined by EPA Method
72 Ta	azewell	Illinois		Engine	TGNMO Carbon monoxide TGNMO NO2 Sulfur dioxide	(modified) 25. Test date: 2/22-23/90. SO2 determined by EPA Method 6C. NOX determined by EPA Method 7E. CO determined by EPA Method10A.

Ref. Landfill No. Name	Location	Appendix A. Compounds Tested (Uncontrolled)	Summary of Control Device	Test Report Data Compounds Tested (Controlled)	Comments
73 Scottsville	New York		Engine	1, 1, 2, 2-Terachlorodethane 1, 1, 2, 2-Tricitloroethane 1, 1-Dichloroethane 1, 2-Dichloroethane 1, 2-Dichloropropene 1, 3-Dichloropropene 2-Chloroothyl vinyl ether Acetone Acrolein Acrylonitrile Benzene Bromodichloromethane Bromoform Bromomethane Carbon monoxide Carbon monoxide Carbon monoxide Carbon tetrachloride Chlorobenzene Chlorodenane Chlorodenane Dichlorodofluoromethane Ethane Ethylbenzene Flourotrichloromethane Methyl ethyl keytone Methyl ethyl keytone Methylene chloride n-Butane n-Pentane NO2 Particulates Propane Sulfur dioxide TCA Tetra chloroethane TGNMO TNMHC Toluene Trans -1,2-dichloroethene Yinyl chloride Xylene	Test date: 5/2/90. Engine No. 2 was used. SO2 determined by EPA Method 6C. NOx determined by EPA Method 7E. CO determined by EPA Method10A O2 and CO2 determined by EPA Method 3A. Particulates determined by EPA Method 5. VOC was determined by EPA Methods 5040/8240.
74 Tripoli	New York		IC Engine	Carbon monoxide NOx Sulfur dioxide TNMHC	Test date: 4/3-5/89.
75 Oceanside	New York	Hydrogen sulfide	IC Engine	Carbon monoxide NOx Oxygen TNMHC TSP	Test date: 10/6-7/92. NOx & CO were analyzed by EPA Method 7E & 10.
76 Dunbarton Rd.	New Hampshi	Carbon dioxide Carbon monoxide Hydrogen Methane Nitrogen Oxvgen	IC Engine	Carbon dioxide Carbon monoxide Hydrogen Methane NOx Oxygen	Test date: 6/5/90. NOx & O2 were analyzed by EPA Method 20. CO analyzed by EPA Method 10.
77 Palo Alto	California	1.1.Dichloroethane Acetone Benzene Bromomethane Carbon dioxide Carbon monoxide Ethyl benzene Methane Methane Methylene chloride Nitrogen Oxygen PCE TCE Toluene Xylenes	Engine	Benzene Carbon dioxide Carbon monoxide Methane NOx Oxygen THC TNMOC VOC	Test date: 6/2/93. Engines No. 1 and 2 used. NOx, O2, CO2, CO, and THC were determined by CARB Method 1-100.

			Appendix A.	Summary of	Test Report Data	
Ref.	Landfill	Logation	Compounds Tested	Control	Compounds Tested	Comments
No. 78	Northeast	Rhode Island	Chrontrolled) Carbon dioxide Ethane Isobutane Isopentane Methane n-Butane Nitrogen	Engine	Carbon dioxide Carbon monoxide Methane NOx Oxygen TNMHC	Test date: 5/25/94. Engine No. 5 used. O2 and CO2 analyzed by EPA Method 3A. NOx analyzed by EPA Method 7E. CO analyzed by EPA Method 10. TNMHC analyzed by EPA
79	Johnston	Rhode Island	Argon Carbon dioxide Carbon monoxide Ethane Ethane Ethene Helium Heptane Hydrogen sulfide Isobutane Methane n-Pentane Nitrogen NOx Oxygen Propane Propylene TNMHC	Engine	Carbon dioxide Carbon monoxide Methane NOx Oxygen THC TNMHC	Test date: 10/9-16/90, and 11/6/90.
80	Bonsal	California		Flare	Carbon monoxide NOx Particulate matter Sulfur dioxide TNMHC TOG	Test date: 4/94. TNMHC determined by EPA Method 25.
81	Hillsborough	California		Flare	Carbon monoxide NOx Particulate matter Sulfur dioxide TNMHC TOG	Test date: 1/94. TNMHC determined by EPA Method 25.
82	Arizona Street	California		Flare	1,2-dibromoethane 1,2-Dichloroethane Benzene Carbon monoxide Chloroform Methylene chloride NOx Particulates Sulfur dioxide TCA Tetrachloroethene TNMHC Trichloride Trichloride	Test date: 3/30-4/7/92. NOx and Carbon monoxide analyzed by SDAPCD Method 20.
83	San Marcos	California		Turbine	Carbon dioxide Carbon monoxide NOx Oxygen	Test date: 3/30/93. Engine No. 1 used. SDAPCD Methods 3A and 20.

Ref. Landfill No. Name 84 Otay	Location California	Appendix A. Compounds Tested (Uncontrolled) Benzene Dichloromethane Hydrogen chloride Sulphur Vinyl chloride	Summary of Control Device Engine	Test Report Data Compounds Tested (Controlled) Benzene Carbon dioxide Carbon monoxide Carbon tetrachloride Chloroform Dichloromethane EDB EDC Formaldehyde HCl Hydrogen chloride Methyl chloroform Methylene chloride NOx Oxygen PCE TCE TCE TMHC	Comments Test date: 10/20-22/87.
85 San Marcos	Cakifornia	Benzene Carbon tetrachloride Chloroform Ethylene dibromide Methylene chloride PCE TCA TCE Vinyl chloroide Vinylidene chloride	Turbine	Vinyl chloride Benzene Carbon monoxide NOx Sulfur dioxide Vinyl chloroide Vinylidene chloride	Test date: 6/26-27/89.
87 Puente Hills	California	РСВ	Flare	Carbon dioxide Carbon monoxide HCl Methane NOx Oxygen PCDD PCDF Sulfur dioxide TNMHC TOC	Test date: Flare No. 11 was used.
88 Spradra	California	1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetronitrile Ammonia Benzene Benzyle chloride Carbon dioxide Carbon dioxide Carbon tetrachloride Chlorobenzene Chlorobenzene Chloroform HCl Methylene chloride NOx Sulfur dioxide TCA Trichloroethene Vinyl chloride Xylenes	Boiler	Water 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Acetronitrile Benzene Benzyle chloride Carbon monoxide Carbon monoxide Carbon monoxide Carbon tetrachloride Chloroform Methylene chloride NOx PAH Sulfur dioxide TCA Trichloroethene Vinyl chloride Xylenes	Test date: 7/25/90.

		Appendix A.	Summarv of	Test Report Data		
Ref. Landfill No Name	Location	Compounds Tested	Control	Compounds Tested (Controlled)	Comments	
No. Name 89 Oxnard	Location California	(Uncontrolled) Arsenic Beryllium Cadmium Chromium Copper Lead Maganese Mercury Nickel Selenium Zinc	IC Engine	(Controlled) Acenaphthylene Anthracene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(b)floranthene Benzo(k)floranthene Benzo(k)floranthene Berzlium Cadmium Cadmium Chromium Chromium Chromium Chrysene Copper Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorenthene Fluorenthene Fluorenthene HCl Hydrogen fluoride Indeno(1,2,3-cd)pyrene Lead Manganese Mercury Naphthalene Nickel Phenanthrene Pyrene Selenium	Test date: 7/23-27/90. PAH determined by CARB Method 429. Formaldehyde determined by CARB Method 430. Metals determined by CARB Method 436. Arsenic determined by CARB Method 423. Cromium determined by CARB Method 425. HCl determined by CARB Method 421. HF determined by EPA Method 13B.	
90 Oxnard	California		Engine	 TCA 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dixane 2-Butanone, MEK 2-Butanone, MEK 2-Hexanone 2-Methyl phenol 3,4-Methyl phenol 3,4-Methyl phenol 3,4-Methyl phenol 3,4-Methyl 2-Pentanone, MIBK Acetaldehyde Acetone Acrolein Acrylonitrile Benzene Bromodichloromethane Butane Carbon dioxide Carbon dioxide Carbontetrachloride Chlorobenzene Chlorobenzene Chlorobenzene Dichloromethane Dichloromethane Ethane Ethane Ethane Formaldehyde Hexane Hydrogen sulfide Hydrogen sulfide Hydrogen sulfide Phenol Propane 	Test date: 10/16/90. Benzene determined by CARB Method 422. Formaldehyde, Acrolin, and Acetaldehyde determined by CARB Method 430. Phenol determined by BAAQMD ST-16.	

Appendix A. Summary of Test Report Data mpounds Tested (Uncontrolled) Device (Controlled)

Engine

Ref.	Landfill	
No.	Name	Location
91	Oxnard	California

Compounds Tested Compounds Tested Location (Uncontrolled) alifornia Carbon dioxide Ethane Hexane Hydrogen sulfide iso-Butane iso-Pentane Methane n-Pentane Nitrogen Oxygen Propane Sulfur Compounds Tested (Controlled) Styrene TCE Tetrachloroethene Trichlorofluoromethane Trichlorofluoroethane Vinyl chloride

Xylenes

Comments

Test date: 12/20/90. Hydrocarbons determined by EPA Method 18. O2, N2, and CO2 determined by EPA Method 3.

92 Salinas California	Engine	1,1,2-Trochloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dibromoethane 1,2-Dichloroethane 1,2-Dichloropropane	Test date: 7/31-8/2/90. PAH determined by CARB Method 429. Formaldehyde, Acrolein, and Acetaldehyde determined by CARB
		1,4-Dicklorobenzene 1,4-Dicxane 2-Butanone, MEK 2-Butanone, MEK 2-Hexanone Acenaphthylene Accone Acrylonitrile Anthracene Arsenic Benzene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)floranthene Benzo(g),hjperylene Benzo(g),hjperylene Benzo(k)floranthene Berzo(k)floranthene Carbon disulfide Carbontetrachloride Chloroform Chloroform Chloroform Chloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Fluoranthene Fluorene HCl Hydrogen sulfide Indeno(1,2,3-	Method 430. Metals determined by CARB Method 436. Cadnium determined by CARB Method 424. Cromium determined by CARB Method 425. HCI determined by EPA Method 5. PCB determined by EPA Method 608/8080.
93 Newby Island California		Carbon dioxide Carbon monoxide NOx Oxygen THC TNMHC	Test date: 2/7-8/90. Active landfill. CARB Method 1-100 was used.

Ref. No. 94	Landfill Name Various	Location Various	Appendix A. Compounds Tested (Uncontrolled) 1,1-dichloroethylene 1,2-dichloroethylene Benzene Chlorobenzene Dichloromethane Hexane Iso-octane Iso-propylbenzene m,p-xylene Methylbenzene Napthalene Napthalene Nonane o-xylene Pentane TCA Tetrachloroethene	Summary of Control Device Various	Test Report Data Compounds Tested (Controlled) 1,1-dichloroethane 1,1-dichloroethylene Benzene Carbon dioxide Chlorobenzene Dichloromethane Hexane Iso-octane Iso-octane Iso-proylbenzene Mercury Methane Methylbenzene Napthalene Nitrogen Nonane Osygen o-sylene Pentane TCA Tetrachloroethene	Comments
95	Minnesota Counties; "Greater Minnesota" and "Twin Cities Metropolitan Area"	Minnesota		Flare	Trichloroethene 1,1-dichloroethane 1,2-Dichloroethane 1,2-Dichloroethylene 1,2-dichloroethylene Carbon disulfide Carbon disulfide Carbon tetrachloride Carbonyl sulfide Chlorobenzene Chloroform Dimethyl disulfide Dimethyl disulfide Ethyl mercaptan HAP HCl Hydrogen sulfide Metryl mercaptan Methylene chloride Nitrogen Nitrogen Nitrogen Sulfur dioxide TCA Trichloroethylene Virul gheride	Test date: 7/90 to 5/91, and 1-11/92.
96	Fresh Kills	New York	Mercury		Vinyi chloride	Test date: 11/96. EPA Method 101A and SW-846 Method 7471
97	Mountaingate	California	PM Antimony Arsenic Barvium Beryllium Cadmium Chromium Copper Lead Manganese Mercury Nickel Selenium Silver Thallium Zinc			were used. Test date: 5/18-21/92.

			Appendix A.	Summary of	Test Report Data	
Ref.	Landfill		Compounds Tested	Control	Compounds Tested	Comments
No.	Name	Location	(Uncontrolled)	Device	(Controlled)	
98	Bakersfield	California	NMHC	IC Engine	NMHC	Test date 12/4/90.
			Butane		Butane	
			Ethane		CO	
			Dentene		Mothomo	
			Propago		NOr	
			Topane		Pontano	
					PM	
					Propane	
99	Otay Landfill	California	NMHC	IC Engine	NMHC	Test date 4/2/91.
					CO	
					NOx	
					PM	
100	Penrose	California	NMHC	IC Engine	NMHC	Test date 2/24/88.
			Methane		Methane	
			Perchloroethylene		Perchloroethylene	
101		Q - 1:6	Trichloroethylene	IC En sin s	Trichloroethylene	Mart 1-1- 2/0/00
101	Toyon Canyon	Camornia	Rongono	IC Engine	Renzono	Test date 5/6/66.
			Methane		Methane	
			Perchloroethylene		Perchloroethylene	
			Toluene		Toluene	
			Trichloroethylene		Trichloroethylene	
			Xylene		Xylene	
104	Y & S Maintenance	Pennsylvania	CO	Flare	CO	Test date 12/14/94.
			CO2		CO2	NOx was determined by
			Methane		Methane	EPA Method 7D.
			NMHC		NMHC	
			NOx		NOx	
105	Seneca Landfill	Pennsvlvania	СО	Flare	CO	Test date 9/8/93.
			CO2		CO2	NOx and NMHC were
			Methane		Methane	determined by EPA
			NMHC		NMHC	Methods 7D and 25C,
			Oxygen		NOx	repectively.
106	Wayne Township	Pennsylvania	CO	Flare	CO	Test date 4/2/96.
			CO2		02	NOx and NMVOC were
			Methane		Methane	determined by EPA
			Owner		NOV	methods 7D and 10-14,
			Oxygen		Ovugon	repectively.
107	Bethlehem Landfill	Pennsylvania	NMHC	Flare	CO2	Test date 10/9/96
101	Detineneni Banann	1 onnoy i vania	10000	Thure	NMHC	Oxygen and CO2, NOx, and
					NOx	NMHC, were determined by
					Oxygen	EPA Methods 3A, 7E, and
						18, respectively.
108	Hartford Landfill	Connecticut	NMOC	Flare	CO	Test date 11/4/93.
					CO2	Oxygen, NOx, CO, SO2,
					Methane	and THCwere determined
					NMOC	by EPA Methods 3A, 7E,
					NOx	10, 6C, and 25A, respectively.
					Cxygen	CO2, NMOC and methane
					THC	Method 18
109	Contra Costa Landfill	California	1.1.1.Trichloroethane	Gas Flare	1 1 1-Trichloroethane	Test date 3/22/94
100	Contra Costa Landini	Camornia	1.2-Dichloroethane	Gastiare	1.2-Dichloroethane	EPA Method TO-14 was used.
			Benzene		Benzene	
			Carbon tetrachloride		Carbon tetrachloride	
			Chloroform		Chloroform	
			CO		CO	
			CO2		CO2	
			Ethylene dibromide		Ethylene dibromide	
			Methane		Methane	
			Nethylene chloride		Methylene chloride	
			NMOC		NMOC	
			Ovugon		Ovygon	
			Tetrachlorethene		Tetrachlorethone	
			Trichlorethene		Trichlorethene	
			Vinyl chloride		Vinyl chloride	
					-	

Appendix B

Background Data for Default LPG Constituent Concentrations

The Lotus 1-2-3 (LFBKAPPB.WK3) or the Excel (LFBKAPPB.XLS) Speradsheet was used for the following Appendix B information. Additional information is contained in the Spreadsheet.

								Summary Statistics of	Site Averages
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)	(pp	mv) ~
53	Altamont	L I	י ו	1, 1, - monoroethane	0.28	0.34	0.44	1 1 1-Trick	bloroethane
54	Arbor Hills	i	j ·	1,1,1-Trichloroethane	0.15	0.16	0.15	Mean	1.804
54	Arbor Hills	ι	J .	1,1,1-Trichloroethane	0.14	0.14		Median	0.480
54	Arbor Hills	l	J .	1,1,1-Trichloroethane	0.15	0.15		Standard Deviation	4.820
15	Azusa Land Reclamation	l	J	1,1,1-Trichloroethane	0.0023	0.0024	0.45	Variance	23.231
15	Azusa Land Reclamation	L L	J	1,1,1-Trichloroethane	0.057	0.059		Kurtosis Skawpace	30.211
15	Azusa Land Reclamation	1	, , .	1 1 1-Trichloroethane	1.80	1.88		Range	30.000
15	Azusa Land Reclamation	i	j ·	1,1,1-Trichloroethane	0.079	0.082		Minimum	0.014
15	Azusa Land Reclamation	ι	J .	1,1,1-Trichloroethane	0.058	0.060		Maximum	30.014
15	Azusa Land Reclamation	L	J .	1,1,1-Trichloroethane	1.70	1.77		Sum	75.787
15	Azusa Land Reclamation	l		1,1,1-Trichloroethane	0.058	0.060		Count	42.000
15	Azusa Land Reclamation	l	J .	1,1,1-I richloroethane	0.057	0.059	30.0	Normality Test (p)	<.01
12	BKK Landfill		· .	1,1,-Trichloroethane	6.50	20.4	30.0		
12	BKK Landfill		Y ·	1,1,1-Trichloroethane	22.00	48.4			
17	Bradley Pit	ι	ر	1,1,1-Trichloroethane	2.10	2.60	2.72		
17	Bradley Pit	ι	J .	1,1,1-Trichloroethane	4.80	7.38			
17	Bradley Pit	ι	J .	1,1,1-Trichloroethane	5.70	8.52			
17	Bradley Pit	L	J .	1,1,1-Trichloroethane	0.57	0.71			
17	Bradley Pit Bradley Dit	L	J .	1,1,1-Irichloroethane	0.54	0.68			
19	Bradley Pit	1		1.1.1-Trichloroethane	0.98	1.29			
19	Bradley Pit	1	J	1,1,1-Trichloroethane	0.21	0.28			
19	Bradley Pit	i	J .	1,1,1-Trichloroethane	2.20	2.91			
19	Bradley Pit	ι	J .	1,1,1-Trichloroethane	2.30	3.04			
41	Bradley Pit	L	J ·	1,1,1-Trichloroethane	0.0079	0.011			
6	Bradley Pit	l	J	1,1,1-Trichloroethane	0.73	0.97			
6	Bradley Pit	L L	J	1,1,1-Trichloroethane	0.10	0.21			
7	Calabasas		Y .	1 1 1-Trichloroethane	0.33	0.50	2.57		
7	Calabasas	1	Y ·	1,1,1-Trichloroethane	0.60	1.08			
7	Calabasas	١	Y	1,1,1-Trichloroethane	3.40	6.14			
13	Carson	l	J ·	1,1,1-Trichloroethane	0.025	0.053	0.051		
13	Carson	l		1,1,1-Trichloroethane	0.037	0.051			
13	CBI10	l	J .	1,1,1-Irichloroethane	0.038	0.051	0.25		
43	CBI11	1	, , .	1 1 1-Trichloroethane	4 20	4 25	4.25		
43	CBI13	L		1,1,1-Trichloroethane	0.030	0.036	0.036		
43	CBI14	ι	. ر	1,1,1-Trichloroethane	0.48	0.49	0.49		
43	CBI15	l	· ر	1,1,1-Trichloroethane	0.030	0.030	0.030		
43	CBI16		Y ·	1,1,1-Irichloroethane	0.60	0.61	0.61		
43	CBI18	1	,	1.1.1-Trichloroethane	0.20	0.20	0.38		
43	CBI20	i	j ·	1,1,1-Trichloroethane	0.40	0.40	0.40		
43	CBI21	ι	J .	1,1,1-Trichloroethane	0.60	0.60	0.60		
43	CBI23	ι	J .	1,1,1-Trichloroethane	1.30	1.38	1.38		
43	CBI24		Y ·	1,1,1-Trichloroethane	0.50	0.51	0.51		
43	CBI25	l	J .	1,1,1-Irichloroethane	1.24	1.25	1.25		
43	CBI27	1	J .	1 1 1-Trichloroethane	0.47	0.47	0.47		
43	CBI32	l	- J ·	1,1,1-Trichloroethane	1.35	1.36	1.36		
43	CBI4	l	ا	1,1,1-Trichloroethane	0.34	0.36	0.36		
43	CBI5	ι		1,1,1-Trichloroethane	0.15	0.15	0.15		
43	CBI6	l	J .	1,1,1-I richloroethane	1.15	1.16	1.16		
43	CBI9	L I	· د	1,1,-monoroethane	0.77	0.78	1.92		
55	Chicopee	l	, ,	1.1.1-Trichloroethane	2.20	2.82	2.82		
56	Coyote Canyon	l	- J	1,1,1-Trichloroethane	0.18	0.24	0.25		
56	Coyote Canyon	l	ا	1,1,1-Trichloroethane	0.17	0.22			
56	Coyote Canyon	ι		1,1,1-Trichloroethane	0.17	0.23			
56	Coyote Canyon	L	۱	1,1,1-Trichloroethane	0.17	0.26			
56	Coyote Canyon	L I	י ו	1, 1, 1- monoroethane	0.21	0.30			
57	Durham Rd	L 1		1.1.1-Trichloroethane	0.18	0.20	1.66		
57	Durham Rd.	l	j ·	1,1,1-Trichloroethane	0.75	0.90	1.00		
57	Durham Rd.	ι	J .	1,1,1-Trichloroethane	2.70	3.21			
10	Mission Canyon	1	N	1,1,1-Trichloroethane	0.016	0.066	0.066		
5	Mountaingate	1	N .	1,1,1-Trichloroethane	0.011	0.032	0.032		
5	Mountaingate	h	N	1,1,1-Trichloroethane	0.011	0.032			
5	Mountaingate	n N	N	1,1,1-i richloroethane	0.012	0.035			
58	Otav Annex	r I		1.1.1-Trichloroethane	0.011	0.032	0.18		
58	Otay Landfill	1	Y .	1,1,1-Trichloroethane	0.010	0.014	0.014		
22	Palos Verdes	1	Y	1,1,1-Trichloroethane	0.0022	0.010			
22	Palos Verdes	Y	Y ·	1,1,1-Trichloroethane	0.010	0.044	0.061		
22	Palos Verdes	١	Y	1,1,1-Trichloroethane	0.014	0.061			
22	Palos Verdes	1	Y ·	1,1,1-Trichloroethane	0.036	0.16			
22	Palos Verdes Palos Verdes		r ·	1,1,1-Inchloroethane	0.0035	0.015			
- 22	i aius Velues	1		r, r, r- monoroeunane	0.0022	0.010			

								Summary	Statistics of	Site Averages
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)	Ganifildiy	(ppmv)	
22	Palos Verdes		Y 1	,1,1-Trichloroethane	0.0058	0.025				
22	Palos Verdes		Y 1	,1,1-Trichloroethane	0.0022	0.010				
22	Palos Verdes		V 1	1.1-Trichloroethane	0.0038	0.025				
22	Palos Verdes		Ý 1	,1,1-Trichloroethane	0.0028	0.012				
22	Palos Verdes		Y 1	,1,1-Trichloroethane	0.0042	0.018				
51	Palos Verdes		Y 1	,1,1-Trichloroethane	0.056	0.14				
20	Palos verdes		Y 1	1.1.Trichloroethane	0.10	0.32	0.042			
20	Penrose		U 1	1 1-Trichloroethane	0.021	0.027	0.042			
20	Penrose		Ū 1	,1,1-Trichloroethane	0.046	0.079				
20	Penrose		U 1	,1,1-Trichloroethane	0.045	0.077				
20	Penrose		U 1	,1,1-Trichloroethane	0.0087	0.021				
20	Penrose		U 1	,1,1-Trichloroethane	0.012	0.028				
20	Penrose		U 1	1.1-Trichloroethane	0.015	0.030				
18	Puente Hills		N 1	,1,1-Trichloroethane	0.91	1.18	1.47			
18	Puente Hills	1	N 1	1,1-Trichloroethane	0.94	1.27				
18	Puente Hills	1	N 1	,1,1-Trichloroethane	0.60	0.80				
18	Puente Hills		N 1	,1,1-Trichloroethane	0.50	0.66				
24	Puente Hills Ruente Hille		N 1 N 1	1.1.Trichloroethane	2.20	3.17				
50	Puente Hills		N 1	,1,1-Trichloroethane	0.73	0.88				
59	Rockingham LF		U 1	,1,1-Trichloroethane	7.90	10.5	10.5			
1	Scholl Canyon	1	N 1	,1,1-Trichloroethane	0.46	0.74	0.53			
1	Scholl Canyon	l	N 1	,1,1-Trichloroethane	0.14	0.32	4.04		4400 Televiti	
9	Sheldon Street		U 1	,1,1-Irichloroethane	8.60	17.12	4.34	Maan	1,1,2,2-Tetrachloroeth	ane1110
9	Sheldon Street		U 1	1 1-Trichloroethane	0.015	0.030		Median		0.202
9	Sheldon Street		U 1	,1,1-Trichloroethane	0.05	0.11		Standard Deviation		1.416
23	Toyon Canyon	1	N 1	,1,1-Trichloroethane	0.61	0.66	0.66	Variance		2.005
43	CBI10		U 1	,1,2,2-Tetrachloroethane	3.65	3.72	3.72	Kurtosis		-0.252
43	CBI15		U 1	1,2,2-Tetrachloroethane	0.010	0.010	0.010	Skewness		1.084
43	CBI24 CBI30		u 1	1.2.2-Tetrachloroethane	0.11	0.11	0.11	Minimum		0.010
43	CBI5		Ŭ 1	,1,2,2-Tetrachloroethane	0.20	0.20	0.20	Maximum		3.721
43	CBI7		U 1	1,2,2-Tetrachloroethane	2.35	2.41	2.41	Sum		8.884
43	CBI9		U 1	,1,2,2-Tetrachloroethane	0.20	0.20	0.20	Count		8.000
59	Rockingham		U 1	,1,2,2-Tetrachloroethane	0.15	0.20	0.20	Normality Test (p)		<.10
43	Arbor Hills		U 1	1. Dichloroethane	0.10	163	1.37			1
54	Arbor Hills		U 1	.1-Dichloroethane	1.26	1.27	1.01			
54	Arbor Hills		Ú 1	,1-Dichloroethane	1.18	1.20				
43	CBI10	1	U 1	,1-Dichloroethane	2.30	2.34	2.34			
43	CBI11		U 1	,1-Dichloroethane	19.5	19.7	19.7			
43	CBI12 CBI13		U 1	1-Dichloroethane	0.85	0.94	0.94	Mean	1,1-Dichloroethane	5 487
43	CBI14		U 1	.1-Dichloroethane	11.9	12.0	12.0	Median		2.345
43	CBI15		U 1	,1-Dichloroethane	0.050	0.050	0.050	Standard Deviation		10.747
43	CBI16		Y 1	,1-Dichloroethane	0.60	0.61	0.61	Variance		115.508
43	CBI17 CBI18		U 1	,1-Dichloroethane	1.75	1.77	1.77	Kurtosis		20.226
43	CBI3		U 1	1 Dichloroethane	5.63	5.74	5.74	Bango		4.229
43	CBI20		U 1	1-Dichloroethane	2.75	2.77	2 77	Minimum		0.050
43	CBI22		Ū 1	,1-Dichloroethane	0.40	0.40	0.40	Maximum		58.100
43	CBI23	1	U 1	,1-Dichloroethane	2.60	2.76	2.76	Sum		170.094
43	CBI24		Y 1	,1-Dichloroethane	11.9	12.1	12.1	Count		31.000
43	CBI26		U 1	1-Dichloroethane	1.21	1.22	1.22	Normality Lest (p)		<.01
43	CBI27		U 1	,1-Dichloroethane	6.33	6.37	6.37			
43	CBI29		U 1	,1-Dichloroethane	3.53	3.73	3.73			
43	CBI3	1	U 1	,1-Dichloroethane	0.10	0.10	0.10			
43	CBI30 CBI32		U 1	,1-Dichloroethane	0.71	0.72	0.72			
43	CBI4		∪ 1 II 1	1-Dichloroethane	0.10	2.47	2.47			
43	CBI5		U 1	.1-Dichloroethane	2.33	1.62	1.62			
43	CBI6	i	Ū 1	,1-Dichloroethane	4.50	4.53	4.53			
43	CB18	1	U 1	,1-Dichloroethane	8.95	9.02	9.02			
43	CBI9	1	U 1	,1-Dichloroethane	7.90	7.98	7.98			
55	Chicopee		U 1	1 Dichloroethane	5.02	6.44	6.44			
56	Covote Canyon		U 1	1-Dichloroethane	2.54	3.36	3.30			
56	Coyote Canyon		- ' U 1	,1-Dichloroethane	3.13	4.17				
56	Coyote Canyon		U 1	,1-Dichloroethane	2.87	4.25				
56	Coyote Canyon	1	U 1	,1-Dichloroethane	1.80	2.62				
56	Coyote Canyon		U 1	,1-Dichloroethane	1.70	2.51	0.00			
27	Lyon Development		∪ 1 II 4	, i-dichloroethane	1.10	1.29	0.90			
27	Lyon Development		U 1	.1-dichloroethane	0.060	0.059				
27	Lyon Development		Ú 1	,1-dichloroethane	0.19	0.22				
27	Lyon Development	1	U 1	,1-dichloroethane	0.15	0.18				

								Summary Statistics of	Site Averages
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)	(ppmv)	
27	Lyon Development	L	J	1,1-dichloroethane	0.060	0.059	50.4		
28	Altamont		1	1,1-Dichloroethane	43.7	0.66	0.41		
3	Altamont	i	,	1.2-Dichloroethane	0.13	0.15	0.41		
54	Arbor Hills	i	j ·	1,2-Dichloroethane	0.27	0.28	0.39		
54	Arbor Hills	ι	J ·	1,2-Dichloroethane	0.34	0.34			
54	Arbor Hills	L		1,2-Dichloroethane	0.54	0.55		1,2-Dichloroet	nane
15	Azusa Land Reclamation	l	J	1,2-Dichloroethane	0.15	0.16	0.16	Mean	5.864
10	Azusa Land Reclamation	L L	۰ ۷	1,2-Dichloroethane	0.15	0.16	66.9	Median Standard Deviation	0.407
12	BKK Landfill		Ý ·	1.2-Dichloroethane	10.0	23.5	00.0	Variance	236.858
17	Bradley Pit	ι	J .	1,2-Dichloroethane	1.80	2.69	2.20	Kurtosis	10.104
17	Bradley Pit	ι	J .	1,2-Dichloroethane	4.30	5.38		Skewness	3.176
17	Bradley Pit	ι	J .	1,2-Dichloroethane	4.30	5.38		Range	66.783
17	Bradley Pit	L		1,2-Dichloroethane	2.20	2.66		Minimum	0.020
1/	Bradley Pit	l	J .	1,2-Dichloroethane	2.20	2.72		Maximum	66.803
19	Bradley Pit	1	,	1.2-Dichloroethane	1.60	2.06		Count	27.000
19	Bradley Pit	i	J	1.2-Dichloroethane	1.10	1.40		Normality Test (p)	<.01
19	Bradley Pit	i		1,2-Dichloroethane	0.15	0.23			
19	Bradley Pit	ι	ر	1,2-Dichloroethane	1.30	1.61			
6	Bradley Pit	L	J	1,2-Dichloroethane	0.43	0.54			
6	Bradley Pit	l	J .	1,2-Dichloroethane	0.43	0.59			
7	Calabasas			1.2-Dichloroethane	0.43	0.55	20.8		
7	Calabasas		Y ·	1,2-Dichloroethane	18.0	32.5	20.0		
43	CBI10	ι	ر	1,2-Dichloroethane	1.80	1.83	1.83		
43	CBI11	ι	ر	1,2-Dichloroethane	0.45	0.46	0.46		
43	CBI12	L	J ·	1,2-Dichloroethane	0.55	0.61	0.61		
43	CBI13	l	J	1,2-Dichloroethane	0.020	0.024	0.024		
43	CBI14 CBI19	L L	J	1,2-Dichloroethane	0.020	0.020	0.020		
43	CBI21	1	, , .	1.2-Dichloroethane	0.50	0.50	0.30		
43	CBI31	i	j ·	1,2-Dichloroethane	1.90	1.90	1.90		
43	CBI8	ι	ر	1,2-Dichloroethane	0.18	0.18	0.18		
43	CBI9	ι	J .	1,2-Dichloroethane	0.10	0.10	0.10		
55	Chicopee	L	J	1,2-Dichloroethane	0.11	0.14	0.14		
56	Coyote Canyon	l	J .	1,2-Dichloroethane	0.12	0.15	0.21		
56	Coyote Canyon	1	,	1.2-Dichloroethane	0.13	0.17			
56	Covote Canyon	i	J	1.2-Dichloroethane	0.23	0.34			
56	Coyote Canyon	L. L		1,2-Dichloroethane	0.11	0.16			
56	Coyote Canyon	ι	ر	1,2-Dichloroethane	0.10	0.14			
57	Durham Rd.	L	J	1,2-Dichloroethane	0.12	0.16	0.16		
57	Durham Rd.	l	J	1,2-Dichloroethane	0.13	0.16			
5/	Durham Rd.	l	J	1,2-Dichloroethane	0.14	0.17	0.067		
27	Lyon Development			1.2-Dichloroethane	0.060	0.071	0.007		
27	Lyon Development	i i		1,2-Dichloroethane	0.060	0.060			
5	Mountaingate	1	ч ·	1,2-Dichloroethane	0.06	0.17	0.17		
5	Mountaingate	n i	4	1,2-Dichloroethane	0.06	0.17			
5	Mountaingate	1	N .	1,2-Dichloroethane	0.06	0.17			
5	Mountaingate	r		1,2-Dichloroethane	0.06	0.17	0.027		
84	Otay Annex Otay Landfill		y .	1.2-Dichloroethane	0.025	0.027	0.027		
22	Palos Verdes	1	Y ·	1,2-Dichloroethane	0.08	0.35	1.78		
22	Palos Verdes	Y	Y ·	1,2-Dichloroethane	0.08	0.35			
22	Palos Verdes	١	Y	1,2-Dichloroethane	0.08	0.35			1
22	Palos Verdes	1	Y ·	1,2-Dichloroethane	0.08	0.35			
22	Palos Verdes Palos Verdes		r ·	1,2-Dichloroethane	0.08	0.35			
22	Palos Verdes		Y	1.2-Dichloroethane	1 10	4.80			
22	Palos Verdes		Y ·	1.2-Dichloroethane	0.15	0.65			
22	Palos Verdes	۲. ۱	Y ·	1,2-Dichloroethane	0.15	0.65			
22	Palos Verdes	Y	Y ·	1,2-Dichloroethane	1.10	4.80			
22	Palos Verdes)	Y	1,2-Dichloroethane	1.10	4.80			
22	Palos Verdes		Y	1,2-Dichloroethane	0.81	3.53	0.00		
20	Periose	L .	י ו	1,2-Dichloroethane	0.50	0.63	0.92		
20	Penrose	L I	י ו	1,2-Dichloroethane	0.50	0.85			
20	Penrose	i		1,2-Dichloroethane	0.50	0.85			
20	Penrose	i	ر	1,2-Dichloroethane	0.50	1.22			
20	Penrose	ι	· ر	1,2-Dichloroethane	0.50	1.18			
20	Penrose	L.	. I	1,2-Dichloroethane	0.50	0.99		1,2-Dichloropro	pane
20	Penrose Ruonto Hille	l	י נ וער או	1,2-Dichloroethane	0.50	0.97	7.06	Median	0.392
18	Puente Hills			1.2-Dichloroethane	6.00	8.09	1.30	Standard Deviation	0.171
18	Puente Hills		N	1,2-Dichloroethane	6.00	8.00		Variance	0.356
18	Puente Hills	Ň	N	1,2-Dichloroethane	6.00	7.95		Kurtosis	6.445
59	Rockingham	ι	· ۱	1,2-Dichloroethane	30.6	40.7	40.7	Skewness	2.488

								Summan	Statistics of	Site Averages
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)	Gammary	(ppmv)	Oite Averages
43	CBI11	L.	U.	1,2-Dichloropropane	1.80	1.82	1.82	Range		1.800
43	CBI13 CBI14	1		1,2-Dichloropropane	0.06	0.07	0.07	Maximum		1.820
43	CBI24		Y	1.2-Dichloropropane	0.50	0.51	0.51	Sum		3.136
43	CBI27	ι	J	1,2-Dichloropropane	0.27	0.27	0.27	Count		8.000
43	CBI30	L	U	1,2-Dichloropropane	0.22	0.22	0.22	Normality Test (p)		<.05
43	CBI5	l	J	1,2-Dichloropropane	0.10	0.10	0.10	Geometric Mean		0.178
43	CBIB	l.	J	1,2-Dichloropropane 1,2-Dimethyl cyclobeyane	0.12	0.12	0.12			
41	Guadalupe	i	J	1.3-Dimethyl cyclohexane	5.40	6.47	6.47			-
41	Guadalupe	ι	U	1,3-Dimethyl cyclopentane	21.4	25.6	25.6		2-Propanol	
41	Guadalupe	ι	U	1-Butanol	8.20	9.82	9.82	Mean		50.060
41	Guadalupe	l.	U.	1-Propanol	3.20	3.83	3.83	Median		50.060
41	Guadalupe	l. I	J	2,4-Dimethyl heptane	10.5	12.6	12.6	Standard Deviation		20.663
43	CBI15		U	2-Chloroethylvinyl ether	2.25	2 27	2 27	Kurtosis		420.950 N/A
41	Guadalupe	ι	J	2-Hexanone	12.6	15.1	15.1	Skewness		N/A
41	Guadalupe	ı	U	2-Methyl heptane	2.10	2.51	2.51	Range		29.222
41	Guadalupe	L.	J	2-Methyl propane	4.40	5.27	5.27	Minimum		35.449
41	Guadalupe	l.	J	2-Methyl-methylester propanoic acid	5.60	6.71	6.71	Naximum		64.671
60	Sunshine Canyon			2-Propanol	54.0	64.7	64.7	Count		2 000
41	Guadalupe	i	Ŭ	3-Carene	44.1	63.7	63.7	ooun		2.000
43	CBI11	ι	U	Acetone	12.0	12.1	12.1		Acetone	
43	CBI12	L.	J	Acetone	2.25	2.48	2.48	Mean		11.001
43	CBI14 CBI18	1	0	Acetone	1.84	1.86	1.86	Median Standard Deviation		7.014
43	CBI20		1	Acetone	4.50	6.54	6.54	Variance		148 897
43	CBI21	i	U	Acetone	2.25	2.27	2.27	Kurtosis		4.650
43	CBI22	ı	J	Acetone	19.3	19.5	19.5	Skewness		2.106
43	CBI23	L	J	Acetone	1.00	1.06	1.06	Range		47.874
43	CBI24		Y	Acetone	20.0	20.3	20.3	Minimum		1.062
43	CBI20 CBI27			Acetone	5.33	5.37	5.37	Sum		40.930
43	CBI3	i	_ U	Acetone	3.40	3.41	3.41	Count		19.000
43	CBI31	ı	U	Acetone	7.00	7.01	7.01	Normality Test (p)		<.01
43	CBI32	l	L.	Acetone	2.50	2.51	2.51			
43	CBI33	l. I	J	Acetone	8.00	8.02	8.02	Mean	Acrylonitrile	11 497
43	CBI7	, I	U	Acetone	32.0	32.8	32.8	Median		8 420
43	CBI9	i	- U	Acetone	14.0	14.1	14.1	Standard Deviation		11.795
59	Rockingham	ı	J	Acetone	36.8	48.9	48.9	Variance		139.113
56	Coyote Canyon	L	J	Acetonitrile	0.023	0.023	0.021	Kurtosis		2.550
56	Coyote Canyon	l	J	Acetonitrile	0.019	0.019	0.91	Skewness		1.406
43	CBI14 CBI25		1	Acrylonitrile	7.40	7.46	7.46	Minimum		27.490
43	CBI4	i	- U	Acrylonitrile	8.93	9.38	9.38	Maximum		28.300
59	Rockingham	ı	J	Acrylonitrile	21.3	28.3	28.3	Sum		45.950
53	Altamont	L	J	Benzene	3.70	4.46	2.76	Count		4.000
53	Altamont	l	J	Benzene	0.91	1.06	0.05	Normality Test (p)		<.15
54	Arbor Hills		J	Benzene	0.99	1.00	0.95	Geometric Mean		0.33
54	Arbor Hills	l	U	Benzene	0.84	0.86				
15	Azusa Land Reclamation	ı	U	Benzene	0.10	0.10	2.00			
15	Azusa Land Reclamation	l	U	Benzene	0.10	0.10				
15	Azusa Land Reclamation	l I		Benzene	1.90	2.09				
15	Azusa Land Reclamation	i	-	Benzene	2.30	2.40				
15	Azusa Land Reclamation	ι	J	Benzene	2.80	2.92				
15	Azusa Land Reclamation	L	L	Benzene	1.80	1.88				
15	Azusa Land Reclamation	l	J	Benzene	2.20	2.29				
10	Azusa Land Reclamation		y	Benzene	4.10	4.28	92.6			
12	BKK Landfill	•	Ŷ	Benzene	34.0	79.8	52.0			
12	BKK Landfill	•	Y	Benzene	45.0	98.9				
17	Bradley Pit	l	L.	Benzene	2.80	3.47	2.99			
1/	Bradley Pit Bradley Bit	l		Benzene	3.10	3.74				
17	Bradley Pit	1		Benzene	2.30	1.38				
17	Bradley Pit	i	J	Benzene	2.60	3.89				
17	Bradley Pit	ı	U	Benzene	1.10	1.38				
41	Bradley Pit	l.	U	Benzene	0.90	1.30				
0	Bradley Pit Bradley Pit	l	L L	Benzene	1.70	2.31				
6	Bradley Pit	1		Benzene	0.10	1.03			Benzene (co-disposal o	univ)
7	Calabasas		Y	Benzene	18.0	32.5		Mean	up and a grader of	30.020
7	Calabasas		Y	Benzene	32.0	57.8		Median		22.598
7	Calabasas		Y	Benzene	11.7	17.8	36.0	Standard Deviation		34.374
13	Carson	l	L L	Benzene	4.20	6.46	6.67	Variance		1181.558
13	Carson	1		Benzene	3.70	7.85		Skewness		2.110
1 19		,	-		0.10			0.0000000		(.447)

Interve Conput Interve Conput Interve Control Entrol Control Contro Contro Contro										Summary Statistics of	Site Averages
Image: Section of the section of t	L	Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)	(pr	mv)
Image: Section of the section of t		43	CBI10	l	J Benzene		1.00	1.02	1.02	Range Minimum	92.306
Image: Section of the section of t		43	CBI12	i	U Benzene		2.60	2.86	2.86	Maximum	92.611
Image: Construction		43	CBI13	L	J Benzene		1.53	1.85	1.85	Sum	180.121
1 0 0 Norm 0 0 Norm 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <th></th> <td>43</td> <td>CBI14</td> <td>l</td> <td>J Benzene</td> <td></td> <td>2.76</td> <td>2.79</td> <td>2.79</td> <td>Count</td> <td>6.000</td>		43	CBI14	l	J Benzene		2.76	2.79	2.79	Count	6.000
Control <t< td=""><th></th><td>43</td><td>CBI15 CBI16</td><td>l</td><td>J Benzene</td><td></td><td>0.35</td><td>0.35</td><td>0.35</td><td>Normality Test (p)</td><td>>.20</td></t<>		43	CBI15 CBI16	l	J Benzene		0.35	0.35	0.35	Normality Test (p)	>.20
Image: Construction		43	CBI17	l	J Benzene		0.30	0.30	0.10	Geometric Wearr	11.135
A BB		43	CBI18	i	J Benzene		1.53	1.56	1.56		
A B B B B B A B B B B B B A B B B B B B B A B B B B B B B B A B B B B B B B B A B B B B B B B B A B <		43	CBI20	ι	J Benzene		0.65	0.65	0.65		
n d d d d d d d d d d d d d d d d d d d		43	CBI21	l	J Benzene		1.05	1.06	1.06		
Image: Constraint of the constraint		43	CBI22 CBI23	1	J Benzene		1.20	0.58	0.58		
ABB <th< td=""><th>F</th><td>43</td><td>CBI24</td><td>ì</td><td>Y Benzene</td><td></td><td>5.53</td><td>5.61</td><td>5.61</td><td>Benzene (unkno</td><td>wn & no co-disp.)</td></th<>	F	43	CBI24	ì	Y Benzene		5.53	5.61	5.61	Benzene (unkno	wn & no co-disp.)
A BB BD BB		43	CBI25	ι	J Benzene		2.42	2.44	2.44	Mean	4.299
ACON		43	CBI26	l	J Benzene		0.15	0.15	0.15	Median	1.911
ABB		43	CBI27 CBI29	1	J Benzene		0.77	0.78	0.78	Variance	12.251
AControlCon		43	CBI30	i	J Benzene		2.65	2.67	2.67	Kurtosis	41.515
ACC		43	CBI31	ι	J Benzene		0.60	0.60	0.60	Skewness	6.317
A B A C A C A C A C A C A C A C A C A C		43	CBI32	l	J Benzene		0.70	0.70	0.70	Range	83.553
IndexConsC		43	CBI33 CBI4	l	J Benzene		0.83	0.83	0.83	Minimum	0.101
IndControlC		43	CBI5	1	J Benzene		2.55	2.58	2.58	Sum	197 736
IndexConstruction <th< td=""><th></th><td>43</td><td>CBI6</td><td>l</td><td>J Benzene</td><td></td><td>0.20</td><td>0.20</td><td>0.20</td><td>Count</td><td>46.000</td></th<>		43	CBI6	l	J Benzene		0.20	0.20	0.20	Count	46.000
IndexConsC		43	CBI7	l	J Benzene		1.50	1.54	1.54	Normality Test (p)	<.01
Image: Section of the section of t		43	CBI8	L.	J Benzene		4.55	4.59	4.59		
Image: Section of the section of t		43	CBI9	l	J Benzene		1.00	1.01	1.01		
Solid Condent<		56	Covote Canvon	i	U Benzene		1.64	2.18	2.37		
phyData Bach0Berner25501327Lacher0Berner202028Under Mar0Berner202027Lacher0Berner010128Marriage0Berner01010129Lacher0Berner01010130MarriageNBerner01010131MarriageNBerner01020134MarriageNBerner01020134MarriageNBerner01030134MarriageNBerner01030134MarriageNBerner01030134MarriageNBerner0103010134MarriageNBerner0103010134MarriageNBerner0103010134MarriageNBerner0103010134MarriageNBerner0103010134Park/MarcNBerner0103010134Park/MarcNBerner0103010134Park/MarcNBerner0103010134Park/MarcNBerner0103 <td< td=""><th></th><td>56</td><td>Coyote Canyon</td><td>L</td><td>J Benzene</td><td></td><td>1.73</td><td>2.56</td><td></td><td></td><td></td></td<>		56	Coyote Canyon	L	J Benzene		1.73	2.56			
phy Data Rais 0 Barane 240 250 27 Lein Rockgrane 0 Barane 0.35 0.60 77 27 Lein Rockgrane 0 Barane 0.31 0.31 10 Massan Cayon N Barane 0.32 0.31 0.31 11 Massan Cayon N Barane 0.32 0.32 0.35 13 Massan Cayon N Barane 0.33 0.35 0.35 14 Massan Cayon N Barane 0.33 0.37 0.35 15 Massan Cayon N Barane 0.33 0.37 0.35 15 Massan Cayon N Barane 0.33 0.37 0.37 16 Massan Cayon N Barane 0.33 0.37 0.37 17 Massan Cayon N Barane 0.33 0.37 1.37 18 Ourisophinis N Barane 0.33 0.37 1.37 17 Parane 0.30 0.37 1.37 1.37 17 Parane 0.30 0.37 1.37 17 Paraene 0.30 0.37 1.37 </td <th></th> <td>57</td> <td>Durham Rd.</td> <td>L</td> <td>J Benzene</td> <td></td> <td>2.30</td> <td>3.03</td> <td>3.20</td> <td></td> <td></td>		57	Durham Rd.	L	J Benzene		2.30	3.03	3.20		
11Marine220027111010102711101010103110101010103110101010103110101010104110101010105110101010105110101010105110101010105110101010106101010101010610101010101071010101010107101010101010710101010101071010101010107101010101010710101010101071010101010107101010101010710101010101071010101010107101010101010710		57	Durham Rd. Durham Rd	l	J Benzene		2.40	2.89			
111111211		27	Lvon Development	i i	U Benzene		0.55	0.65	0.79		
cLence0.130.131NortheyneNNortheyne1.35MortheyneNNortheyne0.030.375MortheyneNNortheyne0.030.375MortheyneNNortheyne0.030.376Operating inventionsNNortheyne0.030.377NortheyneNNortheyne0.030.038Operating inventionsNNortheyne0.030.038Operating inventionsNNortheyne0.030.039NortheyneNNortheyne0.030.032Palak VoltesYNortheyne0.030.032Palak VoltesYNortheyne0.030.032 <th></th> <td>27</td> <td>Lyon Development</td> <td>L. L. L</td> <td>U Benzene</td> <td></td> <td>1.20</td> <td>1.43</td> <td></td> <td></td> <td></td>		27	Lyon Development	L. L	U Benzene		1.20	1.43			
IndexNBurner0.080.191.91MunichyginNBurner0.080.212MunichyginNBurner0.090.303MunichyginNBurner0.090.304MunichyginNBurner0.090.305MunichyginNBurner0.090.306OrganizationVBurner0.090.307OrganizationVBurner0.000.302OrganizationVBurner0.000.302Palo VoldeVBurner0.000.302Palo VoldeVBurner0.000.303Palo VoldeVBurner0.000.		27	Lyon Development	L	U Benzene		0.31	0.31			
1ModelingNBerne1.080.030.055ModelingNBerne0.180.236ModelingNBerne0.180.247ModelingNBerne0.180.248OplyAresIBerne0.180.2410OplyAresVBerne0.180.2411OplyAresVBerne0.180.179.1712Pale VideVBerne0.00.179.1712Pale VideVBerne0.00.179.1712Pale VideVBerne0.04.361.1512Pale VideVBerne0.04.361.1512Pale VideVBerne0.04.361.1512Pale VideVBerne0.04.361.1512Pale VideVBerne0.04.361.1512Pale VideVBerne0.04.361.1512Pale VideVBerne0.04.361.1512Pale VideVBerne0.04.361.1512Pale VideVBerne0.04.361.1512Pale VideVBerne0.00.01.1512Pale VideVBerne0.00.01.1513Pale VideVBerne0.00.00.1614<		10	Mission Canyon Meuntainaata	1	N Benzene		0.036	0.15	1.36		
1MuturingingNBrowne0.100.205MuturingingUBrowne0.100.216Orger frammenUBrowne0.230.277Orger frammenUBrowne0.230.277Parlis VariableVBrowne0.260.277Parlis VariableVBrowne0.200.277Parlis VariableVBrowne0.200.277Parlis VariableVBrowne0.200.277Parlis VariableVBrowne0.200.217Parlis VariableVBrowne0.20		5	Mountaingate	1	N Benzene		0.13	0.26	0.30		
5MathinghisNBackne0.100.236Operating introteUBackne0.100.247Operating introteVBackne0.100.100.77Operating introteVBackne0.100.170.77Pales MarineVBackne0.100.170.77Pales MarineVBackne0.000.127Pales MarineVBackne0.000		5	Mountaingate	Ň	N Benzene		0.10	0.29			
BOpenSignUBatterneA739.309.31BOrgy LandingVBatterne34.341.743.722Plads VerdesVBatterne31.062.734.422Plads VerdesVBatterne31.062.734.423Plads VerdesVBatterne30.062.724Plads VerdesVBatterne30.043.825Plads VerdesVBatterne30.043.822Plads VerdesVBatterne30.043.823Plads VerdesVBatterne30.043.824Plads VerdesVBatterne30.020.225Plads VerdesVBatterne30.062.226Plads VerdesVBatterne30.062.227Plads VerdesVBatterne30.062.428Plads VerdesVBatterne50.043.029Plads VerdesVBatterne50.043.020Plads VerdesVBatterne50.043.021Plads VerdesVBatterne50.043.022Plads VerdesVBatterne50.043.023Plads VerdesVBatterne50.064.124Plads VerdesVBatterne50.064.125PerrotaUBatterne50.064.126Perro		5	Mountaingate	١	N Benzene		0.10	0.29			
BObj. Man.VBartone1.41.01.0722Palos VersesYBartone1.005.273.6422Palos VersesYBartone2.004.3422Palos VersesYBartone2.004.3423Palos VersesYBartone2.004.3424Palos VersesYBartone3.004.3425Palos VersesYBartone3.004.3426Palos VersesYBartone3.004.3427Palos VersesYBartone3.004.3428Palos VersesYBartone3.004.3429Palos VersesYBartone3.004.3420Palos VersesYBartone3.004.3421Palos VersesYBartone3.004.3422Palos VersesYBartone3.004.3423Palos VersesYBartone3.004.3424Palos VersesYBartone3.004.3425Palos VersesYBartone3.004.3426Palos VersesYBartone3.003.1427Palos VersesYBartone3.003.4428ParosaUBartone3.003.1429ParosaUBartone3.003.1420ParosaUBartone4.006.34		8	Operating Industries	l	J Benzene		4.70	9.36	9.36		
2Palat VerdiesYBercame13066.738.422Palat VerdiesYBercame2.00.022Palat VerdiesYBercame2.00.722Palat VerdiesYBercame2.00.722Palat VerdiesYBercame2.00.722Palat VerdiesYBercame0.62.323Palat VerdiesYBercame0.62.324Palat VerdiesYBercame0.62.425Palat VerdiesYBercame0.62.426Palat VerdiesYBercame0.62.427Palat VerdiesYBercame0.62.428Palat VerdiesYBercame0.62.429Palat VerdiesYBercame0.62.420Palat VerdiesYBercame0.62.421Palat VerdiesYBercame1.04.822Palat VerdiesYBercame1.02.4323ParticesUBercame1.02.433.424ParticesUBercame1.02.433.425ParticesUBercame1.02.414.826ParticesUBercame1.02.433.427ParticesUBercame1.03.428ParticesUBercame1.0		58	Otay Landfill	L L	V Benzene		3.30	4.57	4.57		
2Pate VerdesYBercame2.5010.92Pate VerdesYBercame2.0067.22Pate VerdesYBercame2.0040.02Pate VerdesYBercame2.0040.02Pate VerdesYBercame0.0040.02Pate VerdesYBercame0.0040.02Pate VerdesYBercame0.0067.22Pate VerdesYBercame0.0067.22Pate VerdesYBercame0.0070.02Pate VerdesYBercame0.0070.02Pate VerdesYBercame0.0070.02Pate VerdesYBercame0.0070.03Pate VerdesYBercame0.0070.03Pate VerdesYBercame0.0070.03Pate VerdesYBercame0.0070.04Pate VerdesYBercame0.0070.03Pate VerdesYBercame0.0070.04Pate VerdesYBercame0.0063.03Pate VerdesUBercame1.0063.04Pate VerdesUBercame1.0063.04Pate VerdesUBercame1.0063.05Pate VerdesUBercame1.001.006Pate Verdes <t< td=""><th></th><td>22</td><td>Palos Verdes</td><td>1</td><td>Y Benzene</td><td></td><td>13.0</td><td>56.7</td><td>36.4</td><td></td><td></td></t<>		22	Palos Verdes	1	Y Benzene		13.0	56.7	36.4		
22 Pairs Works Y Baccome 200 672 22 Pairs Works Y Baccome 201 40 22 Pairs Works Y Baccome 540 23.5 22 Pairs Works Y Baccome 606 40 22 Pairs Works Y Baccome 606 23.5 22 Pairs Works Y Baccome 600 23.5 22 Pairs Works Y Baccome 540 23.5 22 Pairs Works Y Baccome 540 23.5 23 Pairs Works Y Baccome 540 24.5 24 Pairs Works Y Baccome 540 25.5 25 Pairs Works Y Baccome 540 24.5 26 Parrose U Baccome 540 24.5 20 Parrose U Baccome 540 24.5 20 Parrose U Baccome 540 25.5 20 Parrose U Baccome 540 25.5 20 Parrose U Baccome 540 25.5 21 Parros		22	Palos Verdes	١	Y Benzene		2.50	10.9			
2 Pick Vetes 1 Became 1.00 4.00 22 Pick Vetes Y Became 5.60 2.35 22 Pick Vetes Y Became 6.60 2.2 2 Pick Vetes Y Became 6.00 3.0 2 Pick Vetes Y Became 6.00 3.0 3 Pick Vetes Y Became 6.00 6.0 4 Pick Vetes Y Became 6.00 6.8 5 Pick Vetes Y Became 6.00 6.8 6 Pick Vetes Y Became 6.00 6.8 7 Perrose U		22	Palos Verdes	1	Y Benzene		20.0	87.2			
2 Paics Variands Y Barcanne 5.40 23 22 Paics Variands Y Barcanne 6.00 26.2 2 Paics Variands Y Barcanne 6.00 26.3 2 Paics Variands Y Barcanne 6.00 36.3 2 Paics Variands Y Barcanne 1.00 2.03 3.4 2.0 Parrotas U Barcanne 1.00 2.04 3.4 2.0 Parrotas U Barcanne 1.00 3.41 3.4 2.0 Parrotas U Barcanne 1.00 3.51 3.4 2.0 Parrotas <		22	Palos Verdes Palos Verdes		Y Benzene		2.30	4.36			
22 Paids Verdes Y Benzeme 0.96 4.19 22 Paids Verdes Y Benzeme 6.00 282 22 Paids Verdes Y Benzeme 5.40 233 22 Paids Verdes Y Benzeme 5.40 233 22 Paids Verdes Y Benzeme 5.40 233 22 Paids Verdes Y Benzeme 5.40 3.41 23 Paids Verdes Y Benzeme 5.40 3.41 24 Paids Verdes Y Benzeme 5.40 3.41 25 Paids Verdes Y Benzeme 5.40 3.41 26 Paids Verdes Y Benzeme 5.40 3.41 27 Paids Verdes U Benzeme 5.40 5.41 28 Parces U Benzeme 4.00 6.81 29 Percose U Benzeme 4.00 6.81 20 Percose U Benzeme 1.30 2.23 20 Percose U Benzeme 1.30 2.34 20 Percose U Benzeme 1.30 2.53		22	Palos Verdes	1	Y Benzene		5.40	23.5			
22 Paice Verdes Y Bercame 6.00 2.2 22 Paice Verdes Y Bercame 2.0 22 Paice Verdes Y Bercame 0.88 4.19 22 Paice Verdes Y Bercame 0.88 4.19 22 Paice Verdes Y Bercame 0.88 4.19 23 Paice Verdes Y Bercame 9.20 3.12 51 Paice Verdes Y Bercame 5.0 1.6 20 Perrose U Bercame 1.50 2.4 21 Perrose U Bercame 6.00 6.81 20 Perrose U Bercame 1.40 3.41 20 Perrose U Bercame 1.20 2.6 20 Perrose U Bercame 1.20 2.6 21 Perrose U Bercame 1.20 2.6 22 Perrose U Bercame 1.20 2.6 23 Perrose U Bercame 1.20 1.6 1.5 24 Parote Hils N Bercame 1.60 2.1 25 Pe		22	Palos Verdes	1	Y Benzene		0.96	4.19			
22 Plack Writing Y Bencome 240 61 22 Plack Writing Y Bencome 615 419 22 Plack Writing Y Bencome 100 420 21 Plack Writing Y Bencome 516 420 51 Plack Writing Y Bencome 530 312 51 Plack Writing Y Bencome 530 36 20 Perrose U Bencome 200 233 324 20 Perrose U Bencome 200 681 400 681 20 Perrose U Bencome 400 681 400 681 20 Perrose U Bencome 140 331 400<		22	Palos Verdes	1	Y Benzene		6.00	26.2			
22 Palox Verdes Y Bercame 0.99 4.19 22 Palox Verdes Y Bercame 1.10 4.40 51 Palox Verdes Y Bercame 9.80 31.2 20 Perrose U Bercame 5.30 136 20 Perrose U Bercame 5.00 2.33 3.84 20 Perrose U Bercame 2.20 2.78 2.22 2.78 20 Perrose U Bercame 4.00 6.81 2.22 2.23 2.24 2.23 2.25 2.24 2.23 2.25 2.23 2.23 2.23 2.23 2.23 2.23 2.25 2.24 2.25 2.25		22	Palos Verdes Palos Verdes		Y Benzene Y Benzene		20.0	23.5			
22Pailos VerdesYBercame1.104.8051Pailos VerdesYBercame5.3013620PerroseUBercame5.3013621PerroseUBercame2.002.433.8420PerroseUBercame2.006.1420PerroseUBercame4.006.1420PerroseUBercame4.006.1420PerroseUBercame1.403.4120PerroseUBercame1.403.4120PerroseUBercame1.302.5820PerroseUBercame1.201.6.81.4.521PerroseUBercame1.302.5122PerroseUBercame1.001.5.118Puerle HilsNBercame1.501.5.118Puerle HilsNBercame6.005.224Puerle HilsNBercame6.005.225Puerle HilsNBercame6.005.224Puerle HilsNBercame6.005.259PockinghamUBercame6.006.31Scholl CaryonNBercame6.006.31Scholl CaryonNBercame6.006.31Scholl CaryonNBercame6.006.39Shelon Siteet<	F	22	Palos Verdes	· · · · · · · · · · · · · · · · · · ·	Y Benzene		0.96	4.19			
51 Paids Verdies Y Banzame 540 512 20 Parrose U Banzame 130 243 3.84 20 Parrose U Banzame 200 2.63 3.84 20 Parrose U Banzame 200 2.63 3.84 20 Parrose U Banzame 4.00 6.81 20 Parrose U Banzame 4.00 3.31 20 Parrose U Banzame 1.40 3.31 20 Parrose U Banzame 1.30 2.53 20 Parrose U Banzame 1.20 16.6 14.5 18 Purde Hils N Banzame 16.0 12.3 24 Purde Hils N Banzame 6.00 9.2 24 Purde Hils N Banzame 6.00 9.2 24 Purde Hils N Banzame 6.00 9.2 35 Purde Hils N Banzame 6.00 9.		22	Palos Verdes	1	Y Benzene		1.10	4.80			
D Function I Description 20 Perrose U Bercame 2.01 2.73 3.84 20 Perrose U Bercame 2.01 2.73 2.74 3.84 20 Perrose U Bercame 2.01 2.75 2.75 20 Perrose U Bercame 1.01 3.11 20 Perrose U Bercame 1.01 2.55 20 Perrose U Bercame 1.20 1.62 20 Perrose U Bercame 1.20 1.62 20 Perrose U Bercame 1.50 2.15 18 Purele Hils N Bercame 1.60 2.13 24 Purele Hils N Bercame 6.60 9.50 24 Purele Hils N Bercame 6.60 9.50 50 Purele Hils N Bercame 6.60 9.50		51 51	Palos Verdes		Benzene Y Benzene		9.80	31.2			
20PernoseUBarzene2.202.7820PernoseUBarzene4.006.8120PernoseUBarzene4.006.8120PernoseUBarzene4.006.8120PernoseUBarzene1.403.4120PernoseUBarzene1.403.3120PernoseUBarzene1.302.5820PernoseUBarzene1.2016.514.518Purtel HilsNBarzene12.016.218Purtel HilsNBarzene15.019.318Purtel HilsNBarzene6.609.2224Purtel HilsNBarzene6.258.6625Purtel HilsNBarzene6.268.6626Purtel HilsNBarzene6.268.6627Purtel HilsNBarzene6.268.6628Purtel HilsNBarzene6.268.6629Purtel HilsNBarzene6.268.6639Sheldon StreetNBarzene6.268.6630Sheldon StreetNBarzene6.268.6630Sheldon StreetNBarzene6.266.6430Sheldon StreetNBarzene6.266.6430Sheldon StreetNBarzene6.266.6430 <td< td=""><th></th><td>20</td><td>Penrose</td><td>l</td><td>J Benzene</td><td></td><td>1.90</td><td>2.43</td><td>3.84</td><td></td><td></td></td<>		20	Penrose	l	J Benzene		1.90	2.43	3.84		
20 Perrose U Barzene 4.00 6.81 20 Perrose U Barzene 1.40 3.41 20 Perrose U Barzene 1.40 3.41 20 Perrose U Barzene 1.40 3.41 20 Perrose U Barzene 1.30 2.53 20 Perrose U Barzene 1.20 1.62 18 Puerte Hils N Barzene 1.20 1.62 18 Puerte Hils N Barzene 1.60 2.1 14 Puerte Hils N Barzene 1.00 2.53 15 Puerte Hils N Barzene 1.00 2.53 16 Puerte Hils N Barzene 1.00 1.01 24 Puerte Hils N Barzene 6.50 9.5 50 Puerte Hils N Barzene 6.50 1.03 1 Schol Canyon N Barzene 3.90 6.26 3.45 9 <th></th> <td>20</td> <td>Penrose</td> <td>l</td> <td>J Benzene</td> <td></td> <td>2.20</td> <td>2.78</td> <td></td> <td></td> <td></td>		20	Penrose	l	J Benzene		2.20	2.78			
20 Perrose U Berzene 4.00 6.81 20 Perrose U Berzene 4.40 3.41 20 Perrose U Berzene 1.40 3.31 20 Perrose U Berzene 1.30 2.58 20 Perrose U Berzene 1.30 2.58 18 Puerte Hils N Berzene 1.20 16.5 14.5 18 Puerte Hils N Berzene 1.20 16.5 14.5 18 Puerte Hils N Berzene 12.0 16.5 14.5 18 Puerte Hils N Berzene 12.0 16.5 14.5 14 Puerte Hils N Berzene 6.60 9.5 9.5 24 Puerte Hils N Berzene 6.60 9.5 9.5 50 Puerte Hils N Berzene 6.60 1.33 1.73 1 Sc		20	Penrose	L	J Benzene		4.00	6.88			
20 Partose 0 Barcane 1,40 0.41 20 Partose U Barcane 1,30 2,51 20 Partose U Barcane 1,30 2,53 18 Puerto Hills N Barcane 1,20 16,5 1,45 18 Puerto Hills N Barcane 1,20 16,5 1,45 18 Puerto Hills N Barcane 1,20 16,2 1,50 18 Puerto Hills N Barcane 16,0 21,3 1,50 18 Puerto Hills N Barcane 16,0 21,3 1,50 18 Puerto Hills N Barcane 6,60 9,5 1,50 24 Puerto Hills N Barcane 6,50 1,03 1,73 1 Schol Canyon N Barcane 3,50 6,25 3,45 1 Schol Canyon N Barcane 0,28 0,44		20	Penrose	l	J Benzene		4.00	6.81			
20PenroseUBarzane1.02.5818Puente HilsNBarzane12.015.614.518Puente HilsNBarzane12.016.218Puente HilsNBarzane16.02.318Puente HilsNBarzane16.02.318Puente HilsNBarzane16.02.318Puente HilsNBarzane16.02.324Puente HilsNBarzane6.609.524Puente HilsNBarzane6.609.524Puente HilsNBarzane6.609.550Puente HilsNBarzane6.528.6650Puente HilsNBarzane9.01.731Scholl CanyonNBarzane0.280.649Sheldon StreetUBarzane0.501.009Sheldon StreetUBarzane0.501.009Sheldon StreetUBarzane0.501.009Sheldon StreetUBarzane0.501.009Sheldon StreetUBarzane0.130.289Sheldon StreetUBarzane0.1223.9		20	Penrose	1	J Benzene		1.40	3.31			
20 Perrose U Berzene 1.30 2.53 18 Puerde Hils N Berzene 12.0 15.5 14.5 18 Puerde Hils N Berzene 12.0 16.2 15.5 18 Puerde Hils N Berzene 16.0 2.1 18 Puerde Hils N Berzene 15.0 19.9 24 Puerde Hils N Berzene 6.60 9.2 24 Puerde Hils N Berzene 6.25 8.60 50 Puerde Hils N Berzene 6.25 8.60 50 Puerde Hils N Berzene 6.20 10.3 1 Schold Caryon N Berzene 0.28 0.64 1 Schold Caryon N Berzene 0.28 0.64 9 Sheldon Street U Berzene 0.50 1.00 6.53 9 Sheldon Street U Berzene		20	Penrose	i	J Benzene		1.30	2.58			
18Puerte HilsNBerzene12.015.614.518Puerte HilsNBerzene16.021.318Puerte HilsNBerzene16.021.324Puerte HilsNBerzene6.609.224Puerte HilsNBerzene6.609.224Puerte HilsNBerzene6.609.224Puerte HilsNBerzene6.5010.050Puerte HilsNBerzene8.5010.31Scholl CanyonNBerzene3.906.263.451Scholl CanyonNBerzene0.280.649Sheldon StreetUBerzene0.501.009Sheldon StreetUBerzene0.501.009Sheldon StreetUBerzene0.130.269Sheldon StreetUBerzene0.1223.9		20	Penrose	L	J Benzene		1.30	2.53			
10 Puerte rues N Barcane 12.0 12.1 10 Puerte Hils N Barcane 16.0 21.3 13 Puerte Hils N Barcane 15.0 23.9 24 Puerte Hils N Barcane 6.0 92.3 24 Puerte Hils N Barcane 6.0 92.4 250 Puerte Hils N Barcane 6.0 92.4 50 Puerte Hils N Barcane 6.0 10.3 50 Rodrightam U Barcane 6.0 10.3 1 Schol Canyon N Barcane 0.28 0.64 9 Sheldon Street U Barcane 0.50 1.00		18	Puente Hills	N N	N Benzene		12.0	15.6	14.5		
18 Puente Hills N Berzone 15.0 19.9 24 Puente Hills N Berzone 6.60 9.52 24 Puente Hills N Berzone 6.25 8.60 50 Puente Hills N Berzone 6.50 10.30 59 Rockingham U Berzone 8.50 1.73 1.73 1 Schol Caryon N Berzone 3.90 6.26 3.45 9 Sheldon Street U Berzone 0.50 1.00		18	Puente Hills	r i i i i i i i i i i i i i i i i i i i	N Benzene		12.0	21.3			
24 Purefie Hills N Berzene 6.60 9.52 50 Purefie Hills N Berzene 6.60 10.30 59 Rockingham U Berzene 8.50 1.73 1 Schol Canyon N Berzene 3.90 6.25 3.45 1 Schol Canyon N Berzene 3.90 6.26 3.45 9 Sheldon Streat U Berzene 0.28 0.64 - 9 Sheldon Streat U Berzene 0.50 1.00 - 9 Sheldon Streat U Berzene 0.50 1.00 - 9 Sheldon Streat U Berzene 0.50 1.00 - 9 Sheldon Streat U Berzene 0.13 0.26 - 9 Sheldon Streat U Berzene 0.13 0.26 -		18	Puente Hills	N	N Benzene		15.0	19.9			
24 Puente Hills N Berzene 6.25 8.66 50 Puente Hills N Berzene 8.50 10.30 59 Rockingham U Berzene 1.30 1.73 1.73 1 Schol Canyon N Berzene 3.90 6.26 3.45 1 Schol Canyon N Berzene 0.28 0.64 9 Sheldon Street U Berzene 0.50 1.00 9 Sheldon Street U Berzene 0.50 1.00 9 Sheldon Street U Berzene 0.50 1.00 9 Sheldon Street U Berzene 0.13 0.26 9 Sheldon Street U Berzene 12.0 23.9		24	Puente Hills	N	N Benzene		6.60	9.52			
GU Future Trans N Determinant 0.00 10.00 59 Rockingham U Berzene 1.30 1.73 1.73 1 Schol/Caryon N Berzene 3.90 6.26 3.45 1 Schol/Caryon N Berzene 0.28 0.64 9 Steldon Stredt U Berzene 0.50 1.00 9 Steldon Stredt U Berzene 0.50 1.00 9 Steldon Stredt U Berzene 0.13 0.26 9 Steldon Stredt U Berzene 0.50 1.00		24	Puente Hills	N.	N Benzene		6.25	8.66			
I Schol Carryon N Berzame 3.80 6.25 3.45 1 Schol Carryon N Berzame 3.02 0.64 9 Sheldon Street U Berzame 0.50 1.00 9 Sheldon Street U Berzame 0.50 1.00 9 Sheldon Street U Berzame 0.13 0.26 9 Sheldon Street U Berzame 1.20 23.9		59	Rockingham	P	Benzene		1.30	173	173		
1 Scholl Canyon N Berzene 0.28 0.64 9 Sheldon Street U Berzene 0.50 1.00 6.53 9 Sheldon Street U Berzene 0.50 1.00 9 Sheldon Street U Berzene 0.13 0.26 9 Sheldon Street U Berzene 12.0 23.9		1	Scholl Canyon	n	N Benzene		3.90	6.26	3.45		
9 Sheldon Stret U Berzene 0.50 1.0 6.53 9 Sheldon Stret U Berzene 0.50 1.0 9 Sheldon Stret U Berzene 0.13 0.2 9 Sheldon Stret U Berzene 12.0 23.9		1	Scholl Canyon	1	N Benzene		0.28	0.64			
9 Sheldon Street U Berzene U.SU 1.00 9 Sheldon Street U Berzene 0.13 0.26 9 Sheldon Street U Berzene 12.0 23.9		9	Sheldon Street	L.	J Benzene		0.50	1.00	6.53		
9 Sheldon Stret U Berzene 12.0 23.9		9	Sheldon Street	l	U Benzene		0.50	1.00			
		9	Sheldon Street	l	J Benzene		12.0	23.9			

								Summary S	atistics of	Site Averages
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)		(ppmv)	
39	Sunshine Canyon	L	J	Benzene	2.20	2.32	2.32			
23	CBI13	in l	1	Bromodichloromethane	2.75	2.96	2.96		Bromodichloromethan	e
43	CBI14	l	J	Bromodichloromethane	0.12	0.12	0.12	Mean	Distribution	3.131
43	CBI24	١	(Bromodichloromethane	2.48	2.52	2.52	Median		2.038
43	CBI25	L	J	Bromodichloromethane	7.85	7.91	7.91	Standard Deviation		3.362
43	CBI30	L	J	Bromodichloromethane	2.02	2.04	2.04	Variance		11.306
43	CBIA		1	Bromodichloromethane	7.80	7.86	7.86	Skewness		-1.038
43	CBI11	i i	j	Butane	16.5	16.7	16.7	Range		7.792
43	CBI14	L	J	Butane	18.8	19.0	19.0	Minimum		0.121
43	CBI16	١	(Butane	1.00	1.02	1.02	Maximum		7.913
43	CBI17	L	1	Butane	1.00	1.01	1.01	Sum		21.918
43	CBI18		J	Butane	0.83	0.85	2.51	Normality Test (n)		7.000
43	CBI26		j	Butane	1.50	1.51	1.51	Normality Test (p)		~10
43	CBI27	L. L.	J	Butane	6.07	6.11	6.11		Butane	
43	CBI32	L	J	Butane	5.00	5.03	5.03	Mean		9.941
43	CBI33	L	J	Butane	1.13	1.13	1.13	Median		5.025
43	CBI5		,	Butane	11.8	11.0	11.0	Variance		12.270
43	CBIS		1	Butane	9.50	9.57	9.57	Kurtosis		1 644
43	CBI9	i	j	Butane	32.0	32.3	32.3	Skewness		1.539
60	Sunshine Canyon	L	J	Butane	38.0	40.0	40.0	Range		39.499
41	Guadalupe	L	J	Butylester butanoic acid	11.6	16.8	16.8	Minimum		0.501
54	Arbor Hills	L .) 	Carbon disulfide	0.092	0.095	0.094	Maximum		40.000
15	Azusa Land Reclamation	L	j	Carbon disulfide	0.095	0.43	0.43	Count		149.111
12	BKK Landfill	Ň	(Carbon disulfide	0.83	1.86	1.20	Normality Test (p)		<.05
12	BKK Landfill	١	(Carbon disulfide	0.66	1.46				
12	BKK Landfill	<u>)</u>	(Carbon disulfide	0.40	0.86				
12	BKK Landfill			Carbon disulfide	0.50	1.08		Maan	Carbon disulfide	0.592
12	BKK Landfill			Carbon disulfide	0.50	1.00		Median		0.565
12	BKK Landfill	Ň		Carbon disulfide	0.50	1.09		Standard Deviation		0.616
12	BKK Landfill	١	(Carbon disulfide	0.60	1.28		Variance		0.380
12	BKK Landfill	<u>)</u>	(Carbon disulfide	0.30	0.67		Kurtosis		-0.931
6	Bradley Pit	L	J /	Carbon disulfide	1.20	1.64	1.64	Skewness		0.846
56	Covote Canvon		1	Carbon disulfide	0.050	0.10	0.076	Minimum		0.076
24	Puente Hills	N	4	Carbon disulfide	0.90	1.31	1.01	Maximum		1.644
24	Puente Hills	N	4	Carbon disulfide	0.81	1.16		Sum		4.664
24	Puente Hills	N	4	Carbon disulfide	0.85	1.18		Count		8.000
24	Puente Hills			Carbon disulfide	1.00	1.38		Normality Test (p)		>.20
1	Scholl Canyon	r N	4	Carbon disulfide	0.00005	0.11	0.11			
10	Mission Canyon	N	4	Carbon tetrachloride	0.00040	0.0016	0.0016			
5	Mountaingate	N	4	Carbon tetrachloride	0.00036	0.0010	0.00083			
5	Mountaingate	N	4	Carbon tetrachloride	0.00026	0.00075				
5	Mountaingate	N		Carbon tetrachloride	0.00026	0.00075				
18	Puente Hills	r N	4	Carbon tetrachloride	0.00027	0.00078	0.024			
18	Puente Hills	N	4	Carbon tetrachloride	0.030	0.040				
18	Puente Hills	N	4	Carbon tetrachloride	0.030	0.040				
18	Puente Hills	N	4	Carbon tetrachloride	0.030	0.040				
24	Puente Hills Ruente Hills	N.	4	Carbon tetrachloride	0.0014	0.0019				
50	Puente Hills	n N		Carbon tetrachloride	0.0012	0.0061				
1	Scholl Canyon	N	4	Carbon tetrachloride	0.18	0.41	0.41		Carbon tetrachloride	
23	Toyon Canyon	N	4	Carbon tetrachloride	0.0025	0.0027	0.0027	Mean		0.053
53	Altamont	L	J	Carbon tetrachloride	0.0025	0.0030	0.0030	Median		0.004
53	Altamont Arker Hille	L	J	Carbon tetrachloride	0.0025	0.0029	0.0025	Standard Deviation		0.102
54	Arbor Hills	L L	,	Carbon tetrachloride	0.0025	0.0026	0.0025	variance Kurtosis		0.010
54	Arbor Hills	L L	J	Carbon tetrachloride	0.0025	0.0025		Skewness		2.631
15	Azusa Land Reclamation	L	J	Carbon tetrachloride	0.0014	0.0015	0.0015	Range		0.410
15	Azusa Land Reclamation	L	1	Carbon tetrachloride	0.0014	0.0015	0.0000	Minimum		0.000
19	Bradley Pit	L	,	Carbon tetrachiofide	0.0015	0.0019	0.0023	Maximum		0.410
19	Bradley Pit	L	,	Carbon tetrachioride	0.0015	0.0019		Count		1.161 22 000
19	Bradley Pit	l	j.	Carbon tetrachloride	0.0015	0.0019		Normality Test (p)		<.01
6	Bradley Pit	Ĺ	J	Carbon tetrachloride	0.0001	0.0001				
6	Bradley Pit	L	J	Carbon tetrachloride	0.0010	0.0014				
6	Bradley Pit	L	J	Carbon tetrachloride	0.0030	0.0041				
13	Carson		,	Carbon tetrachloride	0.0040	0.00086	0.047			
13	Carson	l	- J	Carbon tetrachloride	0.10	0.14	0.047			
13	Carson	L	J	Carbon tetrachloride	0.00080	0.0017				
43	CBI15	L	J	Carbon tetrachloride	0.050	0.050	0.050			
55	Chicopee	L	J	Carbon tetrachloride	0.070	0.090	0.0899			
00	Coyote Carryon	L. L.	,	Carbon tetracinolitide	0.0000	0.0007	0.0020			

								Summary Statistics of	Site Averages
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)	(ppmv)	
56	Coyote Canyon		U	Carbon tetrachloride	0.0005	0.0007			
56	Coyote Canyon		J	Carbon tetrachloride	0.0025	0.0033			
56	Covote Canyon		J	Carbon tetrachloride	0.0025	0.0036			
56	Coyote Canyon		J	Carbon tetrachloride	0.0025	0.0037			
57	Durham Rd.		IJ	Carbon tetrachloride	0.0025	0.0030	0.0030		
57	Durham Rd.		J	Carbon tetrachloride	0.0025	0.0030			
27	J von Development			Carbon tetrachloride	0.0025	0.0030	0.045		
27	Lyon Development		U U	Carbon tetrachloride	0.040	0.048	0.045		
27	Lyon Development	1	Ŭ	Carbon tetrachloride	0.040	0.040			
58	Otay Annex	1	U	Carbon tetrachloride	0.00020	0.00027	0.00027		
20	Penrose		J	Carbon tetrachloride	0.0025	0.0032	0.0053		
20	Penrose		J	Carbon tetrachloride	0.0025	0.0032			
20	Penrose		1	Carbon tetrachloride	0.0025	0.0043			
20	Penrose	i	J	Carbon tetrachloride	0.0025	0.0061			
20	Penrose	1	J	Carbon tetrachloride	0.0025	0.0059			
20	Penrose		J	Carbon tetrachloride	0.0040	0.0080			
20	Penrose		J	Carbon tetrachloride	0.0040	0.0078			
59	Rockingham Shelden Street		J	Carbon tetrachloride	0.15	0.20	0.21		
9	Sheldon Street		J	Carbon tetrachloride	0.4100	0.0012	0.21		
9	Sheldon Street	i	U	Carbon tetrachloride	0.0015	0.0030			
9	Sheldon Street	1	U	Carbon tetrachloride	0.00030	0.00060			
12	BKK Landfill		Y	Carbon tetrachloride	0.11	0.24	0.23		
12	BKK Landfill		Y	Carbon tetrachloride	0.094	0.22			
7	Calabasas		v	Carbon tetrachloride	0.10	0.030	0.031		
7	Calabasas		Y	Carbon tetrachloride	0.020	0.027	0.051		
7	Calabasas		Y	Carbon tetrachloride	0.020	0.036			
84	Otay Landfill		Y	Carbon tetrachloride	0.00020	0.00022	0.00022		
22	Palos Verdes		Y	Carbon tetrachloride	0.00024	0.0010	0.0053		
22	Palos Verdes		Y	Carbon tetrachloride	0.000080	0.00035			
22	Palos Verdes		v	Carbon tetrachloride	0.00040	0.0020			
22	Palos Verdes		Y	Carbon tetrachloride	0.00015	0.00065			
22	Palos Verdes		Ŷ	Carbon tetrachloride	0.00015	0.00065			
22	Palos Verdes		Y	Carbon tetrachloride	0.0012	0.0052			
22	Palos Verdes		Y	Carbon tetrachloride	0.00012	0.00052			
22	Palos Verdes		Y	Carbon tetrachloride	0.00012	0.00052			
22	Palos Verdes		v	Carbon tetrachloride	0.00034	0.0015		Carbonyl sulfi	te
22	Palos Verdes		Y	Carbon tetrachloride	0.00050	0.0022		Mean	4.457
51	Palos Verdes		Y	Carbon tetrachloride	0.010	0.032		Median	0.490
51	Palos Verdes		Y	Carbon tetrachloride	0.010	0.026		Standard Deviation	9.589
54	Arbor Hills		J	Carbonyl sulfide	0.054	0.055	0.057	Variance	91.940
54	Arbor Hills			Carbonyl sulfide	0.058	0.059	24.0	Kurtosis	5.910
12	BKK Landfill		V V	Carbonyl sulfide	23.0	3 14	1.64	Rance	2.420
12	BKK Landfill		Ý	Carbonyl sulfide	1.40	3.09		Minimum	0.057
12	BKK Landfill		Y	Carbonyl sulfide	0.80	1.72		Maximum	23.988
12	BKK Landfill		Y	Carbonyl sulfide	0.90	1.91		Sum	26.745
12	BKK Landfill BKK Landfill		Y	Carbonyl sulfide	0.25	0.54		Count	6.000
12	BKK Landfill		Ý	Carbony sulfide	0.25	0.54		wormality rest (p)	<.01
7	Calabasas		Y	Carbonyl sulfide	0.05	0.08	0.08		
24	Puente Hills	1	N	Carbonyl sulfide	0.57	0.83	0.87		
24	Puente Hills	I	N	Carbonyl sulfide	0.81	1.16			
24	Puente Hills		N	Carbonyl sulfide	0.49	0.68			
24	Puente Hills		N N	Carbonyl sulfide	0.00005	0.00006			
1	Scholl Canyon		N	Carbonyl sulfide	0.050	0.11	0.11		
54	Arbor Hills	i	U	Chlorobenzene	0.71	0.72	0.60	Chlorobenzer	le
54	Arbor Hills		U	Chlorobenzene	0.74	0.74		Mean	2.151
54	Arbor Hills		U	Chlorobenzene	0.70	0.72	0.22	Median Stendard Deviation	0.254
43	CBI12 CBI13			Chlorobenzene	0.20	0.22	0.22	Standard Deviation	3.767
43	CBI15			Chlorobenzene	0.05	0.05	0.05	Kurtosis	14.191
43	CBI22	i	Ū	Chlorobenzene	0.10	0.10	0.10	Skewness	1.657
43	CBI24		Y	Chlorobenzene	10.0	10.2	10.2	Range	10.103
43	CBI29	1	U	Chlorobenzene	9.10	9.63	9.63	Minimum	0.050
43	CBI3		U	Chlorobenzene	0.20	0.20	0.20	Maximum	10.153
43	CBI5			Chlorobenzene	0.43	0.43	0.43	Sum	30.108
55	Chicopee			Chlorobenzene	0.10	0.13	0.13	Normality Test (p)	< 01
56	Coyote Canyon	i	_ J	Chlorobenzene	0.010	0.013	0.24		
56	Coyote Canyon	i	J	Chlorobenzene	0.010	0.013			
56	Coyote Canyon		J	Chlorobenzene	0.010	0.015			
56	Coyote Canyon	1	J	Chlorobenzene	0.010	0.015			
56	Coyote Canyon		J	Chiorobenzené	0.50	0.74			

								Summary Sta	atistics of	Site Averages
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)	Nay 64	(ppmv)	
56	Coyote Canyon	L	J	Chlorobenzene	0.44	0.65	0.68			
27	Lyon Development	i	, ,	Chlorobenzene	0.20	0.32	0.00			
27	Lyon Development	L. L	J	Chlorobenzene	1.50	1.49				
59	Rockingham	L	J	Chlorobenzene	0.20	0.27	0.27		011	
43	CBI6 CBI13	L L	J	Chlorodiflouromethane	0.25	0.25	0.25	Moon	Chlorodifluorometha	2 526
43	CBI14	l	J	Chlorodifluoromethane	12.6	12.7	12.7	Median		1.205
43	CBI17	L	J	Chlorodifluoromethane	3.85	3.89	3.89	Standard Deviation		3.379
43	CBI18	l	J	Chlorodifluoromethane	0.77	0.79	0.79	Variance		11.420
43	CBI19	l	J	Chlorodifluoromethane	1.20	1.20	1.20	Kurtosis		7.684
43	CBI26	L. L	J	Chlorodifluoromethane	1.90	1.91	1.91	Range		12.632
43	CBI30	L	J	Chlorodifluoromethane	1.33	1.34	1.34	Minimum		0.101
43	CBI31	L	J	Chlorodifluoromethane	1.00	1.00	1.00	Maximum		12.733
43	CBI32 CBI34	l	J	Chlorodifluoromethane	3.00	3.02	3.02	Sum		32.837
43	CBI8	1	1	Chlorodifluoromethane	4 79	4.83	4.83	Normality Test (n)		< 05
43	CBI11	i	J	Chloroethane	1.35	1.37	1.37	Geometric Mean		1.304
43	CBI12	ι	J	Chloroethane	0.20	0.22	0.22			
43	CBI13	L	J	Chloroethane	0.43	0.52	0.52			
43	CBI14 CBI15	i	J	Chloroethane	0.50	0.50	0.50		Chloroethane	
43	CBI17	L	J	Chloroethane	1.60	1.62	1.62	Mean		2.372
43	CBI18	L	L	Chloroethane	2.33	2.38	2.38	Median		1.365
43	CBI19 CBI20	l	J	Chloroethane	0.60	0.60	0.60	Standard Deviation		2.651
43	CBI20 CBI21	l	1	Chloroethane	9.20	9.27	9.27	Kurtosis		1.020
43	CBI23	i	J	Chloroethane	4.90	5.20	5.20	Skewness		1.491
43	CBI25	ι	J	Chloroethane	0.76	0.77	0.77	Range		9.163
43	CBI27	L	J	Chloroethane	7.33	7.38	7.38	Minimum		0.111
43	CBI30	l	1	Chloroethane	0.70	0.70	0.11	Sum		59.308
43	CBI32	i	J	Chloroethane	8.25	8.29	8.29	Count		25.000
43	CBI33	l	J	Chloroethane	4.43	4.44	4.44	Normality Test (p)		<.01
43	CBI34	L L	J	Chloroethane	0.30	0.30	0.30	Geometric Mean		1.251
43	CBI5	l	J	Chloroethane	1.45	1.46	1.46			
43	CBI6	ι	J	Chloroethane	0.85	0.86	0.86			
43	CBI7	L	J	Chloroethane	0.50	0.51	0.51			
43	CBI8	L L	J	Chloroethane	0.95	0.96	0.96			
40	Guadalupe	i	J	Chloroethane	2.20	3.18	3.18			
53	Altamont	ι	J	Chloroform	0.011	0.013	0.012		Chloroform	
53	Altamont	L	J	Chloroform	0.010	0.012	0.0005	Mean		0.380
54	Arbor Hills Arbor Hills	L	1	Chloroform	0.0025	0.0026	0.0025	Standard Deviation		0.024
54	Arbor Hills	i	J	Chloroform	0.0025	0.0025		Variance		0.657
15	Azusa Land Reclamation	L	J	Chloroform	0.030	0.031	0.031	Kurtosis		4.378
15	Azusa Land Reclamation	l	J	Chloroform	0.030	0.031		Skewness		2.336
15	Azusa Land Reclamation	l	1	Chloroform	0.030	0.031		Minimum		2.047
12	BKK Landfill	1	Y	Chloroform	1.10	2.4	2.20	Maximum		2.847
12	BKK Landfill		Y	Chloroform	0.66	1.5		Sum		8.370
12	BKK Landhil Bradley Dit		Y	Chloroform	1.20	2.6	0.019	Count Normality Test (p)		22.000
19	Bradley Pit	l	- J	Chloroform	0.020	0.025	0.010	Geometric Mean		0.03
19	Bradley Pit	ι	J	Chloroform	0.020	0.030				
19	Bradley Pit	L	1	Chloroform	0.020	0.025				
6	Bradley Pit	L I	ر ا	Chloroform	0.0015	0.0022				
6	Bradley Pit	l	J	Chloroform	0.010	0.014				
6	Bradley Pit	Ļ	J	Chloroform	0.010	0.013	0.05			
7	Calabasas	1	Y V	Chloroform	0.18	0.27	2.85			
7	Calabasas		Y	Chloroform	0.58	1.05				
13	Carson	ι	J	Chloroform	0.0025	0.0033	0.0040			
13	Carson	L	J	Chloroform	0.0025	0.0034				
13	CBI13	l	ر ا	Chloroform	0.0025	0.0053	1.89			
55	Chicopee	l	J	Chloroform	0.10	0.13				
56	Coyote Canyon	l	J	Chloroform	0.0020	0.0027	0.0032			
56	Coyote Canyon	L	J	Chloroform	0.0020	0.0027				
56	Coyote Canyon Coyote Canyon	L L	J	Chloroform	0.0030	0.0040				
56	Coyote Canyon	l	J	Chloroform	0.0019	0.0028				
56	Coyote Canyon	ι	J	Chloroform	0.0019	0.0028				
57	Durham Rd.	l	J	Chloroform	0.00	0.00	0.01			
57	Durham Rd.	1	J	Chloroform	0.00	0.00				
27	Lyon Development	i.	J	Chloroform	0.060	0.071	0.067			
•										1

								Summary S	tatistics of	Site Averages
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)		(ppmv)	
27	Lyon Development			Chloroform	0.060	0.071				
10	Mission Canyon	١	N C	Chloroform	0.0005	0.0021	0.019			
5	Mountaingate	1	N (Chloroform	0.0015	0.0043	0.0043			
5	Mountaingate	1		Chloroform	0.0015	0.0043				
5	Mountaingate	1		Chloroform	0.0015	0.0043				
58	Otay Annex	i	j	Chloroform	0.00050	0.00054	0.00054			
58	Otay Landfill	١	Y C	Chloroform	0.00050	0.00068	0.00068			
22	Palos Verdes	1	Y C	Chloroform	0.0041	0.018	0.12			
22	Palos Verdes Palos Verdes		r (Chloroform	0.00	0.01				
22	Palos Verdes		Y C	Chloroform	0.00	0.01				
22	Palos Verdes	1	Y C	Chloroform	0.01	0.04				
22	Palos Verdes	2	Y C	Chloroform	0.00	0.02				
22	Palos Verdes Palos Verdes			Chloroform	0.00	0.02				
22	Palos Verdes		r c	Chloroform	0.00	0.02				
22	Palos Verdes	Y	Y C	Chloroform	0.01	0.04				
22	Palos Verdes	1	Y C	Chloroform	0.01	0.03				
22	Palos Verdes	1	Y C	Chloroform	0.00	0.02				
51	Palos Verdes Palos Verdes			Chloroform	0.25	0.80				
20	Penrose	i	J	Chloroform	0.02	0.019	0.030			
20	Penrose	L	J	Chloroform	0.02	0.019				
20	Penrose	l) (Chloroform	0.02	0.034				· · · · ·
20	Penrose	1		Chloroform	0.02	0.034				
20	Penrose	i	Ĵ	Chloroform	0.02	0.035				
20	Penrose	ι	J	Chloroform	0.02	0.030				
20	Penrose	ι	J (Chloroform	0.02	0.029				I
18	Puente Hills Ruente Hills	r N	N C	Chloroform	0.17	0.21	0.22			
18	Puente Hills		i č	Chloroform	0.17	0.22				
18	Puente Hills	N N	N C	Chloroform	0.17	0.22				
24	Puente Hills	N	N C	Chloroform	0.24	0.35				
24	Puente Hills	1		Chloroform	0.030	0.042				
59	Rockingham			Chloroform	0.20	0.27	0.27			
1	Scholl Canyon	Ň	N C	Chloroform	0.027	0.043	0.56			
1	Scholl Canyon	1	N C	Chloroform	0.47	1.08				
9	Sheldon Street	l	J (Chloroform	0.00035	0.00070	0.00070	Here	Chloromethane	0.000
23	Toyon Canyon			Chloroform	0.00035	0.00070	0.069	Median		2.093
43	CBI10	i	j	Chloromethane	0.90	0.92	0.92	Standard Deviation		2.708
43	CBI11	ι	J	Chloromethane	0.60	0.61	0.61	Variance		7.331
43	CBI12	l	J (Chloromethane	0.10	0.11	0.11	Kurtosis		3.548
43	CBI13 CBI14	1		Chloromethane	1.12	0.91	0.91	Bange		1.995
43	CBI17	i	Ĵ	Chloromethane	1.25	1.26	1.26	Minimum		0.110
43	CBI18	ι	J	Chloromethane	0.18	0.18	0.18	Maximum		10.302
43	CBI19	L	J (Chloromethane	0.20	0.20	0.20	Sum		43.957
43	CBI21	l	J	Chloromethane	0.28	0.28	0.28	Count		21.000
43	CBI23 CBI24	1		Chloromethane	0.70	0.71	0.71	Normality Test (p)		<.01
43	CBI25	ι	J	Chloromethane	7.19	7.25	7.25		Dichlorobenzene	
43	CBI26	L	J C	Chloromethane	1.20	1.21	1.21	Mean		0.213
43	CBI27	l	J	Chloromethane	1.33	1.34	1.34	Median Standard Deviation		0.213
43	CBI32	L I	, (Chloromethane	1.34 6.10	6.13	6.13	Variance		0.165
43	CBI4	i	j	Chloromethane	3.73	3.92	3.92	Kurtosis		N/A
43	CBI5	ι	J	Chloromethane	0.55	0.56	0.56	Skewness		N/A
43	CBI6	l	J C	Chloromethane	0.24	0.24	0.24	Range		0.233
43	CBI8	1		Chloromethane	3.60	3.64	3.64	Maximum		0.090
55	Chicopee	i	J C	Dichlorobenzene	0.08	0.10	0.10	Sum		0.426
56	Coyote Canyon	ι	J	Dichlorobenzene	0.23	0.31	0.33	Count		2.000
56	Coyote Canyon	- L		Jichlorobenzene	0.26	0.35	12.0		Dichlorodiffuoren - **	200
43	CBI11	L L	, L J D	Dichlorodifluoromethane	7.45	7.53	7.53	Mean	Dichiorouttiuorometha	15.670
43	CBI12	i	J [Dichlorodifluoromethane	1.30	1.43	1.43	Median		12.163
43	CBI14	L	J	Dichlorodifluoromethane	44.0	44.5	44.5	Standard Deviation		12.526
43	CBI15 CBI17	L .		Jichlorodilluoromethane	11.9	12.0	12.0 23 F	Variance		156.912
43	CBI18	L	, L ј Г	Dichlorodifluoromethane	23.3	12.2	12.2	Skewness		-0.227
43	CBI19	l		Dichlorodifluoromethane	14.3	14.3	14.3	Range		44.333
43	CBI2	l	J C	Dichlorodifluoromethane	0.50	0.50	0.50	Minimum		0.192
43	CBI20	L.	J [Dichlorodifluoromethane	8.85	8.90	8.90	Maximum		44.524
43	CBI21 CBI22	L I	, E	Dichlorodifluoromethane	33.0	33.2 13.4	33.2 13.4	Sum		391.747
43	CBI24	1	- Y D	Dichlorodifluoromethane	16.0	16.2	16.2	Normality Test (p)		<.20

								Summon (itatiatics of	Site Averages
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)	Summary S	(ppmv)	Site Averages
43	CBI26		U	Dichlorodifluoromethane	11.5	11.5	11.5			
43	CBI2/		U	Dichlorodifluoromethane	24.5	24.6	24.6	Maan	Dichlorofluoromethan	10 7.242
43	CBI31		0	Dichlorodifluoromethane	19.0	19.0	19.0	Median		4 399
43	CBI32	i	Ŭ	Dichlorodifluoromethane	34.5	34.7	34.7	Standard Deviation		10.825
43	CBI33		U	Dichlorodifluoromethane	8.90	8.92	8.92	Variance		117.182
43	CBI34	I.	U	Dichlorodifluoromethane	2.05	2.05	2.05	Kurtosis		4.227
43	CBI5		U	Dichlorodifluoromethane	4.90	4.95	4.95	Skewness		2.019
43	CBI6		U	Dichlorodifluoromethane	37.5	37.8	37.8	Range		25.885
43	CBI8		0	Dichlorodifluoromethane	0.19	0.19	0.19	Maximum		26 321
43	CBI9		Ŭ	Dichlorodifluoromethane	30.0	30.3	30.3	Sum		36.711
43	CBI1		U	Dichlorofluoromethane	4.28	4.40	4.40	Count		5.000
43	CBI13	1	U	Dichlorofluoromethane	0.36	0.44	0.44	Normality Test (p)		<.05
43	CBI14	1	U	Dichlorofluoromethane	5.01	5.07	5.07	Geometric Mean		2.622
43	CBI30		U	Dichlorofluoromethane	0.48	0.48	0.48			
43	CBI8		U	Dichlorofluoromethane	26.1	26.3	26.3			
53	Altamont		0	Dichloromethane	13.0	39.0 15.1	21.4			
54	Arbor Hills	i	Ŭ	Dichloromethane	3.55	3.63	3.16			
54	Arbor Hills		U	Dichloromethane	2.84	2.87				
54	Arbor Hills	1	U	Dichloromethane	2.92	2.98				
43	CBI10		U	Dichloromethane	20.0	20.4	20.4			
43	CBI11		U	Dichloromethane	128	129	129			
43	CBI12 CBI13		U	Dichloromethane	3.25	3.58	3.58			
43	CBI14		U	Dichloromethane	38.8	39.3	39.3			
43	CBI15		U	Dichloromethane	0.20	0.20	0.20			
43	CBI16		Y	Dichloromethane	0.70	0.71	0.71		Dichloromethane	-
43	CBI17		U	Dichloromethane	8.00	8.08	8.08	Mean		19.339
43	CBI18		U	Dichloromethane	14.0	14.3	14.3	Median		14.286
43	CBI19		U	Dichloromethane	3.00	3.01	3.01	Standard Deviation		23.565
43	CBI2		U	Dichloromethane	9.25	9.31	9.31	Kurtosis		12 485
43	CBI21		- U	Dichloromethane	44.0	44.4	44.4	Skewness		3.012
43	CBI22	1	U	Dichloromethane	0.33	0.33	0.33	Range		128.716
43	CBI23	1	U	Dichloromethane	14.0	14.9	14.9	Minimum		0.202
43	CBI24		Y	Dichloromethane	29.9	30.4	30.4	Maximum		128.918
43	CBI25		U	Dichloromethane	24.5	24.7	24.7	Sum		715.538
43	CBI26		0	Dichloromethane	2.00	2.01	2.01	Normality Test (n)		37.000
43	CBI30		u	Dichloromethane	148	149	149	Normality Test (p)		01
43	CBI32		U	Dichloromethane	35.0	35.2	35.2			
43	CBI4	1	U	Dichloromethane	18.4	19.3	19.3			
43	CBI5		U	Dichloromethane	6.30	6.36	6.36			
43	CBI6		U	Dichloromethane	17.0	17.1	17.1			
43	CBIR		0	Dichloromethane	3.45	3.53	3.03			
43	CBI9		u	Dichloromethane	50.0	50.5	50.5			
55	Chicopee		- U	Dichloromethane	11.9	15.3	15.3			
56	Coyote Canyon		U	Dichloromethane	7.35	9.79	11.3			
56	Coyote Canyon	1	U	Dichloromethane	9.65	12.9				
56	Coyote Canyon		U	Dichloromethane	7.58	10.1	12.5			
56	Coyote Canyon		U	Dichloromethane	7.12	9.48				
56	Covole Canyon		ŭ	Dichloromethane	9.50	14.3				
56	Coyote Canyon		- U	Dichloromethane	9.70	14.1				
56	Coyote Canyon	i i	U	Dichloromethane	9.60	14.2				ļ
57	Durham Rd.	1	U	Dichloromethane	6.00	7.89	7.62			
57	Durham Rd.		U	Dichloromethane	6.10	7.35				
57	Durham Rd.		U	Dichloromethane	6.40	7.62	7.04			
41	Guadalupe Otau Annou		U	Dichloromethane	6.10	7.31	7.31			
84	Otay Landfill		Y	Dichloromethane	22.8	24.6	24.6			
59	Rockingham		U	Dichloromethane	24.9	33.1	33.1			
54	Arbor Hills	i	U	Dimethyl disulfide	0.11	0.11	0.11			ł
54	Arbor Hills	1	U	Dimethyl disulfide	0.11	0.11				1
54	Arbor Hills	1	U	Dimethyl sulfide	3.07	3.12	3.20			1
54	Arbor Hills Landfill Azusa Land Reclamation		U LI	Dimethyl sulfide	3.23	3.29	73.5			
15	Azusa Land Reclamation		<u>.</u>	Dimethyl sulfide	*/.0	49.0	13.3		Dimethyl sulfide	
15	Azusa Land Reclamation	i	- U	Dimethyl sulfide	73.0	76.1		Mean		13.488
15	Azusa Land Reclamation	i	U	Dimethyl sulfide	74.0	77.2		Median		7.821
15	Azusa Land Reclamation		U	Dimethyl sulfide	74.0	77.2		Standard Deviation		21.553
15	Azusa Land Reclamation	1	U	Dimethyl sulfide	76.0	79.3		Variance		464.516
15	Azusa Land Reclamation			Dimethyl sulfide	75.0	78.2	14.01	Kurtosis		8.810
12	BKK Landfill		Y Y	Dimethyl sulfide	0.70	10.02	14.61	Bance		2.906
12	BKK Landfill		Ý	Dimethyl sulfide	6.90	14.07		Minimum		73.305
12	BKK Landfill		· Y	Dimethyl sulfide	5.80	12.50		Maximum		73 455
12	BKK Landfill		Y	Dimethyl sulfide	6.30	13.38		Sum		134.882

								0	1	Cite Automation
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)	Summary Statisti	cs of (ppmv)	Site Averages
12	BKK Landfill			Dimethyl sulfide Dimethyl sulfide	6.60	19.08		Count Normality Test (n)		10.000
12	BKK Landfill		,	Dimethyl sulfide	6.70	14.35		Normality Test (p)		01
12	BKK Landfill	1	()	Dimethyl sulfide	6.70	14.92			Ethane	
6	Bradley Pit	L	,	Dimethyl sulfide Dimethyl sulfide	7.00	9.59	9.59	Median		889.150
56	Coyote Canyon		J	Dimethyl sulfide	0.05	0.07	0.15	Standard Deviation		598.811
56	Coyote Canyon	L	J	Dimethyl sulfide	0.17	0.23		Variance		358574.756
56	Coyote Canyon	L	J	Dimethyl sulfide	8.70	12.9	11.7	Kurtosis		-1.057
24	Coyote Canyon Puente Hills	L .	J	Dimethyl sulfide	7.90	10.5	9.12	Skewness Rance		-0.135 1779 719
24	Puente Hills	N	4	Dimethyl sulfide	8.00	11.5	0.12	Minimum		21.900
24	Puente Hills	N	4	Dimethyl sulfide	7.80	10.8		Maximum		1801.619
24	Puente Hills	N.	4	Dimethyl sulfide	7.90	10.9		Sum		8002.349
1	Scholl Canvon		4	Dimethyl sulfide	1.30	2.97	2 97	Normality Test (n)		> 20
39	Sunshine Canyon	i	J	Dimethyl sulfide	6.20	6.53	6.53			
43	CBI13	L	J	Ethane	930	1125	1125			
43	CBI14 CBI24	,	1	Ethane	1780	1802	1802		Ethanol	
43	CBI25	Ĺ	J	Ethane	1420	1431	1431	Mean	Eddinor	27.205
43	CBI30	L	J	Ethane	930	938	938	Median		27.205
43	CBI4	L	J	Ethane	877	921	921	Standard Deviation		30.005
102	Eresh Kills Landfill		1	Ethane	1240	21.9	21.9	Kurtosis		900.261 N/A
103	Puente Hills	ĩ	j	Ethane	22.3	240.4	240.4	Skewness		N/A
41	Guadalupe	L	J	Ethanol	5.00	5.99	5.99	Range		42.433
60	Sunshine Canyon	L	J	Ethanol	46.0	48.4	48.4	Minimum		5.988
54	Arbor Hills	L L	J	Ethyl benzene	19.6	19.8	13.4	Sum		54.409
54	Arbor Hills	L	J	Ethyl benzene	19.0	19.4		Count		2.000
54	Arbor Hills	L	J	Ethyl benzene	18.7	19.1	19.4			
54	Arbor Hills		J	Ethyl benzene	19.0	19.0				
43	CBI1	L	J	Ethyl benzene	6.15	6.32	6.32			
43	CBI10	L	J	Ethyl benzene	5.70	5.81	5.81			
43	CBI11 CBI12	L	J	Ethyl benzene Ethyl benzene	5.00	5.06 4.47	5.06			
43	CBI13	i.	J	Ethyl benzene	37.0	44.7	44.7			
43	CBI14	L	J	Ethyl benzene	4.20	4.25	4.25			
43	CBI15	L	J	Ethyl benzene	0.23	0.23	0.23			
43	CBI16 CBI17	1 L	r J	Ernyi benzene Ethyl benzene	0.15	0.15	0.15			
43	CBI18	ī	J	Ethyl benzene	7.00	7.14	7.14			
43	CBI19	L	J	Ethyl benzene	0.20	0.20	0.20			
43	CBI2 CBI20	L	J	Ethyl benzene	0.55	0.55	0.55			
43	CBI21	L L	J	Ethyl benzene	0.25	0.25	0.25			
43	CBI22	L	J	Ethyl benzene	5.27	5.32	5.32		Ethyl benzene	
43	CBI23	L	J	Ethyl benzene	4.00	4.25	4.25	Mean		11.417
43	CBI24 CBI25	1 L	r J	Ethyl benzene Ethyl benzene	35.4 48.1	35.9 48.5	30.9 48.5	Standard Deviation		4.609
43	CBI26	ī	J	Ethyl benzene	0.70	0.70	0.70	Variance		233.648
43	CBI27	Ļ	J	Ethyl benzene	3.73	3.76	3.76	Kurtosis		2.991
43	CBI28 CBI29	L	J	Ethyl benzene	0.80	0.80	0.80	Skewness		1.901
43	CBI3		j	Ethyl benzene	4.40	4.41	4.41	Minimum		0.152
43	CBI30	L	J I	Ethyl benzene	23.4	23.6	23.6	Maximum		62.105
43	CBI31	L	J	Ethyl benzene	4.60	4.61	4.61	Sum		445.267
43	CBI33	L 1	,	Ethyl benzene	2.73	2.74	2.74	Normality Test (n)		39.000
43	CBI4	L	J	Ethyl benzene	16.2	17.0	17.0			
43	CBI5	L	J	Ethyl benzene	6.75	6.82	6.82			
43	CBI6		J	Ethyl benzene	0.30	0.30	0.30			
43	CBI8		J	Ethyl benzene	7.22	7.28	7.28			
43	CBI9	i	J	Ethyl benzene	3.80	3.84	3.84			
41	Guadalupe	L	I	Ethyl benzene	3.10	3.71	3.71			
27	Lyon Development	. L	, 1	Etnyi benzene Ethyl benzene	5.50 2.90	6.47 3.45	4.61			
27	Lyon Development	i i	j –	Ethyl benzene	3.90	3.90				
59	Rockingham	L	J	Ethyl benzene	8.00	10.6	10.6			
60	Sunshine Canyon Arbor Hills	i	1	Ethyl benzene Ethyl mercantan	59.0	62.1	62.1		Ethyl mercanion	
54	Arbor Hills		J	Ethyl mercaptan	0.13	0.13	0.21	Mean	_unyi mercapian	2.283
12	BKK Landfill	1	()	Ethyl mercaptan	1.90	4.26	5.39	Median		1.250
12	BKK Landfill	2		Ethyl mercaptan	1.90	4.19		Standard Deviation		2.736
12	BKK Landfill			Enyi mercaptan Ethyl mercaptan	2.20	4.75 3.66		vanance Kurtosis		7.487 N/A
12	BKK Landfill		(Ethyl mercaptan	2.30	4.88		Skewness		1.457
12	BKK Landfill	1	()	Ethyl mercaptan	2.90	8.38		Range		5.172

								0	Obstistion of	Cite Augusta
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv) Site Avg.** (ppmv)	Summary	statistics of (ppmv)	Site Averages
12	BKK Landfill)	(Ethyl mercaptan	3.10	6.75		Minimum		0.214
12	BKK Landfill			Ethyl mercaptan	2.60	5.57		Maximum		5.385
56	Covote Canvon	,	J	Ethyl mercaptan	0.40	0.60	1.25	Count		3.000
56	Coyote Canyon	ī	J	Ethyl mercaptan	1.40	1.90				
53	Altamont	L	J	Ethylene dibromide	0.00050	0.00060	0.00059		Ethylene dibromide	
53	Altamont	L	J	Ethylene dibromide	0.00050	0.00058	0.00063	Mean		6.126E-004
57	Durham Rd		1	Ethylene dibromide	0.00050	0.00070	0.00063	Standard Deviation		2 930E-005
57	Durham Rd.	i	J	Ethylene dibromide	0.00050	0.00060		Variance		8.583E-010
41	Guadalupe	L	J	Ethylester acetic acid	34.1	40.8	40.8	Kurtosis		N/A
41	Guadalupe	L	J	Ethylester butanoic acid	25.6	30.7	30.7	Skewness		N/A
41	Guadalupe	L L	J	Ethylester propanoic acid	4.70	5.63	5.63	Range		4.143E-005
43	CBI10		, I	Fluorotrichloromethane	2.85	2.88	2.88	Maximum		6 333E-004
43	CBI12	L.	J	Fluorotrichloromethane	0.48	0.53	0.53	Sum		1.225E-003
43	CBI13	L	J	Fluorotrichloromethane	0.66	0.80	0.80	Count		2.000
43	CBI14	L	J	Fluorotrichloromethane	1.35	1.37	1.37		Photo Making and the second	
43	CBI16		/	Fluorotrichloromethane	0.73	0.74	0.74	Mean	Fluorotrichloromethane	1.602
43	CBI17	L	J	Fluorotrichloromethane	2.35	2.37	2.37	Median		0.756
43	CBI18	L.	J	Fluorotrichloromethane	1.30	1.33	1.33	Standard Deviation		2.586
43	CBI19	L	J	Fluorotrichloromethane	1.05	1.05	1.05	Variance		6.689
43	CBI20	L	J	Fluorotrichloromethane	3.25	3.27	3.27	Kurtosis		10.640
43	CBI21 CBI22	L I	1	Fluorotrichloromethane	1.08	1.09	1.09	Skewness Range		3.182
43	CBI23		-	Fluorotrichloromethane	2.10	2.23	2.23	Minimum		0.061
43	CBI24	1	(Fluorotrichloromethane	0.06	0.06	0.06	Maximum		11.984
43	CBI25	L	J	Fluorotrichloromethane	0.77	0.78	0.78	Sum		44.904
43	CBI26	L	J	Fluorotrichloromethane	0.45	0.45	0.45	Count		27.000
43	CBI27 CBI30		J	Fluorotrichloromethane	0.50	0.50	0.50	Normality Test (p)		<.01
43	CBI32		j	Fluorotrichloromethane	7.90	7.94	7.94			
43	CBI33	L	J	Fluorotrichloromethane	0.10	0.10	0.10			
43	CBI4	L	J	Fluorotrichloromethane	0.72	0.76	0.76			
43	CBIS		J	Fluorotrichloromethane	0.25	0.25	0.25			
43	CBI7		J	Fluorotrichloromethane	0.20	0.20	0.20			
43	CB18	L	J	Fluorotrichloromethane	0.63	0.64	0.64			
43	CBI9	L	J	Fluorotrichloromethane	1.10	1.11	1.11			
43	CBI11 CBI12	L	J	Hexane	6.50	6.57	6.57	Maan	Hexane	9 207
43	CBI14		1	Hexane	2.49	21.1	21.1	Median		6.572
43	CBI16	Ň	í	Hexane	2.40	2.44	2.44	Standard Deviation		6.777
43	CBI17	L	J	Hexane	3.00	3.03	3.03	Variance		45.934
43	CBI18	L	J	Hexane	4.17	4.26	4.26	Kurtosis		1.031
43	CBI19	L L	,	Hexane	1.50	1.51	1.51	Skewness		1.288
43	CBI25	L	J	Hexane	13.4	13.5	13.5	Minimum		1.002
43	CBI27	L.	J	Hexane	7.13	7.18	7.18	Maximum		25.253
43	CBI30	Ļ	J	Hexane	6.06	6.12	6.12	Sum		159.536
43	CBI31	L	J	Hexane	1.00	1.00	1.00	Count		19.000
43	CBI32		J	Hexane	10.0	3.84	3.84	Normality Test (p)		<.05
43	CBI4	i	j	Hexane	7.30	7.67	7.67			
43	CBI5	L	J	Hexane	11.3	11.4	11.4			
43	CBI6	L	1	Hexane	7.00	7.05	7.05			
43	CBI9	L I	1	Hexane	25.0	25.3	25.3			
54	Arbor Hills	l	- J	Hydrogen sulfide	20.7	21.1	20.9		Hydrogen sulfide	
54	Arbor Hills	L	J	Hydrogen sulfide	20.4	20.8		Mean		36.604
15	Azusa Land Reclamation	L	J	Hydrogen sulfide	28.0	29.2	29.2	Median		35.461
15	Azusa Land Reclamation	L	J	Hydrogen sulfide	28.0	29.2	29.2	Standard Deviation		24.165
15	Azusa Land Reclamation	L.		Hydrogen sulfide	36.0	37.5	37.5	Kurtosis		-0 128
15	Azusa Land Reclamation	Ĺ.	J	Hydrogen sulfide	39.0	40.7	40.7	Skewness		0.652
15	Azusa Land Reclamation	L	J	Hydrogen sulfide	36.0	37.5	37.5	Range		82.093
12	BKK Landfill)	r	Hydrogen sulfide	3.70	8.30	13.0	Minimum		0.012
12	BKK Landfill			Hydrogen Sullide	5.30	11.7		Sum		82.105 549.056
12	BKK Landfill		, ,	Hydrogen sulfide	0.50	1.08		Count		15.000
12	BKK Landfill	Ň	(Hydrogen sulfide	2.30	4.88		Normality Test (p)		<.01
12	BKK Landfill	١	(Hydrogen sulfide	5.80	16.8				
12	BKK Landfill BKK Landfill)		Hydrogen sulfide	7.60	16.6				
12	BKK Landfill	1		Hydrogen sulfide	8.40	18.0				
6	Bradley Pit	i	J	Hydrogen sulfide	64.0	87.7	80.8			
6	Bradley Pit	L	J	Hydrogen sulfide	54.0	74.0				1
7	Calabasas)	(Hydrogen sulfide	11.3	17.2	17.2			
56	Coyote Canyon	L	J I	Hydrogen sulfide	46.4	68.5 56.5	62.5			
00	Coyote CallyUII	L L	,	r iyurogen aunud	42.4	00.0				

								Summarv	Statistics of	Site Averages
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv) Site Avg.** (ppmv)	Carrinary	(ppmv)	
51	Palos Verdes		Y	Hydrogen sulfide	20.0	51.2	51.2			
1	Scholl Canvon		N	Hydrogen sulfide	5.10	11.7	0.012			
60	Sunshine Canvon		Ü	Hydrogen sulfide	78.0	82.1	82.1			
12	BKK Landfill		Y	i-Propyl mercaptan	1.80	4.04	4.60			
12	BKK Landfill		Y	i-Propyl mercaptan	1.60	3.53				
12	BKK Landfill		Y	i-Propyl mercaptan	1.70	3.67				
12	BKK Landfill		Ϋ́.	i-Propyl mercaptan	1.70	3.00 4.03				
12	BKK Landfill		Ý	i-Propyl mercaptan	2.50	7.23			Mercury (total)	
12	BKK Landfill		Y	i-Propyl mercaptan	2.30	5.01		Mean	, , ,	2.529E-004
12	BKK Landfill		Y	i-Propyl mercaptan	2.40	5.14		Median		1.340E-004
12	BKK Landfill		Y	i-Propyl mercaptan	2.30	5.12		Standard Deviation		3.768E-004
41	Guadalupe Ereek Kille Lendfill		U	Isooctanol Memuru (total)	7.20	8.62	8.62	Variance		1.420E-007
94	Landfill A		ŭ	Mercury (total)	0.00149	0.000149	0.000149	Skewness		3 153E+000
94	Landfill B		Ū	Mercury (total)	0.000134	0.000134	0.000134	Range		1.477E-003
94	Landfill C		U	Mercury (total)	0.000134	0.000134	0.000134	Minimum		1.300E-005
94	Landfill D		U	Mercury (total)	0.000134	0.000134	0.000134	Maximum		1.490E-003
94	Landfill E		U	Mercury (total)	0.000134	0.000134	0.000134	Sum		3.540E-003
94	Landfill F		0	Mercury (total)	0.000134	0.000134	0.000134	Count		14.000
94	Landfill H		U	Mercury (total)	0.000134	0.000134	0.000134			
94	Landfill I		U	Mercury (total)	0.000134	0.000134	0.000134			
95	Landfill A		U	Mercury (total)	0.000545	0.000545	0.000545		Methyl ethyl ketone	
95	Landfill B		U	Mercury (total)	0.000246	0.000246	0.000246	Mean		12.609
95	Landfill C Meunteingete Londfill		U	Mercury (total)	0.00004	0.00004	0.00004	Median Standard Deviation		7.085
41	Guadalune		ŭ	Methyl cyclohexane	26.0	31 1	31.1	Variance		166 126
43	CBI10		Ū	Methyl ethyl ketone	5.00	5.10	5.10	Kurtosis		7.547
43	CBI11		U	Methyl ethyl ketone	4.95	5.01	5.01	Skewness		2.463
43	CBI12		U	Methyl ethyl ketone	12.0	13.2	13.2	Range		57.416
43	CBI14 CBI15		U	Methyl ethyl ketone Methyl ethyl ketone	1.48	1.50	1.50	Minimum		1.498
43	CBI18		ŭ	Methyl ethyl ketone	3.75	7.83	7.83	Sum		277 401
43	CBI20		Ŭ	Methyl ethyl ketone	11.0	11.1	11.1	Count		22.000
43	CBI22		U	Methyl ethyl ketone	31.3	31.6	31.6	Normality Test (p)		<.05
43	CBI23		U	Methyl ethyl ketone	5.50	5.84	5.84			
43	CBI24		Y	Methyl ethyl ketone	18.8	19.0	19.0			
43	CBI26		0	Methyl ethyl ketone	5.00	5.04	5.03			
43	CBI3		Ŭ	Methyl ethyl ketone	1.60	1.60	1.60			
43	CBI31		U	Methyl ethyl ketone	21.0	21.0	21.0			
43	CBI32		U	Methyl ethyl ketone	3.65	3.67	3.67			
43	CBI33		U	Methyl ethyl ketone	6.33	6.34	6.34			
43	CBI5		0	Methyl ethyl ketone Methyl ethyl ketone	20.0	20.2	20.2			
43	CBI7		Ŭ	Methyl ethyl ketone	57.5	58.9	58.9			
43	CBI9		Ū	Methyl ethyl ketone	15.0	15.2	15.2			
41	Guadalupe		U	Methyl ethyl ketone	13.6	16.3	16.3			
59	Rockingham		U	Methyl ethyl ketone	10.8	14.4	14.4		Methyl isobutyl keton	8
43	CBI11		0	Methyl isobutyl ketone Methyl isobutyl ketone	1.15	1.16	1.16	Mean		2.923
43	CBI12		0	Methyl isobutyl ketone	0.50	0.55	0.55	Standard Deviation		3.066
43	CBI18		ŭ	Methyl isobutyl ketone	2.50	2.55	2.55	Variance		9.402
43	CBI20		U	Methyl isobutyl ketone	4.00	4.02	4.02	Kurtosis		4.324
43	CBI22		U	Methyl isobutyl ketone	3.33	3.36	3.36	Skewness		1.958
43	CBI23		U	Methyl isobutyl ketone Methyl isobutyl ketone	1.00	1.06	1.06	Range		11.328
43	CBI27		i.	Methyl isobutyl ketone	1.00	1.01	1.01	Maximum		0.454
43	CBI3		Ŭ	Methyl isobutyl ketone	0.70	0.70	0.70	Sum		43.849
43	CBI31		U	Methyl isobutyl ketone	1.00	1.00	1.00	Count		15.000
43	CBI33		U	Methyl isobutyl ketone	3.33	3.34	3.34	Normality Test (p)		<.05
43	CBI5		0	Methyl isobutyl ketone	6.50	6.57	6.57	Geometric Mean		1.870
43	CBIA		0	Methyl isobutyl ketone	11.00	11.78	11.78		Methyl mercantan	
54	Arbor Hills		ŭ	Methyl mercaptan	0.29	0.30	0.52	Mean	weary mercaptan	4.334
54	Arbor Hills		U	Methyl mercaptan	0.73	0.74		Median		2.707
54	Arbor Hills		U	Methyl mercaptan	0.51	0.54	0.54	Standard Deviation		4.488
15	Azusa Land Reclamation		U	Methyl mercaptan	12.0	12.5	9.67	Variance		20.144
15	Azusa Land Reclamation		0	Methyl mercaptan	11.0	11.5		Skewness		0.228
15	Azusa Land Reclamation		ŭ	Methyl mercaptan	10.0	10.4		Range		1.212
15	Azusa Land Reclamation		U	Methyl mercaptan	10.0	10.4		Minimum		0.519
15	Azusa Land Reclamation		U	Methyl mercaptan	11.0	11.5		Maximum		12.632
15	Azusa Land Reclamation		U	Methyl mercaptan	0.88	0.92		Sum		34.674
12	BKK Landfill		Y	Methyl mercaptan	2.50	5.61	4.60	Count		8.000
12	BKK Landfill		Ý	Methyl mercaptan	2.10	5.18		Geometric Mean		<.20 2.490
12	BKK Landfill		Ŷ	Methyl mercaptan	1.30	2.80		Source in our		2.430
12	BKK Landfill		Y	Methyl mercaptan	1.60	3.40				

								Summary Sta	tistics of	Site Averages
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)	,	(ppmv)	
12	BKK Landfill BKK Landfill		Y	Methyl mercaptan Methyl mercaptan	2.10	6.07				
12	BKK Landfill		· Y	Methyl mercaptan	2.00	4.50				
12	BKK Landfill	•	Y	Methyl mercaptan	2.10	4.68				
6	Bradley Pit	L.	U	Methyl mercaptan	2.20	3.01	3.01			
56	Coyote Canyon Ducate Hills	l l	U	Methyl mercaptan	1.80	2.40	2.40			
24	Puente Hills		N	Methyl mercaptan	0.90	1.29	1.50			
24	Puente Hills	1	N	Methyl mercaptan	1.30	1.81				
24	Puente Hills	1	N	Methyl mercaptan	1.30	1.80				
50	Puente Hills		N	Methyl mercaptan	0.0014	0.0017	10.6			
41	Guadalupe		u	Methylester acetic acid	5 10	6 11 F	6.11			
41	Guadalupe	ι	U	Methylester butanoic acid	49.6	59.4	59.4	N	MOC (no & unknown co	-disp.)
54	Arbor Hills	ι	U	NMOC (as hexane)	1435	1469	1539	Mean		595.381
54	Arbor Hills	l	U	NMOC (as hexane)	1833	1850		Median		427.486
12	Arbor Hills BKK Landfill		V V	NMOC (as hexane)	1348	1374	4533	Variance		457.183
12	BKK Landfill	•	Ŷ	NMOC (as hexane)	1408	3306	4000	Kurtosis		0.224
12	BKK Landfill		Y	NMOC (as hexane)	1543	3392		Skewness		0.993
6	Bradley Pit		U	NMOC (as hexane)	518	704	780	Range		1481.062
6	Bradley Pit Bradley Dit		U	NMOC (as hexane)	/5/	947		Minimum		104.938
17	Bradley Pit	i i	Ŭ	NMOC (as hexane)	407	509		Sum		10716 865
17	Bradley Pit	i	U	NMOC (as hexane)	848	1268		Count		18.000
17	Bradley Pit	L.	U	NMOC (as hexane)	833	1282		Normality Test (p)		<.10
17	Bradley Pit		U	NMOC (as hexane)	735	910			NINGO (~~	
17	Bradley Pit Bradley Pit		U	NMOC (as hexane)	202	306		Mean	NMUC (co-disposal	2423 345
19	Bradley Pit	i	Ŭ	NMOC (as hexane)	555	707		Median		2439.391
19	Bradley Pit	L. L	U	NMOC (as hexane)	723	932		Standard Deviation		2017.426
19	Bradley Pit	L	U	NMOC (as hexane)	717	889		Variance		4070006.967
41	Bradley Pit		U	NMHC (as hexane)	285	412	940	Kurtosis		-2.969
26	CA	1	U	NMHC (as hexane)	912	1586	1586	Range		4185 168
7	Calabasas		Y	NMOC (as hexane)	1372	2432	2439	Minimum		348.00
7	Calabasas	•	Y	NMOC (as hexane)	1247	2296		Maximum		4533.168
7	Calabasas		Y	NMOC (as hexane)	1435	2590	740	Sum		12116.725
13	Carson		U	NMOC (as hexane)	342	457	/12	Normality Test (n)		> 20
13	Carson		0	NMOC (as hexane)	600	1261				
26	FL	L	U	NMHC (as hexane)	314	319	319			
26	L Mission Conver	l	U	NMHC (as hexane)	210	234	234			
5	Mountaingate		N	NMOC (as hexane)	20	254	245			
5	Mountaingate	1	N	NMOC (as hexane)	70	202				
5	Mountaingate	1	N	NMOC (as hexane)	102	293				
5	Mountaingate		N	NMOC (as hexane)	80	230	450			
20	Palos Verdes		Y	NMOC (as hexane)	411	439	4337			
22	Palos Verdes	•	Ŷ	NMOC (as hexane)	562	2065				
22	Palos Verdes	,	Y	NMOC (as hexane)	190	731				
22	Palos Verdes		Y	NMOC (as hexane)	197	771				
51	Palos Verdes Palos Verdes		v.	NMOC (as hexane)	210	21910				
51	Palos Verdes	•	Y	NMOC (as hexane)	527	1677				
20	Penrose	L. L	U	NMOC (as hexane)	130	167	273			
20	Penrose	L. L	U	NMOC (as hexane)	147	185				
20	Penrose		U U	NMOC (as hexane)	322	548				
20	Penrose	ì	Ū	NMOC (as hexane)	99	240				
20	Penrose	L. L	U	NMOC (as hexane)	102	241				
20	Penrose		U	NMOC (as hexane)	117	233				
20 61	Pienfose		0	NMOC (as hexane)	138	268	166			
18	Puente Hills		N	NMOC (as hexane)	322	418	957			
18	Puente Hills	1	N	NMOC (as hexane)	368	496				
18	Puente Hills	1	N	NMOC (as hexane)	342	456				
18	Puente Hills Puente Hills		N	NMOC (as hexane)	308	408				
24	Puente Hills		N	NMOC (as hexane)	1035	1485				
24	Puente Hills		N	NMOC (as hexane)	852	1176				
24	Puente Hills	1	N	NMOC (as hexane)	903	1255				
50	Puente Hills	1	N	NMOC (as hexane)	1118	1355	470			
59	Scholl Canyon	,	N	TGNMHC (as nexane)	129	1/2	172			
1	Scholl Canyon		N	TGNMHC (hexane)	672	1166	000			
9	Sheldon Street	L. L	U	NMOC (as hexane)	480	621	364			
9	Sheldon Street	L.	U	NMOC (as hexane)	292	388				
9	Sheldon Street		U	NMOC (as hexane)	113	315				
3	Oneidon Otteet		•	ramoo (aa naxdiid)	43.7	100				

								0		Cite A
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)) Site Avg.** (ppmv)	Summary S	Statistics of (ppmv)	Site Averages
60	Sunshine Canyon		J NMOC (as hexane)		733	772	772			
23	Toyon Canyon	1	TGNMHC (hexane)		527	571	491			
23	Wi Wi		N I GNMHC (nexane) V NMHC (as beyane)		455	485	348			
43	CBI11	ı	J Pentane		3.25	3.29	3.29		Pentane	
43	CBI13	ι	J Pentane		0.58	0.70	0.70	Mean		9.753
43	CBI14	L.	J Pentane		11.1	11.2	11.2	Median		3.286
43	CBI16		Y Pentane		1.20	1.22	1.22	Standard Deviation		14.885
43	CBI17	l.	J Pentane		0.50	0.51	2.01	Variance		221.008
43	CBI19	, I	J Pentane		1.00	1.00	1.00	Skewness		1 959
43	CBI24	,	Y Pentane		0.39	0.40	0.40	Range		46.462
43	CBI26	ι	J Pentane		0.50	0.50	0.50	Minimum		0.396
43	CBI27	ι	J Pentane		46.5	46.9	46.9	Maximum		46.858
43	CBI30	L.	J Pentane		3.96	4.00	4.00	Sum		165.793
43	CBI32	l.	J Pentane		9.00	9.05	9.05	Normality Test (p)		17.000
43	CBI5	, I	J Pentane		17.6	17.8	17.8	Normality Test (p)		01
43	CBI6	i	J Pentane		18.0	18.1	18.1			
43	CBI8	ı	J Pentane		0.67	0.68	0.68			
43	CBI9	ι	J Pentane		45.0	45.5	45.5			1
53	Altamont	L.	J Perchloroethylene		2.30	2.77	2.61		Perchloroethylene	0.701
53	Artamont Arbor Hille	l.	J Perchloroethylene		2.10	2.44	7.63	Median		8.704
54	Arbor Hills		I Perchloroethylene		7.74	7.85	7.05	Standard Deviation		14 360
54	Arbor Hills	i	J Perchloroethylene		6.98	7.12		Variance		206.200
15	Azusa Land Reclamation	ι	J Perchloroethylene		3.50	3.65	2.68	Kurtosis		10.513
15	Azusa Land Reclamation	ι	J Perchloroethylene		3.60	3.75		Skewness		3.228
15	Azusa Land Reclamation	L.	J Perchloroethylene		3.90	4.07		Range		65.463
15	Azusa Land Reclamation	l.	J Perchloroethylene		1.90	1.98		Minimum		0.011
15	Azusa Land Reclamation		I Perchloroethylene		2.30	3.02		Sum		517 077
15	Azusa Land Reclamation	i	J Perchloroethylene		0.33	0.34		Count		59.000
15	Azusa Land Reclamation	ι	J Perchloroethylene		1.40	1.46		Normality Test (p)		<.01
15	Azusa Land Reclamation	ı	J Perchloroethylene		3.30	3.44				
12	BKK Landfill	`	Y Perchloroethylene		24.0	52.9	64.5			
12	BKK Landfill		Y Perchloroethylene		14.0	32.9				
17	BKK Landhii Bradley Pit		r Perchloroethylene		49.0	108	10.4			
17	Bradley Pit	, I	J Perchloroethylene		14.0	21.5	10.4			
17	Bradley Pit	i	J Perchloroethylene		16.0	23.9				
17	Bradley Pit	ι	J Perchloroethylene		16.0	19.3				
17	Bradley Pit	l	J Perchloroethylene		6.00	7.51				
17	Bradley Pit	l	J Perchloroethylene		7.80	9.76				
19	Bradley Pit Bradley Pit	l.	J Perchloroethylene		0.20	7.09				
19	Bradley Pit	, I	J Perchloroethylene		3.80	5.30				
19	Bradley Pit	i	J Perchloroethylene		6.50	8.38				
41	Bradley Pit	ι	J Perchloroethylene		0.08	0.11				
6	Bradley Pit	ι	J Perchloroethylene		2.10	2.85				
6	Bradley Pit	L.	J Perchloroethylene		5.80	7.26				
7	Bradley Pit		D Perchioroethylene		1.40	1.92	20.2			
7	Calabasas		Perchloroethylene		25.0	45.1	29.2			
7	Calabasas	•	Y Perchloroethylene		18.0	32.5				
13	Carson	ı	J Perchloroethylene		0.039	0.082	0.055			
13	Carson	L	J Perchloroethylene		0.028	0.039				
13	Carson	l	J Perchloroethylene		0.033	0.044	100			
43	CBI10	l.	J Perchloroethylene		4.75	4.68	4.68			
43	CBI11	i	J Perchloroethylene		12.0	12.1	12.1			
43	CBI12	i	J Perchloroethylene		2.40	2.64	2.64			
43	CBI13	ı	J Perchloroethylene		0.74	0.90	0.90			
43	CBI14	ι	J Perchloroethylene		14.9	15.1	15.1			
43	CBI15	l	J Perchloroethylene		0.23	0.23	0.23			
43	CBI17		r Perchloroethylene		0.30	0.30	0.30			
43	CBI18	, I	J Perchloroethylene		5.63	5.74	5.74			
43	CBI19	i	J Perchloroethylene		0.25	0.25	0.25			
43	CBI2	i	J Perchloroethylene		0.40	0.40	0.40			
43	CBI20	ι	J Perchloroethylene		12.3	12.3	12.3			
43	CBI21	l	J Perchloroethylene		7.10	7.16	7.16			
43	CBI22	l	Perchloroethylene		3.70	3./3	3./3			
43	CBI24		Y Perchloroethylene		12.6	12.8	12.8			
43	CBI25	ι	J Perchloroethylene		8.20	8.27	8.27			
43	CBI26	i	J Perchloroethylene		0.40	0.40	0.40			
43	CBI27	ı	J Perchloroethylene		2.63	2.65	2.65			
43	CBI3	L	J Perchloroethylene		0.10	0.10	0.10			
43	CBI30	l	Perchloroethylene		6.82	6.88	6.88			
43	GBI31	l	Perchloroethylene		3.80	3.81	3.81			

								Summary Statistics	of	Site Averages
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)	Cuminally Chalotics	(ppmv)	ono / Wordgoo
43	CBI32 CBI33	U	Perchloroethylene		1.00	1.01	1.01			
43	CBI4	Ŭ	Perchloroethylene		12.1	12.7	12.7			
43	CBI5	U	Perchloroethylene		10.5	10.6	10.6			
43	CBI6 CBI7	U	Perchloroethylene		7.75	7.94	7.94			
43	CBI8	Ū	Perchloroethylene		65.0	65.5	65.5			
43	CBI9	U	Perchloroethylene		9.30	9.39	9.39			
55	Chicopee Covote Canvon	U 11	Perchloroethylene		1.59	2.04	2.04			
56	Coyote Canyon	Ŭ	Perchloroethylene		5.12	6.82	0.10			
56	Coyote Canyon	U	Perchloroethylene		4.73	6.30				
56	Coyote Canyon	U	Perchloroethylene		4.86	7.20				
56	Coyote Canyon Coyote Canyon	U	Perchloroethylene		9.18	13.6				
57	Durham Rd.	Ū	Perchloroethylene		7.60	10.0	10.2			
57	Durham Rd.	U	Perchloroethylene		8.20	9.88				
5/	Durham Kd. Guadalupa	U	Perchloroethylene		9.10	10.8	65.1			
27	Lyon Development	Ŭ	Perchloroethylene		2.90	3.41	2.90			
27	Lyon Development	U	Perchloroethylene		4.40	5.24				
27	Lyon Development	U	Perchloroethylene		0.040	0.040	0.01			
5	Mountaingate	N	Perchloroethylene		1.00	2.89	2.89			
5	Mountaingate	N	Perchloroethylene		1.10	3.18	3.18			
5	Mountaingate	N	Perchloroethylene		0.91	2.61	2.61			
5	Mountaingate Operating Industries	N	Perchloroethylene		1.10	3.16	3.16			
58	Otay Annex	Ű	Perchloroethylene		2.94	3.18	3.18			
84	Otay Landfill	Y	Perchloroethylene		3.47	4.71	4.71			
22	Palos Verdes	Y	Perchloroethylene		0.16	0.70	2.60			
22	Palos Verdes Palos Verdes	ř Y	Perchloroethylene		0.42	0.96				
22	Palos Verdes	Ŷ	Perchloroethylene		0.34	1.48				
22	Palos Verdes	Y	Perchloroethylene		0.69	3.01				
22	Palos Verdes Palos Verdes	Ŷ	Perchloroethylene		0.49	2.14				
22	Palos Verdes	Ý	Perchloroethylene		0.15	0.65				
22	Palos Verdes	Y	Perchloroethylene		0.42	1.83				
22	Palos Verdes Palos Verdes	Ŷ	Perchloroethylene		0.57	2.49				
22	Palos Verdes	Y	Perchloroethylene		0.52	2.27				
51	Palos Verdes	Y	Perchloroethylene		3.40	10.8				
51	Palos Verdes	Y	Perchloroethylene		2.50	6.39	0.70			
20	Penrose	U	Perchloroethylene		1.50	2.02	2.79			
20	Penrose	U	Perchloroethylene		3.00	5.16				
20	Penrose	U	Perchloroethylene		3.20	5.45				
20	Penrose	U 11	Perchloroethylene		0.91	2.21				
20	Penrose	Ū	Perchloroethylene		0.64	1.27				
20	Penrose	U	Perchloroethylene		1.00	1.95				
18	Puente Hills Ruente Hills	N	Perchloroethylene		7.90	10.3	24.25			
18	Puente Hills	N	Perchloroethylene		7.40	9.87				
18	Puente Hills	N	Perchloroethylene		5.90	7.81				
24	Puente Hills Puente Hills	N	Perchloroethylene		8.80	12.7				
50	Puente Hills	N	Perchloroethylene		96.0	116				
59	Rockingham	U	Perchloroethylene		9.00	12.0	12.0			
1	Scholl Canyon	N	Perchloroethylene		2.80	4.49	4.65			
9	Scholl Canyon Sheldon Street	N U	Perchloroethylene		2.10	4.81	2.09			
9	Sheldon Street	Ū	Perchloroethylene		4.10	8.16				
9	Sheldon Street	U	Perchloroethylene		0.04	0.08				
9	Sunshine Canvon	U	Perchloroethylene		0.04	0.08	13.7			
23	Toyon Canyon	Ň	Perchloroethylene		0.98	1.05	1.05			
43	CBI11	U	Propane		86.5	87.5	87.5		Propane	
43	CBI13 CBI14	U	Propane		9.76 48.8	11.8 49.4	11.8 49.4	Median		21.185
43	CBI16	Y	Propane		5.20	5.28	5.28	Standard Deviation		24.021
43	CBI17	Ŭ	Propane		7.00	7.07	7.07	Variance		577.005
43	CBI18	U	Propane		4.67	4.77	4.77	Kurtosis		1.836
43	CBI24	U Y	Propane		4.26	0.03 4.33	0.03 4.33	Range		1.552 86.831
43	CBI25	U	Propane		18.2	18.3	18.3	Minimum		0.631
43	CBI26	U	Propane		11.0	11.1	11.1	Maximum		87.462
43	CBI2/ CBI30	U	Propane		1.40	1.41	1.41	Sum		444.877
43	CBI32	U	Propane		6.50	6.53	6.53	Normality Test (p)		<.01
1										

								Summary Statistics of	Site Averages
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)	(ppmv)	
43	CBI33 CBI34		J	Propane	2.50	2.51	2.51		
43	CBI4	i	J	Propane	43.6	45.8	45.8		
43	CBI5	l	L	Propane	32.0	32.3	32.3		
43	CBI6	l	J	Propane	36.5	36.8	36.8		
43	CBI9		J	Propane	25.5	68.7	68.7		
41	Guadalupe	ι	J	Propane	4.60	5.51	5.51		
60	Sunshine Canyon	L	J	Propyl mercaptan	0.25	0.26	0.26		
41	Guadalupe	l	J	Propylester acetic acid	34.0	40.7	40.7		
19	Bradley Pit	i	J	t-1.2-Dichloroethene	12.0	15.5	7.89	t-1.2-Dichloroethe	ne
19	Bradley Pit	ι	J	t-1,2-Dichloroethene	9.30	11.8		Mean	7.090
19	Bradley Pit	l	J	t-1,2-Dichloroethene	2.40	3.64		Median	2.839
19	Bradley Pit	l	J	t-1,2-Dichloroethene	11.0	13.6		Standard Deviation	15.810
6	Bradley Pit		J	t-1,2-Dichloroethene	0.60	0.82		Kurtosis	249.957
6	Bradley Pit	ι	J	t-1,2-Dichloroethene	6.40	8.01		Skewness	5.009
7	Calabasas		Y.	t-1,2-Dichloroethene	52.0	93.9	93.9	Range	93.752
43	CBI10		J	t-1,2-Dichloroethene	6.20	6.32	6.32	Minimum	0.111
43	CBI12		J	t-1,2-Dichloroethene	5.27	5.81	5.81	Sum	255.256
43	CBI13	ı	J	t-1,2-Dichloroethene	0.13	0.16	0.16	Count	36.000
43	CBI14	L.	J	t-1,2-Dichloroethene	8.58	8.68	8.68	Normality Test (p)	<.01
43	CBI15 CBI17	l	J	t-1,2-Dichloroethene	0.83	0.84	0.84		
43	CBI18	i	J	t-1.2-Dichloroethene	7.82	7.98	7.98		
43	CBI19	ι	J	t-1,2-Dichloroethene	0.30	0.30	0.30		
43	CBI2	L	J	t-1,2-Dichloroethene	0.25	0.25	0.25		
43	CBI20 CBI21	l	J	t-1,2-Dichloroethene	5.45	5.48	5.48		
43	CBI22	i	J	t-1.2-Dichloroethene	6.23	6.29	6.29		
43	CBI23	ι	J	t-1,2-Dichloroethene	13.00	13.80	13.8		
43	CBI24		Y.	t-1,2-Dichloroethene	4.55	4.62	4.62		
43	CBI26 CBI27	l. I	J	t-1,2-Dichloroethene	0.50	0.50	0.50		
43	CBI28		1	t-1 2-Dichloroethene	1.20	1.20	1.20		
43	CBI29	i	J	t-1,2-Dichloroethene	11.49	12.16	12.2		
43	CBI3	L	J	t-1,2-Dichloroethene	0.60	0.60	0.60		
43	CBI30 CBI31	l	J	t-1,2-Dichloroethene	0.11	0.11	0.11		
43	CBI32	i	J	t-1.2-Dichloroethene	1.20	1.21	1.21		
43	CBI33	ι	J	t-1,2-Dichloroethene	2.87	2.88	2.88		
43	CBI34	L	J	t-1,2-Dichloroethene	0.50	0.50	0.50		
43	CBI5	l	J	t-1,2-Dichloroethene	7.35	7.42	7.42		
43	CBI7	i	J	t-1.2-Dichloroethene	1.35	1.38	1.38		-
43	CBI8	ι	J	t-1,2-Dichloroethene	1.30	1.31	1.31		
43	CBI9	ι	J	t-1,2-Dichloroethene	0.90	0.91	0.91		
27	Lyon Development		J 1	t-1,2-Dichloroethene	0.20	0.24	0.26		-
27	Lyon Development	i	Ĵ.	t-1,2-Dichloroethene	0.060	0.060			
5	Mountaingate	1	N	t-1,2-Dichloroethene	0.080	0.23	0.23		
5	Mountaingate	!	N	t-1,2-Dichloroethene	0.080	0.23			
5	Mountaingate	1	4	t-1,2-Dichloroethene	0.080	0.23			
20	Penrose	i	J	t-1,2-Dichloroethene	1.50	1.92	2.90		
20	Penrose	ι	J	t-1,2-Dichloroethene	1.50	1.90			
20	Penrose	L.	J	t-1,2-Dichloroethene	1.50	2.58			
20	Penrose	1	, J	t-1.2-Dichloroethene	1.50	≥.00 3.65			
20	Penrose	i	J	t-1,2-Dichloroethene	1.50	3.55			
20	Penrose	Ļ	J	t-1,2-Dichloroethene	1.80	3.58			
20	Penrose Ducate Hills	l. I	J	t-1,2-Dichloroethene	1.80	3.51	22.5		
18	Puente Hills		N N	t-1.2-Dichloroethene	17.0	22.1	22.5		
18	Puente Hills		Ň	t-1,2-Dichloroethene	17.0	22.7			
18	Puente Hills		N	t-1,2-Dichloroethene	17.0	22.5			
41	Guadalupe	l	J	Tetrahydrofuran Thiobismethane	3.40	4.07	4.07		
54	Arbor Hills	1	J	Toluene	69.5	71.1	70.1	Toluene (co-dispo	sal)
54	Arbor Hills	i	J	Toluene	69.7	70.3		Mean	165.110
54	Arbor Hills	ι	J	Toluene	67.6	68.9		Median	127.201
15	Azusa Land Reclamation	L.	J	Toluene	21.0	21.9	38.1	Standard Deviation	151.996
15	Azusa Land Reclamation	1	J	Toluene	45.0	40.9		Kurtosis	-1 195
15	Azusa Land Reclamation	i	J	Toluene	32.0	33.4		Skewness	0.676
15	Azusa Land Reclamation	ι	J	Toluene	53.0	55.3		Range	362.938
15	Azusa Land Reclamation	L.	J	Toluene	46.0	48.0		Minimum	17.462
15	Azusa Land Reclamation	1	ر ا	Toluene	44.U 28.0	40.9		sum	380.400
1 19		,	-	1 Orange 10	20.0	20.2			620.001

								Summany Statistics of	Site Averages
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)	Summary Statistics of	(ppmv)
15	Azusa Land Reclamation		U Toluene		31.0	32.3	390	Count Normality Test (a)	5.000
12	BKK Landfill		Y Toluene		130	305	300	Normality reat (p)	2.20
12	BKK Landfill		Y Toluene		200	440			
17	Bradley Pit		U Toluene		34.0	50.8	26.3		
17	Bradley Pit Bradley Pit		U Iduene		30.0	40.2			
17	Bradley Pit		U Toluene		14.0	17.5			
17	Bradley Pit	1	U Toluene		24.0	29.7			
17	Bradley Pit		U Toluene		24.0	29.0			
41	Bradley Pit Bradley Pit		U Ioluene		4.50	6.50			-
6	Bradley Pit		U Toluene		26.0	32.5			
6	Bradley Pit	1	U Toluene		18.0	24.5		Toluene (ur	known & no co-disp.)
7	Calabasas		Y Toluene		196	299	256	Mean	59.147
7	Calabasas		Y Toluene		110	199		Median Standard Deviation	39.282
13	Carson		Y I Oluene		24.0	50.4	30.4	Variance	4891 701
13	Carson		U Toluene		14.0	19.3		Kurtosis	7.016
13	Carson	1	U Toluene		16.0	21.4		Skewness	2.364
43	CBI1		U Toluene		70.8	72.8	72.8	Range	366.698
43	CBI10 CBI11		U Toluene		31.5	32.1	32.1	Minimum	0.198
43	CBI12		U Toluene		28.2	31.1	31.1	Sum	3016 507
43	CBI13		U Toluene		35.5	43.0	43.0	Count	51.000
43	CBI14	i	U Toluene		60.9	61.6	61.6	Normality Test (p)	<.01
43	CBI15		U Toluene		1.45	1.46	1.46		
43	CBI16 CBI17		Y Toluene		17.2	17.5	17.5		
43	CBI18		U Toluene		77.2	78.7	78.7		
43	CBI19		U Toluene		2.10	2.11	2.11		
43	CBI2		U Toluene		2.50	2.52	2.52		
43	CBI20		U Toluene		47.5	47.8	47.8		
43	CBI21		U Ioluene		19.4	19.5	19.5		
43	CBI23		U Toluene		37.0	39.3	39.3		
43	CBI24		Y Toluene		125	127	127		
43	CBI25	1	U Toluene		221	223	223		
43	CBI26		U Toluene		5.85	5.88	5.88		
43	CBI27 CBI28		U Ioluene		13.9	14.0	14.0		
43	CBI29		U Toluene		347	367	367		
43	CBI3	1	U Toluene		19.0	19.0	19.0		
43	CBI30	1	U Toluene		123	124	124		
43	CBI31		U Toluene		53.0	53.1	53.1		
43	CBI32 CBI33		U Iduene		12.7	12.8	12.8		
43	CBI34		U Toluene		0.85	0.85	0.85		
43	CBI4	1	U Toluene		37.9	39.8	39.8		
43	CBI5		U Toluene		43.5	43.9	43.9		
43	CBI6 CBI7		U Toluene		10.1	10.1	10.1		
43	CBI8		U Toluene		51.0	51.4	51.4		
43	CBI9	i	U Toluene		30.0	30.3	30.3		ł
55	Chicopee		U Toluene		119	153	153		
56	Coyote Canyon		U Toluene		57.5	76.6	84.7		
56	Covote Canyon		U Toluene		59.3	79.0			
56	Coyote Canyon	i	U Toluene		60.4	89.5			
56	Coyote Canyon		U Toluene		59.8	87.2			
56	Coyote Canyon		U Toluene		65.2	96.4	102		
41	J von Development		U Toluene		160	192	192		
27	Lyon Development		U Toluene		23.0	27.4	21.0		
27	Lyon Development		U Toluene		0.40	0.40			
10	Mission Canyon	1	N Toluene		0.05	0.20	0.20		
5	Mountaingate		N Toluene		1.90	5.49	6.27		
5	Mountaingate		N Toluene		1.00	5.46			
5	Mountaingate		N Toluene		3.10	8.91			
8	Operating Industries	1	U Toluene		56	112	112		
22	Palos Verdes		Y Toluene		1.00	4.36	44.5		
22	Palos Verdes		Y Toluene		9.50	41.4			
22	Palos Verdes		Y Toluene		4.30	4.30			
22	Palos Verdes		Y Toluene		1.10	4.80			
22	Palos Verdes		Y Toluene		5.50	24.0			
22	Palos Verdes		Y Toluene		12.0	52.3			
22	Palos Verdes Palos Verdes		T I Oluene		19.0	82.8			
22	Palos Verdes		Y Toluene		9.50	41.4			

								Summary Statistics of Site Averages
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)	(ppmv)
22	Palos Verdes Palos Verdes		Y	Toluene	1.00	4.36		
51	Palos Verdes		r Y	Toluene	22.0	70.1		
51	Palos Verdes	Y	Y	Toluene	68.0	174		
20	Penrose	L	J	Toluene	22.0	28.2	49.8	
20	Penrose	L L	J	Toluene	21.0	26.5		
20	Penrose	i	J	Toluene	68.0	116		
20	Penrose	ι	J	Toluene	14.0	34.1		
20	Penrose	L	J	Toluene	15.0	35.5		
20	Penrose	1	1	Toluene	28.0	54.6		
18	Puente Hills	Ň	N	Toluene	180	234	212	
18	Puente Hills	Ν	N	Toluene	190	256		
18	Puente Hills Bueste Hills		N	Toluene	240	320		
24	Puente Hills		N N	Toluene	57.5	83.0		
24	Puente Hills	N	N	Toluene	55.5	76.9		
50	Puente Hills	N	4	Toluene	100	121	121	
1	Rockingnam Scholl Canvon	L	- -	Toluene	99	132	132	
i i	Scholl Canyon	N	4	Toluene	7.50	17.2	40.5	
9	Sheldon Street	ι	J	Toluene	20.0	39.8	14.1	
9	Sheldon Street	l		Toluene	0.54	1.07		
9	Sheldon Street	l	J	Toluene	3.90	7.76		
60	Sunshine Canyon	i	J	Toluene	100	105	105	
23	Toyon Canyon	1	4	Toluene	8.40	9.03	9.03	
53	Altamont	L	1	Trichloroethene	6.90	8.31	4.95	Trichloroethene
53	Altamont	L L	1	Trichloroethene	5.00	5.92	5.92	Median 4.2/0
53	Arbor Hills	i	J	Trichloroethene	4.37	4.47	4.24	Standard Deviation 5.630
53	Arbor Hills	L	J	Trichloroethene	4.14	4.18		Variance 31.698
53	Arbor Hills Arbor Hills	L L	J	Trichloroethene	4.00	4.08	4 44	Kurtosis 8.287 Skowness 2.781
15	Azusa Land Reclamation	l	J	Trichloroethene	4.30	4.48	3.72	Range 28.660
15	Azusa Land Reclamation	ι	J	Trichloroethene	3.40	3.55		Minimum 0.026
15	Azusa Land Reclamation	L	J	Trichloroethene	8.90	9.28		Maximum 28.685
15	Azusa Land Reclamation	1	1	Trichloroethene	3.30	3.44		Sum 243.378
15	Azusa Land Reclamation	i	J	Trichloroethene	0.79	0.82		Normality Test (p) <.01
15	Azusa Land Reclamation	ι	J	Trichloroethene	3.60	3.75		
15	Azusa Land Reclamation	L	J	Trichloroethene	3.70	3.86		
12	BKK Landfill		Y	Trichloroethene	13.0	28.6	28.7	
12	BKK Landfill	, in the second s	Ý	Trichloroethene	4.80	11.3		
12	BKK Landfill	1	Y	Trichloroethene	21.0	46.2		
17	Bradley Pit Bradley Pit	L L	J	Trichloroethene	5.90	7.30	5.15	
17	Bradley Pit	i	J	Trichloroethene	1.90	2.38		
17	Bradley Pit	L	j	Trichloroethene	6.20	7.49		
17	Bradley Pit	l	J	Trichloroethene	6.50	9.72		
17	Bradley Pit Bradley Pit	L L	1	Trichloroethene	5.50 4.90	6.47		
19	Bradley Pit	i	J	Trichloroethene	4.90	6.24		
19	Bradley Pit	l	1	Trichloroethene	1.60	2.43		
6	Bradley Pit	L I	ر ا	Trichloroethene	4.60	0.71 6.57		
6	Bradley Pit	l	-	Trichloroethene	0.20	0.29		
6	Bradley Pit	ι	J	Trichloroethene	3.70	4.63		
6	Bradley Pit	l	J	Trichloroethene	1.00	1.36	14.0	
7	Calabasas		r Y	Trichloroethene	12.0	21.7	14.0	
7	Calabasas	١	Y	Trichloroethene	12.0	21.7		
13	Carson	l	J	Trichloroethene	0.17	0.23	0.28	
13	Carson	l	ر ا	Trichloroethene	0.16	0.22		
43	CBI10	i	J	Trichloroethene	3.25	3.31	3.31	
43	CBI11	Ļ	L	Trichloroethene	21.5	21.7	21.7	
43	CBI12 CBI13	l	L L	I richloroethene	1.54	1.70	1.70	
43	CBI14	l	J	Trichloroethene	6.96	7.04	7.04	
43	CBI15	i	J	Trichloroethene	0.18	0.18	0.18	
43	CBI16		Y.	Trichloroethene	0.30	0.30	0.30	
43	CBI18	l	ر ا	i richloroethene	0.40	0.40	0.40	
43	CBI19	l	-	Trichloroethene	0.15	0.15	0.15	
43	CBI2	l	J	Trichloroethene	0.20	0.20	0.20	
43	CBI20 CBI21	l	J	I richloroethene	3.75	3.77	3.77	
43	CBI22	l	J	Trichloroethene	1.58	1.39	1.64	

								Summary Statistics of	Site Averages
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)	(ppmv)	
43	CBI23 CBI24	L	Trichloroethene		3.10	3.29	3.29		
43	CBI25	L	J Trichloroethene		7.85	7.91	7.91		
43	CBI26	L	J Trichloroethene		0.20	0.20	0.20		
43	CBI27	L	J Trichloroethene		1.67	1.68	1.68		
43	CBI30 CBI31	L L	J Inchloroethene		2.02	2.04	2.04		
43	CBI32		I Trichloroethene		1.50	1.50	1.50		
43	CBI33	i	J Trichloroethene		0.50	0.50	0.50		
43	CBI4	L	J Trichloroethene		1.14	1.20	1.20		
43	CBI5	L	J Trichloroethene		3.05	3.08	3.08		
43	CBI6	L L	J Inchloroethene		0.45	0.45	0.45		
43	CBI8		I Trichloroethene		7.80	7.86	7.86		
43	CBI9		J Trichloroethene		3.40	3.43	3.43		
55	Chicopee	L	J Trichloroethene		2.20	2.82	2.82		
56	Coyote Canyon	L	Trichloroethene		2.38	3.17	3.64		
56	Coyote Canyon	L L	I Inchloroethene		2.23	2.97			
56	Covote Canyon	L L	Trichloroethene		2.37	3.51			
56	Coyote Canyon	Ĺ	Trichloroethene		3.01	4.39			
56	Coyote Canyon	L	Trichloroethene		3.06	4.53			
57	Durham Rd.	L	J Trichloroethene		2.50	3.29	3.21		
57	Durham Rd.		Trichloroethene		2.60	3.13			
57	Durham Rd.	L L	J Trichloroethene		2.60	3.19	3.19		
41	Guadalupe	L.	J Trichloroethene		18.7	22.4	22.4		
27	Lyon Development	L	J Trichloroethene		2.60	3.06	2.14		
27	Lyon Development	L	J Trichloroethene		2.80	3.33			
10	Lyon Development Mission Convon		Trichloroethene		0.040	0.040	0.026		
5	Mountaingate		Trichloroethene		0.54	1.55	1.72		
5	Mountaingate	N	Trichloroethene		0.62	1.79			
5	Mountaingate	N	Trichloroethene		0.60	1.73			
5	Mountaingate	N	Trichloroethene		0.63	1.81	2.20		
59	Operating industries	L	Trichloroethene		1.20	2.39	2.39		
84	Otay Landfill	i i i i i i i i i i i i i i i i i i i	Trichloroethene		3.23	3.49	3.49		
22	Palos Verdes	١	Trichloroethene		0.36	1.57	1.38		
22	Palos Verdes)	Trichloroethene		0.29	1.26			
22	Palos Verdes)	Trichloroethene		0.32	1.40			
22	Palos Verdes		Trichloroethene		0.31	1.55			
22	Palos Verdes	Ň	Trichloroethene		0.28	1.22			
22	Palos Verdes	١	Trichloroethene		0.20	0.87			
22	Palos Verdes)	Trichloroethene		0.19	0.83			
22	Palos Verdes Palos Verdes	1	Trichloroethene		0.29	1.26			
22	Palos Verdes		Trichloroethene		0.13	1.48			
22	Palos Verdes	Ň	Trichloroethene		0.09	0.38			
51	Palos Verdes)	Trichloroethene		0.91	2.33			
51	Palos Verdes)	Trichloroethene		0.98	3.12	4.07		
20	Penrose		J Trichloroethene		1.20	1.54	1.97		
20	Penrose	L L	J Trichloroethene		1.90	3.27			
20	Penrose	L	J Trichloroethene		2.00	3.41			
20	Penrose	L	J Trichloroethene		0.65	1.58			
20	Penrose		J Inchloroethene		0.68	1.61			
20	Penrose		J Trichloroethene		0.75	1.46			
18	Puente Hills	N	Trichloroethene		3.90	5.06	6.36		
18	Puente Hills	N	Trichloroethene		4.30	5.80			
18	Puente Hills Dueste Hille	N	Trichloroethene		4.30	5.73			
24	Puente Hills	i i i i i i i i i i i i i i i i i i i	Trichloroethene		4.40	6.35			
24	Puente Hills	Ň	Trichloroethene		0.75	1.03			
50	Puente Hills	N	Trichloroethene		13.0	15.8			
59	Rockingham	L	J Trichloroethene		5.30	7.05	7.05		
	Scholl Canyon Scholl Canyon	N	Trichloroethene		2.10	3.37	1.90		
9	Sheldon Street	1	J Trichloroethene		0.19	0.38	0.80		
9	Sheldon Street	l	J Trichloroethene		0.04	0.07		Vinyl chloride	
9	Sheldon Street	L	J Trichloroethene		0.19	0.38		Mean	13.690
9	Sheldon Street	L	J Trichloroethene		1.20	2.39	0.50	Median	7.340
23	Toyon Canyon	L	Irichloroethene		2.40	2.53	2.53	Siandard Deviation	31.266
10	Mission Canyon	N	Vinyl chloride		0.05	0.22	0.22	Kurtosis	42.232
5	Mountaingate	N	Vinyl chloride		4.40	12.6	12.5	Skewness	6.241
5	Mountaingate	N	Vinyl chloride		4.40	12.7		Range	225.215
5	Mountaingate	N	Vinyl chloride		4.20	12.1		Minimum	0.129
D D	wountaingate	r r	 vinyi chiořídě 		4.40	12.0		waxiindm	225.344

Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)	Summary Statistics of (ppmv)	Site Averages
18	Puente Hills	1	N Vin	yl chloride	18.0	23.4	16.7	Sum	725.5
18	Puente Hills		N Vin	yl chloride	18.0	24.3		Count	53.0
18	Puente Hills Duente Hille		N Vin	yl chloride	15.0	20.0		Normality Test (p)	<.
18	Puente Hills		N VIN J Vin	yi chioride	6.80	18.5			
24	Puente Hills		vin Vin	vi chloride	6.70	9.28			
50	Puente Hills		Vin Vin	vl chloride	9.40	11.4			
1	Scholl Canyon	1	N Vin	yl chloride	6.70	10.8	10.1		
1	Scholl Canyon	1	N Vin	yl chloride	4.10	9.38			
23	Toyon Canyon	1	N Vin	yl chloride	0.12	0.13	0.13		
53	Altamont	ı	J Vin	yl Chloride	55.0	66.3	52.3		
53	Altamont	L	J Vin	yl Chloride	33.0	38.4			
54	Arbor Hills	l	J Vin	yl Chloride	6.58	6.73	6.70		
54	Arbor Hills	l	J Vin	yl Chloride	6.58	6.64			
54	Arbor Hills	l	J Vin	yi Chloride	6.61	6.74	2.25		
15	Azusa Land Reclamation		J Vin	yl chloride	2.00	2.82	2.25		
15	Azusa Land Reclamation		J Vin	ad chloride	2.50	2.92			
15	Azusa Land Reclamation	i	J Vin	vl chloride	0.00	0.00			
15	Azusa Land Reclamation	i	J Vin	yl chloride	2.80	2.92			
15	Azusa Land Reclamation	ι	J Vin	yl chloride	1.10	1.15			
15	Azusa Land Reclamation	ι	J Vin	yl chloride	1.10	1.15			
15	Azusa Land Reclamation	ι	J Vin	yl chloride	2.50	2.61			
15	Azusa Land Reclamation	ı	J Vin	yl chloride	2.80	2.92			
15	Azusa Land Reclamation	l.	J Vin	yl chloride	2.80	2.92	10.44		
1/	Bradley Pit		J Vin	yi chionae	13.00	17.13	12.44		
17	Bradley Pit	1	J Vin	yi chloride	2.30	3.03			
17	Bradley Pit	1	J Vin	vi chloride	11.00	14.43			
17	Bradley Pit	1	J Vin	vl chloride	4.00	5.27			
17	Bradley Pit	l	J Vin	vl chloride	4.00	5.27			
17	Bradley Pit	i	J Vin	yl chloride	13.00	17.13			
17	Bradley Pit	i	J Vin	yl chloride	11.00	14.49			
17	Bradley Pit	ı	J Vin	yl chloride	13.00	17.13			
19	Bradley Pit	ι	J Vin	yl chloride	20.0	25.5			
19	Bradley Pit	ι	J Vin	yl chloride	3.40	5.16			
19	Bradley Pit	L	J Vin	yl chloride	13.0	16.1			
19	Bradley Pit	l.	J Vin	yl chloride	11.0	14.2			
6	Bradley Pit		J Vin	yi chionae	0.80	1.16			
a 0	Bradley Pit	l	J Vin	yi chloride	22.0	27.5			
8	Bradley Pit		J Vin	vi chloride	4.80	6.58			
13	Carson		J Vin	vl chloride	4,90	6.74	6.52		
13	Carson	l	J Vin	vl chloride	4.70	6.29	0.01		
43	CBI10	i	J Vin	yl chloride	2.05	2.09	2.09		
43	CBI11	i	J Vin	yl chloride	19.0	19.2	19.2		
43	CBI12	ι	J Vin	yl chloride	8.43	9.29	9.29		
43	CBI13	ι	J Vin	yl chloride	9.98	12.08	12.08		
43	CBI14	ι	J Vin	yl chloride	6.11	6.18	6.18		
43	CBI15	ι	J Vin	yl chloride	2.70	2.73	2.73		
43	CBI17	L.	J Vin	yl chloride	11.4	11.5	11.5		
43	CBII8	l.	J Vin	yi chionae	10.9	11.1	11.1		
43	CBI3		J Vin	yi chionae	1.95	1.96	1.96		
43	CBI20	l I	J Vin I Vin	yi chioride	7.60	7.65	0.40 7.65		
43	CBI21		J Vin	vi chloride	15.0	15.1	15.1		
43	CBI22		J Vin	vl chloride	4.93	4.97	4.97		
43	CBI23	i	J Vin	yl chloride	13.0	13.8	13.8		
43	CBI25	i	J Vin	yl chloride	15.2	15.3	15.3		
43	CBI26	ι	J Vin	yl chloride	5.20	5.23	5.23		
43	CBI27	I	J Vin	yl chloride	12.4	12.5	12.5		
43	CBI3	l	J Vin	yl chloride	1.30	1.30	1.30		
43	CBI30	L	J Vin	yl chloride	5.61	5.66	5.66		
43	CBI32	l	J Vin	yl chloride	7.70	7.74	7.74		
43	CBI33	l.	J Vin	yl chloride	14.4	14.4	14.4		
43	CBI34 CBI4	l	J Vin	yi chioride	9.60	9.62	9.62		
43	CBI5		J Vin	yi chionae	2.03	2.70	2.70		
43	CBI6		J Vin	vi chloride	3.25	3.27	3.27		
43	CBI7	1	J Vin	vi chloride	3.00	3.07	3.07		
43	CBI8	i	J Vin	yl chloride	3.83	3.86	3.86		
43	CBI9	i	J Vin	yl chloride	5.30	5.35	5.35		
55	Chicopee	ι	J Vin	yl chloride	8.59	11.0	11.0		
56	Coyote Canyon	ı	J Vin	yl chloride	1.90	2.53	2.62		
56	Coyote Canyon	ι	J Vin	yl chloride	1.84	2.45			
56	Coyote Canyon	ι	J Vin	yl chloride	1.83	2.44			
56	Coyote Canyon	L.	J Vin	yl chloride	1.83	2.71			
56	Coyote Canyon	l.	J Vin	yl chloride	1.85	2.70			
56	Coyote Canyon Durbam Rd		J Vin	yi chionae	1.95	2.88	7.34		
357	Durham Rd		J Vin	yi chioride	5.00	6.00	1.34		
357	Duman NU.	,	yin vin	yi cilondo	0.00	0.99			

Reference	Londfil Nomo	On diamond	0/ N 10*	Compound	Den Occastation (com)	Air lefitestice Operated Operations	Oite Aug th (comp)	Summary Statistics of	f	Site Averages
57	Durham Rd.	Co-disposal	(Y, N, or U) ²	Vinvl chloride	Raw Concentration (ppmv) 6.00	Air Infiltration Corrected Conc. (ppmv) 7.14	Site Avg.** (ppmv)		(ppmv)	
27	Lyon Development	1	Ŭ	Vinyl chloride	0.87	1.02	2.68			
27	Lyon Development		U	Vinyl chloride	5.20	6.19				
27	Operating Industries		0	Vinyl chloride	0.84	0.83	13.5			
58	Otay Annex		Ŭ	Vinyl chloride	2.40	3.26	3.26			
20	Penrose		U	Vinyl chloride	0.64	0.82	3.13			
20	Penrose		U	Vinyl chloride	0.46	0.58				
20	Penrose		0	Vinyi chloride	4.40	7.57				
20	Penrose		U	Vinyl chloride	0.73	1.78				
20	Penrose		U	Vinyl chloride	0.65	1.54				
20	Penrose		U	Vinyl chloride	1.20	2.39				
20	Penrose Rockingham		0	Vinyl chloride	1.30	2.53	20.8			
9	Sheldon Street		U	Vinyl chloride	0.08	0.16	1.28			
9	Sheldon Street		U	Vinyl chloride	0.25	0.50				
9	Sheldon Street		U	Vinyl chloride	0.25	0.50				
9	Sheldon Street BKK Landfill		U Y	Vinyl chloride	2.00	3.98	225			
12	BKK Landfill		Ý	Vinyl chloride	77.0	181	225			
12	BKK Landfill		Ý	Vinyl chloride	65.0	143				
7	Calabasas		Y	Vinyl chloride	22.8	34.8	46.5			
7	Calabasas		Y	Vinyl chloride	30.0	54.2				
43	Calabasas CBI16		Y	Vinyi chloride	1.00	1.02	1.02			
43	CBI24		Y	Vinyl chloride	16.9	17.2	17.2			
58	Otay Valley		Y	Vinyl chloride	16.4	17.7	17.7			
22	Palos Verdes		Y	Vinyl chloride	2.20	9.59	7.25			
22	Palos Verdes		Y	Vinyl chloride	1.80	7.85				
22	Palos Verdes		Ŷ	Vinyl chloride	2.20	9.59				
22	Palos Verdes		Y	Vinyl chloride	0.83	3.62				
22	Palos Verdes		Y	Vinyl chloride	1.80	7.85				
22	Palos Verdes		Y	Vinyl chloride	2 10	9.16				
22	Palos Verdes		Y	Vinyl chloride	2.20	9.59				
22	Palos Verdes		Y	Vinyl chloride	0.59	2.57				
22	Palos Verdes		Y	Vinyl chloride	2.20	9.59				
51	Palos Verdes Palos Verdes		Y Y	Vinyi chloride	2.60	8.28				
51	Palos Verdes		Ŷ	Vinyl chloride	1.70	4.35				
54	Arbor Hills		U	Vinylidene chloride	0.24	0.24	0.24	Viny	/lidene Chloride	ł
54	Arbor Hills		U	Vinylidene chloride	0.24	0.24		Mean		2.732
17	Arbor Hills Bradley Pit		0	Vinylidene chloride	0.24	0.25	18.6	Median Standard Deviation		0.201
17	Bradley Pit		Ŭ	Vinylidene chloride	9.80	12.9	10.0	Variance		66.634
17	Bradley Pit	1	U	Vinylidene chloride	9.30	12.3		Kurtosis		11.595
17	Bradley Pit		U	Vinylidene chloride	29.0	38.2		Skewness		3.417
17	Bradley Pit Bradley Pit		0	Vinylidene chloride	2.30	3.03		Range		33./1/
43	CBI10		U	Vinylidene chloride	0.10	0.10	0.10	Maximum		33.772
43	CBI11		U	Vinylidene chloride	0.65	0.66	0.66	Sum		57.365
43	CBI12		U	Vinylidene chloride	0.05	0.06	0.06	Count		21.000
43	CBI14		0	Vinylidene chloride	0.08	0.10	0.10	Normality Test (p)		<.01
43	CBI17		Ū	Vinylidene chloride	0.15	0.15	0.15			
43	CBI18	1	U	Vinylidene chloride	0.18	0.18	0.18			
43	CBI20		U	Vinylidene chloride	0.20	0.20	0.20			
43	CBI21 CBI24		v	Vinylidene chloride	0.43	0.43	0.43			
43	CBI27		U	Vinylidene chloride	0.75	0.13	0.13			
43	CBI4		U	Vinylidene chloride	0.07	0.07	0.07			
43	CBI5		U	Vinylidene chloride	0.10	0.10	0.10			
43	CBI6		U	Vinylidene chloride	0.20	0.20	0.20			
43	CBI9		U	Vinvlidene chloride	0.49	0.49	0.49			
55	Chicopee		U	Vinylidene chloride	0.12	0.15	0.15			
56	Coyote Canyon		U	Vinylidene chloride	0.34	0.46	0.49			
56	Coyote Canyon		0	Vinylidene chloride	0.33	0.44				
56	Covole Canyon		Ŭ	Vinvlidene chloride	0.36	0.53				
56	Coyote Canyon		U	Vinylidene chloride	0.36	0.52				
56	Coyote Canyon		U	Vinylidene chloride	0.36	0.53				
41	Guadalupe		U	Vinylidene chloride	28.2	33.8	33.8		V. da	
54 54	Arbor Hills		0	Xylenes	55.8 63.8	57.1 64.4	0.80	Mean	Ayienes	28 030
54	Arbor Hills		Ŭ	Xylenes	51.4	52.4		Median		12.073
43	CBI1		U	Xylenes	4.66	4.79	4.79	Standard Deviation		38.811
43	CBI10		U	Xylenes	10.0	10.2	10.2	Variance		1506.274
43	CBII1		U	Xylenes	12.5	12.6	12.6	Kurtosis		5.457

								Summary Statistics of	Site Averages
Reference	Landfill Name	Co-disposal	(Y, N, or U)*	Compound	Raw Concentration (ppmv)	Air Infiltration Corrected Conc. (ppmv)	Site Avg.** (ppmv)	(ppmv)	cito / Worldgeb
43	CBI12	L. L.	J	Xylenes	8.55	9.42	9.42	Skewness	2.166
43	CBI13	ι	J	Xylenes	65.0	78.6	78.6	Range	181.617
43	CBI14	ι	J	Xylenes	2.47	2.50	2.50	Minimum	0.400
43	CBI15	ι	J	Xylenes	9.78	9.88	9.88	Maximum	182.017
43	CBI16	١	(Xylenes	2.90	2.94	2.94	Sum	1157.579
43	CBI17	L	J	Xylenes	0.45	0.45	0.45	Count	40.000
43	CBI18	L	J	Xylenes	15.3	15.6	15.6	Normality Test (p)	<.01
43	CBI19	L	J	Xylenes	0.45	0.45	0.45		
43	CBI2	L	J	Xylenes	1.30	1.31	1.31		
43	CBI20	L	J	Xylenes	37.5	37.7	37.7		
43	CBI21	L	J	Xylenes	0.50	0.50	0.50		
43	CBI22	L	J	Xylenes	13.3	13.5	13.5		
43	CBI23	L	J	Xylenes	12.0	12.7	12.7		
43	CBI24	١	(Xylenes	70.8	71.8	71.8		
43	CBI26	L	J	Xylenes	1.50	1.51	1.51		
43	CBI27	L	J	Xylenes	4.63	4.66	4.66		
43	CBI28	L	J	Xylenes	0.40	0.40	0.40		
43	CBI29	L	J	Xylenes	28.7	30.4	30.4		
43	CBI3	L	J	Xylenes	12.0	12.0	12.0		
43	CBI30	L	J	Xylenes	70.9	71.5	71.5		
43	CBI31	L	J	Xylenes	12.0	12.0	12.0		
43	CBI32	L	J	Xylenes	1.55	1.56	1.56		
43	CBI33	L	J	Xylenes	5.57	5.58	5.58		
43	CBI5	L	J	Xylenes	24.0	24.2	24.2		
43	CBI6	L	J	Xylenes	0.75	0.76	0.76		
43	CBI7	ι	J	Xylenes	67.5	69.2	69.2		
43	CBI8	ι	J	Xylenes	22.8	23.0	23.0		
43	CBI9	ι	J	Xylenes	12.0	12.1	12.12		
55	Chicopee	ι	J	Xylenes	41.5	53.3	53.3		
56	Coyote Canyon	ι	J	Xylenes	34.0	45.2	44.06		
56	Coyote Canyon	ι	J	Xylenes	35.3	47.0			
56	Coyote Canyon	ι	J	Xylenes	27.9	37.1			
56	Coyote Canyon	L	J	Xylenes	27.7	41.0			
56	Coyote Canyon	L	J	Xylenes	31.0	45.2			
56	Coyote Canyon	L	J	Xylenes	33.0	48.8			
41	Guadalupe	L	1	Xylenes	9.60	11.5	11.5		
51	Palos Verdes)	(Xylenes	34.0	108	182		
51	Palos Verdes	1	r	Xylenes	100	256			
50	Puente Hills	N	4	Xylenes	98.0	119	119		
59	Rockingham	L	1	Xylenes	24.1	32.0	32.0		
1	Scholl Canyon	N	4	Xylenes	3.10	7.09	7.09		
60	Sunshine Canyon	l	J	Xylenes	92.0	96.8	96.8		

Appendix C

Background Data for Secondary Pollutant Emission Factors and Control Efficiencies

Appendix C information is contained in the files:

SECOND.XLS (Excel) or SECOND.WK3 (Lotus) - Secondary Pollutant emission factors for flares, boilers, engines and turbines.

LFGVOC~1.XLS (Excel) or LFGVOC~1.WK3 (Lotus) - Derivation of default VOC concentrations for landfill NMOC's.

CONTRO~2.XLS (Excel) or CONTRO~2.WK3 (Lotus) - Development of default control efficiencies for flares, boilers, engines and turbines.

CHLORI~2.XLS (Excel) or CHLORI~2.WK3 (Lotus) - Derivation of Chlorine defaults.
Appendix C-3: NOTES SHEET Background Data for Secondary Pollutant Emission Factors

Sheet B Flare Data

15,16,18,19 Inlet flow readings for these sample dates were not measured (they were calculated based on outlet concs.). I used the flow rate measured at the same point the day before for the two subsequent samples.

O11, O12 Outlet flow rate calculated based on ratio of total inlet carbon conc. and total outlet carbon conc., multiplied by the inlet flow rate (measured).

114 Inlet flow readings for these sample dates were not measured (they were calculated based on outlet concs.). I used the flow rate measured at the same point the day before for the two subsequent samples.

O16, O17 Outlet flow rate calculated based ratio of total inlet carbon conc. and total outlet carbon conc., multiplied by the inlet flow rate (measured).

O18, O19 Outlet flow rate calculated based on ratio of total inlet carbon conc. and total outlet carbon conc., multiplied by the inlet flow rate (measured).

121 Inlet flow readings for these sample dates were not measured (they were calculated based on outlet concs.). I used the flow rate measured at the same point the day before for the two subsequent samples.

O22, O23 Outlet flow rate calculated based on ratio of total inlet carbon conc. and total outlet carbon conc., multiplied by the inlet flow rate (measured).

O24 Outlet flow rate calculated based ratio of total inlet carbon conc. and total outlet carbon conc., multiplied by the inlet flow rate (measured).

129, 130, 131, 136 Inlet flow readings for these sample dates were not measured (they were calculated based on outlet concs.). I used the flow rate measured at the same point the day before for the two subsequent sample Sheet C Boiler Data

15. 16. 125 1 46 Inlet flow readings for these sample dates were not measured (they were calculated based on outlet concs.). I used the flow rate measured at the same point the day before for the two subsequent samples Sheet D Engines

H5, H6 Inlet flow readings for these sample dates were not measured (they were calculated based on outlet concs.). I used the flow rate measured at the same point the day before for the two subsequent samples.

F7 Not specified as lean burn or rich burn, described as a low-NOx supercharged design.

07 Outlet flow rate calculated based on ratio of total inlet carbon conc. and total outlet carbon conc., multiplied by the inlet flow rate (measured).

F8 Permit specifies that engine must operate under lean burn conditions

O9 Outlet flow rate calculated based on ratio of total inlet carbon conc. and total outlet carbon conc., multiplied by the inlet flow rate (measured).

H12 Inlet flow readings for these sample dates were not measured (they were calculated based on outlet concs.). I used the flow rate measured at the same point the day before for the two subsequent samples.

F13 Not specified as lean burn or rich burn, described as a low-NOx supercharged design.

O13 Outlet flow rate calculated based on ratio of total inlet carbon conc. and total outlet carbon conc., multiplied by the inlet flow rate (measured).

F14 Permit specifies that engine must operate under lean burn conditions

O15 Outlet flow rate calculated based on ratio of total inlet carbon conc. and total outlet carbon conc., multiplied by the inlet flow rate (measured).

H16, H17 Inlet flow readings for these sample dates were not measured (they were calculated based on outlet concs.). I used the flow rate measured at the same point the day before for the two subsequent samples

F20 Permit specifies that engine must operate under lean burn conditions

N20, N21 Values correspond to grains per dscf

Sheet E Turbine Data

15 Inlet flow readings for these sample dates were not measured (they were calculated based on outlet concs.). I used the flow rate measured at the same point the day before for the two subsequent samples.

16 Inlet flow readings for these sample dates were not measured (they were calculated based on outlet concs.). I used the flow rate measured at the same point the day before for the two subsequent samples.

Appendix C-3: FLARES SHEET Background Data for Secondary Pollutant Emission Factors

0.40 00 0+4	L and R ID	I an diff blanns	Des (es ID	Comment	Ganavahatan	LFG Fuel	Mathema	Methane	Methane	Default Uset Content	Line line d	Outlet	Emission	Emission	Emission	Emission	EF	Connector			Sec	ondary Pollutan	Emission Factor	\square
Ref. Ref. molyr	Candill ID	Carletti Name	Device ID	Compound	(ppm or gr/dscf)	(dscfm)	Fraction	(dscfm)	(m*3/min)	Btu/cf	mmBtuthr	(dscfm)	(lbs/hr)	(kg/hr)	(Ibs/mmBtu)	(kg/hr/m^3/min)	Paarig	contrens			50	Flar	(sginnim" amin)	
Carbon Monox	de		-																Carbon Monoxide		Oxides of Nitrogen		Particulate Matter	
37 54 9/92 38 55 1990	B	BFI Facility. Chicope	Fiare Flare	00	394	4982	0.5693	2836.25	14.35	1,012	30.77	54,669	95.542	43.330	0.5548	0.540	A E	PA Method 10; Fuel flow estimated via carbon balance. PA Method 10: Fuel flow estimated via carbon balance.	tean Itandard Error	0.7169	Standard Error	0.0390	Mean Standard Error	0.0
17 12 1986	C	BKK Landfill	Flare	00	172	1012	0.2400	242.88	6.88	1,012	14.75	7,728	5.892	2.672	0.3995	0.389	A to	otal combustion analysis used to determine CO	fedian	0.5395	Median	0.0383	Median	0.0
17 12 1986	C	BKK Landfill	Flare	00	527	1012	0.2270	229.72	6.50	1,012	13.95	9,076	21.200	9.615	5 1.5199	1.478	A F	uel flow estimated via carbon balance.	Itandard Deviation	0.6243	Standard Deviation	0.0181	Standard Deviation	0.00
17 12 1986	С	BKK Landfill	Flare	00	515	1012	0.2410	243.89	6.91	1,012	14.81	8,060	18.398	8.344	1.2424	1.208	A Fi	uel flow estimated via carbon balance.	lample Variance	0.3898	Sample Variance	0.0003	Sample Variance	4.8984E-0
22 19 2/85	D	Bradley Pit	Flare	00	259	1002	0.3650	365.73	10.36	1.012	22.21	35.275	41.643	18.886	1.8752	1.824	A to	otal combustion analysis used to determine CO: Exhaust flow estimated via carbon belance.	Rewness	0.4362	Skewness	0.7693	Skewness	2.0
32 48 12/87	E	Calabasas	Flare	00	453	667	0.3560	237.45	6.72	1,012	14.42	6,150	12.348	5.600	0.8565	0.833	A G	rab samples collected; CO analyzed by NDIR/GC using the TCA method; Exhaust flow estimated via carbon balance.	lange	1.8196	Range	0.0634	Range	0.0
39 56 6/91	F	Coyote Canyon	Flare	00	11.1	900	0.3400	306.00	8.66	1,012	18.58	17,158	0.844	0.383	3 0.0454	0.044	B C	ARB Method 100	tinimum	0.0041	Minimum	0.0135	Minimum	0.04
39 56 6/91	F	Coyote Canyon	Flare		88.4	1835	0.3930	/21.16	20.42	1,012	43.79	15,866	6.217	2.815	0.1420	0.138	B C	ANB Method 100; Fuel flow estimated via carbon balance.	taximum	1.8236	Naximum	0.0769	Maximum Sum	0.05
16 10 1/85	G	Mission Carwon	Flate	00	87.0	291	0 1190	34.65	0.98	1.012	2 10	2 901	1 119	0.507	0.5315	0.517	A 0	O analyzed using the TCA method: Exhaust flow estimated via carbon halance	Count	15,0000	Count	11,0000	Count	5.0
14 8 10/85	н	Operating Industrie	s Flare	00	305	1600	0.2810	449.60	12.73	1.012	27.30	27.697	37,443	16.981	1.3716	1.334	A C	O analyzed using the TCA method: Exhaust flow estimated via carbon balance.	Confidence Level/95 0	0.3457	Confidence Level/95	0 0 0 122	Confidence Level/95.04	0.0
35 50 2/87	1	Palos Verdes	Flare	00	190	1000	0.1100	110.00	3.11	1,012	6.68	14,976	12.612	5.720	1.8883	1.836	A C	O analyzed using the TCA method; Exhaust flow estimated via carbon balance.	formality test	p>0.2	Normality test	p>0.2	Normality test	p<(
35 50 2/87	1	Palos Verdes	Flare	00	468	2200	0.1270	279.40	7.91	1,012	16.97	13,486	27.975	12.687	1.6490	1.604	A						Normality test (lognorm	p<0
44 64 3 303		Disatenda	Site I Averag	*	4.20	4400	0.5004	647.40	47.40	4.012	27.40	0.040	20.29	9.20	1.77	1.72		The block of the Post Research and and a school believes						—
34 50 2/88	к	Pirente Hills	Flate		4.30	1330	0.0224	630.42	17.40	1,012	38.28	13,090	41.833	18 972	1 0928	1.053	A C	PA Method 10, Foat low rate estimated via carbon balance.	Carbon Monovide		Oxides of Nitrogen		Particulate Matter	t
33 49 12/87	L	Scholl Canyon	Flare	00	63.0	850	0.2330	198.05	5.61	1,012	12.03	8,009	2.236	1.014	0.1860	0.181	A C	O analyzed using the TCA method; Exhaust flow estimated via carbon balance.	Data Points		Data Points		Data Points	
15 9 12/85	M	Sheldon Street	Flare	00	310	160	0.1810	28.96	0.82	1,012	1.76	1,605	2.205	1.000	1.2541	1.220	A C	O analyzed using the TCA method; Exhaust flow estimated via carbon balance.	0.5395		0.026	13	0.0302	
43 60 1991	N	Sunshine Canyon	Flare	00	7.20	1467	0.5200	762.84	21.60	1,012	46.32	18,473	0.590	0.267	0.0127	0.012	B S	CAQMD Method 100.1	0.3769		0.076	19	0.0129	-
75 109 3/94	0	Contra Costa	Flare		9.20	1033	0.3200	330.56	9.36	1,012	20.07	7,108	0.290	0.131	0.0144	0.014	A B.	AAQMD Method ST-6	1.0249		0.038	13	0.0144	<u> </u>
N	trogen Oxi	ies	-	-															0.8329		0.022	10	0.0162	-
37 54 9/92	A	Arbor Hills	Flare	NOx	11.69	4982	0.5693	2836.25	80.31	1,012	172.22	54,669	4.654	2.111	0.0270	0.026	B 0	hity test #6 were data used; EPA Method 7E; Fuel flow estimated via carbon balance.	0.0911		0.046	16		
52 69 1992	Р	Arizona St.	Flare	NOx	29.49	242	0.6000	145.20	4.11	1,012	8.82	3,246	0.697	0.316	0.0791	0.077	B S	DAPCD Method 20; Fuel flow estimated via carbon balance.	0.5169		0.013	15		
38 55 1990	В	BFI Facility, Chicope	e Flare	NOx	14.60	1060	0.4780	506.68	14.35	1,012	30.77	11,400	1.212	0.550	0.0394	0.038	A E	PA Method 7A; Fuel flow estimated via carbon balance.	1.3338		0.040	10		
1/ 12 1985	C E	BKK Landfil	Flare	NOx	6.00	1012	0.2400	242.88	6.88	1,012	14.75	7,728	0.338	0.153	0.0229	0.022	A N	Ux samples cotlected using 1 edtar bag/integrated bag sample method, analysis not specified.	1.7199	+ +	0.024	6	+	1
39 55 5/91	F	Counte Carryon	Flare	NOx	11.65	1825	0.3400	724.46	20.42	1,012	10.58	15,866	1,405	0.660	0.0/83	0.0/6	B L	inh fuel from rate	1.00041		0.045	8	1	1
	<u> </u>	a pow ownydt	\$ite F Avera	190			0.0330	1 10	40.42	1,012		10,000	1.716	0.778	0.0451	0.060	- 1		0.1809		0.035		1	-
45 62 4/92	Q	Greentree	Flare	NOx	54.0	352	0.3100	109.12	3.09	1,012	6.63	6,921	2.721	1.234	0.4107	0.399	B E	PA M. 7D; Methane content estimated; excluded from EF derivation.	1.2196					
43 60 1991	N	Sunshine Canyon	Flare	NOx	16.50	1467	0.5200	762.84	21.60	1,012	46.32	18,473	2.220	1.007	0.0479	0.047	B S	CAQMD Method 100.1	0.0124		_			-
70 104 12/94	R	Scottdale, PA	Flare	NOx	16.72	1420	0.1730	245.66	6.96	1,012	14.92	1,700	0.207	0.094	0.0139	0.013	A E	PA Method 7D	0.0140			+ + -		+
71 105 9/93	3 T	Jouneca Manage Towarth's	Flare	NUX	13.50	240	0.2270	136.29	3.83	1,012	8.21	3,440	0.338	0.153	0.0412	0.040	AE	PA Method 7D Emission state between test over unried by sheet 40% bisk detection Selts (shout 7A	dorivation			+ +	+	t
73 107 10/95	Ú Ú	Bethlehem	Flare	NOx	7 90	1113	0.2440	271 57	7,69	1,012	16.49	7,233	0.416	0,185	0.0252	0.025	AF	PA Method 7E	and a state of the		-	+ +	1	-
74 108 11/93	v	Hartford	Flare	NOx	12.40	696	0.4690	325.73	9.22	1,012	19.78	10,227	0.923	0.415	0.0467	0.045	A E	PA Method 7E						(
75 109 3/94	0	Contra Costa	Flare	NOx	14.20	1033	0.3200	330.56	9.36	1,012	20.07	7,108	0.735	0.333	0.0366	0.036	A B.	AAQMD ST-13A						
				_											-						_		-	1
Particulate Ma	ter	Datas Manfas	Fine (47)	-	0.000	4077	0.4717	407.77		4.000		7.0.0	0.771	0	0.0777	0.077	_	Encourse of PM man increases		\vdash		+ +		+
68 102 9/90		Palos Verdes	Flare (#5)	PM (TSP)	0.0060	1099	0.1/10	187.93	5.32	1,012	11.41	7,219	0.3/1	0.168	0.0325	0.032	D at	I measured PM was inorganic						+
00 102 12/94		Falos Verdes	Flare Averac	ne PM(IOP)	0.0087	1002	0.1935	321.00	2.11	1,012	19.03	0,400	0.555	0.244	0.0276	0.027	0 1	a measured PM was inorganic			-		-	t
68 102 2/91	1	Palos Verdes	Flare (#3)	PM (TSP)	0.0084	1376	0.1940	266.94	7.56	1,012	16.21	6,701	0.482	0.215	0.0298	0.029	D al	I but 0.0004 gridscf of the measured PM was inorganic						
68 102 10/91	1	Palos Verdes	Flare (#2)	PM (TSP)	0.0096	1154	0.2105	5 242.92	6.88	1,012	14.75	6,178	0.508	0.231	0.0345	0.034	D al	I measured PM was inorganic						
68 102 3/92	1	Palos Verdes	Flare (#1)	PM (TSP)	0.0148	1288	0.2170	279.50	7.91	1,012	16.97	6,142	0.779	0.353	0.0459	0.045	D al	I measured PM was inorganic						
68 102 11/93		Palos Verdes	Flare (#6)	PM (TSP)	0.0068	1275	0.2190	279.23	7.91	1,012	16.95	7,569	0.441	0.200	0.0260	0.025	D at	I measured PM was inorganic						
00 102 5/90		Palos Verdes	File L Average	PM (IOP)	0.0008	14.34	0.2040	292.94	0.40	1,012	17.76	7,107	0.336	0.161	0.0200	0.019	D a	E DE 0.0002 ghest of the measured PM was inorganic						
68 102 8/92	1	Scholl Carvon	Flare (#1)	PM (TSP)	0.0050	805	0.3870	311.92	8.83	1.012	18.94	6 558	0.281	0.122	0.0148	0.014	D al	I of the measured PM was increasin			-		-	t
68 102 9/94	L	Scholl Canyon	Flare (#1)	PM (TSP)	0.0035	666	0.3170	211.12	5.98	1,012	12.82	6,375	0.191	0.087	0.0149	0.015	D al	I of the measured PM was inorganic						
68 102 5/96	L	Scholl Canyon	Flare (#1)	PM (TSP)	0.0046	639	0.3295	210.55	5.96	1,012	12.78	5,460	0.215	0.095	0.0168	0.016	D al	I but 0.0001 gridscf of the measured PM was inorganic						
			Flare Average	9									0.229	0.104	0.016	0.015	-							<u> </u>
68 102 7/90 68 102 7/90	-	Scholl Canyon	Flare (#2)	PM (TSP)	0.0013	1038	0.3090	320.74	9.08	1,012	19.48	6,623	0.0/4	0.033	0.0038	0.004	D al	I of the measured PM was increased				-	-	
68 102 5/96	L	Scholl Canyon	Flare (#2)	PM (TSP)	0.0032	587	0.3015	176.98	5.01	1,012	10.05	5.025	0.138	0.063	0.0128	0.012	D al	I of the measured PM was increated						<u> </u>
			Flare Averaç	94									0.141	0.064	0.010	0.010								
68 102 8/92	L	Scholl Canyon	Flare (#3)	PM (TSP)	0.0013	643	0.3885	5 249.81	7.07	1,012	15.17	7,098	0.079	0.038	0.0052	0.005	D al	I of the measured PM was inorganic						
68 102 6/95	L	Scholl Canyon	Flare (#3)	PM (TSP)	0.0014	725	0.3080	223.30	6.32	1,012	13.56	6,974	0.084	0.038	0.0062	0.005	D al	I of the measured PM was inorganic						<u> </u>
ca 400 000		Caball Cara an	Flare Averag	90	0.0010	c.02	0.0570	244.00	6.02	4.010	44.07	6.547	0.081	0.037	0.005	0.005		a file and the second se						
68 102 6/95		Scholl Carvon	Flare (#4)	PM (TSP)	0.0049	766	0.3075	235.55	6.55	1,012	14.30	5 907	0.248	0.112	0.0000	0.017	D al	I of the measured PM was inverse.					-	<u> </u>
			Flare Averaç	9									0.152	0.065	0.011	0.010								
68 102 7/90	L	Scholl Canyon	Flare (#5)	PM (TSP)	0.0031	875	0.2925	5 255.94	7.25	1,012	15.54	6,084	0.162	0.073	0.0104	0.010	D al	I of the measured PM was inorganic						
68 102 7/93		Scholl Canyon	Flare (#5)	PM (TSP)	0.0041	754	0.3425	258.25	7.31	1,012	15.68	7,074	0.249	0.113	0.0159	0.015	D at	I of the measured PM was inorganic						
66 102 6/95	L .	Schol Carlyon	Plate (#0)	PM (IOP)	0.0015	751	0.3275	240.95	0.30	1,012	14.95	6,630	0.066	0.035	0.0058	0.008	0 1	E OF DN THEASURED PM WAS INOPGARED						
68 102 8/92	L	Scholl Canvon	Flare (#6)	PM (TSP)	0.0032	722	0.3410	246.20	6.97	1.012	14.95	7.259	0,199	0.090	0.0133	0.013	D al	I of the measured PM was increanic						
68 102 6/95	L	Scholl Canyon	Flare (#6)	PM (TSP)	0.0017	772	0.3350	258.62	7.32	1,012	15.70	6,199	0.090	0.041	0.0058	0.005	D al	I of the measured PM was inorganic						
			Flare Averag	9									0.145	0.066	5 0.010	0.009								
68 102 7/93	L .	Scholl Canyon	Flare (#7)	PM (TSP)	0.0034	763	0.3540	277.73	7.86	1,012	16.85	7,240	0.211	0.096	0.0125	0.012	D al	I of the measured PM was inorganic			-	+		+ <u> </u>
00 102 5/96	L	autor Canyon	Flare (#7)	HM (ISP)	0.0018	565	0.3095	1/4.87	4.95	1,012	10.62	b,150	0.079	0.036	0.0075	0.007	U al	a but 0.0002 groact of the measured PM was inorganic		\vdash	-	+ +	+	t
68 102 11/91	L	Scholl Canyon	Flare (#9)	PM (TSP)	0.0043	658	0.3155	207.60	5.88	1,012	12.61	5,594	0.206	0.094	0.0164	0.016	D al	II but 0.0005 gridsof of the measured PM was inorganic			-		1	<u> </u>
68 102 9/94	L.	Scholl Canyon	Flare (#9)	PM (TSP)	0.0031	714	0.3135	223.84	6.34	1,012	13.59	6,586	0.175	0.075	0.0129	0.013	D al	I of the measured PM was inorganic						
			Flare Averag	90			-						0.191	0.086	0.015	0.014					-			-
68 102 11/91	L L	Scholl Canyon	Flare (#10)	PM (TSP)	0.0064	681	0.3165	215.54	6.10	1,012	13.09	7,819	0.429	0.195	0.0328	0.032	D al	I but 0.0021 gridsof of the measured PM was inorganic				+ + -		
00 102 9/94	L .	autor Canyon	Flare (#10)	HM (ISP)	0.0026	/32	0.3105	2/29	6.44	1,012	13.80	006,1	0.176	0.080	0.0128	0.012	U al	I OI INN INNISUINIO I'NI WAS INORGANIC		\vdash	-	+ +	+	t
68 102 11/91	L	Scholl Canyon	Flare (#11)	PM (TSP)	0.0051	751	0.3225	242.20	6.86	1,012	14.71	7,062	0.309	0.140	0.0210	0.020	D al	I of the measured PM was inorganic			-		1	<u> </u>
68 102 9/94	L	Scholl Canyon	Flare (#11)	PM (TSP)	0.0031	766	0.3160	242.05	6.85	1,012	14.70	7,108	0.189	0.088	0.0129	0.012	D al	I of the measured PM was inorganic						
			Flare Average	94				-					0.249	0.113	0.017	0.016			-		_			1
68 102 11/91	L L	Scholl Canyon	Flare (#12)	PM (TSP)	0.0033	825	0.3255	268.54	7.60	1,012	16.31	8,617	0.244	0.111	0.0149	0.015	D al	I of the measured PM was inorganic				+ + -		
68 102 5/95	L .	Scholl Canyon	Flare (#12)	PM (ISP)	0.0042	690 470	0.3780	260.82	4.39	1,012	15.84	5,365	0.238	0.105	0.0150	0.015	D al	I of the measured PM was inorganic			-	+ +	1	t
		Contraction Contraction	Flare Averac	al (1007)	0.000/	-/2	0.0200	1	7.40	1,012	2.09	0,000	0.248	0.112	0.019	0.019	- 1	e en ene commence e o com anne gallite				1 1		<u> </u>
			Site L Avera	90									0.186	0.084	0.013	0.013								
58 102 1/94	W	Spadra	Flare (#1)	PM (TSP)	0.0079	662	0.3830	253.55	7.18	1,012	15.40	7,025	0.476	0.216	0.0309	0.030	D al	I of the measured PM was inorganic	-				1	1
8 102 10/91	W	Spadra	Flare (#2)	PM (TSP)	0.0006	1000	0.3755	375.50	10.63	1,012	22.80	8,898	0.046	0.021	0.0020	0.002	D al	I of the measured PM was inorganic		\vdash		+		<u> </u>
8 102 5/92	w	Spadra	Flare (#2)	PM (ISP)	0.0034	1000	0.3815	381.50	10.80	1,012	23.16	5,822 6 1,40	0.170	0.077	0.0073	0.007	D al	I bit 0.0004 groact of the measured PM was inorganic		+ +		+ $+$	+	t
.04 0.00		-para	Flare Averac	0	0.0012	24	0.0020		10.12	-,012	A.1.00	0,140	0.093	0.025	0,004	0.004	- 1	a new new rest of the second water in the intergence.					1	(
102 2/92	W	Spadra	Flare (#3)	PM (TSP)	0.0037	988	0.3815	376.92	10.67	1,012	22.89	6,209	0.197	0.085	0.0086	0.008	D al	II but 0.0002 gridscf of the measured PM was inorganic						
102 5/95	W	Spadra	Flare (#3)	PM (TSP)	0.0013	987	0.3490	344.46	9.75	1,012	20.92	6,590	0.073	0.033	0.0035	0.003	D al	II but 0.0002 gridsof of the measured PM was inorganic						
			Flare Average	9									0.135	0.061	0.006	0.006					_			1
102 6/90	W	Spadra	Flare (#5)	PM (TSP)	0.0028	1026	0.3085	316.52	8.96	1,012	19.22	6,968	0.167	0.076	0.0087	0.008	D al	I of the measured PM was inorganic		\vdash		+		<u>←</u>
102 1/94	w	opadra	Flare (#5)	HM (ISP)	0.0028	/68	0.3085	236.93	6.71	1,012	14.39	8,/17	0.209	0.095	0.0145	0.014	U al	e or one measured hw was inorganitic				+ +	-	
102 10/91	w	Spadra	Flare (#R)	PM (TSP)	0.0007	1000	0.3340	334 00	9,46	1,012	20.28	10.612	0.054	0.085	0.012	0.011	D at	I of the measured PM was inorganic			-	+ +	1	<u> </u>
102 3/93	w	Spadra	Flare (#6)	PM (TSP)	0.0076	754	0.3870	291.80	8,26	1,012	17.72	11,102	0.723	0.025	0.0408	0.040	D al	I but 0.0001 oridsof of the measured PM was inorganic					1	(
102 4/96	Ŵ	Spadra	Flare (#6)	PM (TSP)	0.0051	890	0.3410	303.49	8.59	1,012	18.43	8,654	0.378	0,172	0.0205	0.020	D al	I of the measured PM was inorganic						
			Flare Averaç	9						_			0.388	0.176	0.021	0.021					_	1 1		<u> </u>
400 0155	-	Calabara	gite W Avera	ige	0.0000		0.0000	405.15	40.00	4.000	20.00	0.755	0.256	0.116	0.015	0.014	_	E to A AMAK while of a first second and the second				+ +		+
68 102 3/95	F	Calabasas	Flare (#1)	PM (TSP)	0.0026	740	0.3820	281 20	7.06	1,012	20.25	9,153	0.21/	0.095	0.0083	0.008	D A	I of the measured PM was inomatic			-	+ +		\vdash
	-		Flare Averac	0	0.0000	.40	0.0000	1 1.20	1.90	-,012		0,020	0.427	0.194	0,023	0.020					-	+ +	1	<u> </u>
68 102 3/93	E	Calabasas	Flare (#2)	PM (TSP)	0.0031	930	0.3980	370.14	10.48	1,012	22.47	8,701	0.231	0.105	0.0103	0.010	D al	I but 0.0003 gridsof of the measured PM was inorganic						
68 102 2/91	E	Calabasas	Flare (#3)	PM (TSP)	0.0058	875	0.3240	283.50	8.03	1,012	17.21	6,191	0.308	0.140	0.0179	0.017	D al	II but 0.0005 gridsof of the measured PM was inorganic						1
68 102 2/92	E	Catabasas	Flare (#3)	PM (TSP)	0.0029	1078	0.3325	358.44	10.15	1,012	21.76	10,940	0.272	0.123	0.0125	0.012	D al	I but 0.0004 gridsof of the measured PM was inorganic			-	+ +		
	. E	11 48202525	+>tare (#3)	 PM (15P) 	 0.00541 	/19	0.9820	u 2/466	/ 781	1 012	16.68	× 414	0.389	0.177	0.0234	11023	12 01	a million provident nu mai managrifat PM was inormativ						

Appendix C-3: FLARES SHEET Background Data for Secondary Pollutant Emission Factors

								LFG Fuel		Methane	Methane	Default		Outlet	Emission	Emission	Emission	Emission	EF					Seco	idary Pollutant E	nission Factor	_
AP-42 BID	Date	e Landf	fil ID La	ndfill Name	Device ID	Compound	Concentration	Flow Rate	Methane	Flow Rate	Flow Rate	Heat Content	Heat Input	Flow Rate	Rate	Rate	Factor	Factor	Rating		Comments			Sum	mary Statistics ()	p/hr/m^3/min)	_
Ref Ref	mohr						(nom or oridsch)	(dscfm)	Fraction	(dscfm)	(m*3(min)	Bhulef	mmBtuthr	(dscfm)	(lbs/br)	(kn/hr)	(bsimmBtu)	(ko/brim^3/min)		_					Flares		-
		_	_		Place Average		(pp	Casaring		(arasini)	the accuracy			Castering	0.22	(140.00)	17 0.044	0.04	-	_							
					Flate Average										0.32	5 0.14	0.018	0.01	/	-							+
68 1	02 3/90) E	= Ca	labasas	Flare (#4)	PM (TSP)	0.0100	/11	0.2495	1/7.39	5.02	1,012	10.77	4,621	0.39	5 0.1	0.036	5 0.02	6 D	no	data on organic/inorganic tractions						
68 1	02 2/92	2 E	E Ca	labasas	Flare (#4)	PM (TSP)	0.0042	1110	0.3230	358.53	10.15	1,012	21.77	8,656	0.31	2 0.14	1 0.0143	0.01	4 D	al	but 0.0007 gridsef of the measured PM was inorganic						
68 1	02 3/95	5 E	E Ca	alabasas	Flare (#4)	PM (TSP)	0.0020	736	0.3540	267.90	7.59	1,012	16.27	8,423	0.14	4 0.0	i5 0.0089	9 0.00	9 D	al	but 0.0002 gridscf of the measured PM was inorganic						
					Flare Average										0.28	4 0.1	9 0.020	0.01	9								
68 1	02 3/90) F	- Ca	lahasas	Flare (#5)	PM (TSP)	0.0089	909	0.2495	226.80	6.42	1 012	13.77	6 349	0.48	4 0.2	0.035	0.03	4 D	0.0	data en omanicipananic fractions						-
69 1	02 2/92		- Ca	ana an	Flam (#5)	DM (TOD)	0.0022	10/6	0.2720	200.16	11.05	1.012	22.69	10.552	0.28	0.13	0.012	0.01	2 D	O.F.	but 0.000 artified of the measured BM une increase						-
00 1	02 3/93		= 04	Information and a second and a	Fiale (#0)	PM (IOP)	0.0032	1040	0.3730	330.16	11.05	1,012	23.09	10,003	0.28	0.1	0.012	0.01	2 0		bit 0.0003 ghoser of the measured PM was inorganic						-
	_		_		Flare Average										0.38	0.1.	5 0.024	0.02	3	_							_
68 1	02 3/90) E	E Ca	labasas	Flare (#6)	PM (TSP)	0.0072	791	0.2540	200.91	5.69	1,012	12.20	5,394	0.33	3 0.1	0.0273	3 0.02	7 D	no	data on organic/inorganic fractions						
68 1	02 2/94	E	E Ca	alabasas	Flare (#6)	PM (TSP)	0.0078	849	0.3885	329.84	9.34	1,012	20.03	7,408	0.49	5 0.2	0.024	0.02	4 D	al	of the measured PM was inorganic						
68 1	02 3/96	5 E	E Ca	labasas	Flare (#6)	PM (TSP)	0.0049	887	0.3225	286.06	8.10	1.012	17.37	8.651	0.35	3 0.16	5 0.0209	0.02	0 D	aT.	of the measured PM was inorganic						
	_		_		Flare Average										0.39	7 0.1	0.024	0.02	4								+
69 1	02 2/01		= Ca	an an de la	Elaro (#7)	DM (TOD)	0.0050	0.00	0 2220	295.04	9.26	1.012	17.01	5 0 1 0	0.24	0.1	0.012	0.01	4 D	O.L.	but 0 0005 existed of the measured BM use increases						
	02 2/01				111110 (#77)	1 // (104)	0.0000	000	0.0000	100.04	0.00	1,012	17.37	5,010	0.24		0.010	0.01			bit of the grade of the measured renewal morganic						
68 1	02 7/95	5 E	E Ca	alabasas	Flare (#7)	PM (TSP)	0.0048	1311	0.3605	472.62	13.38	1,012	28.70	10,752	0.44	2 0.20	1 0.015	0.01	5 D	al	of the measured PM was inorganic						
					Flare Average										0.34	5 0.1	0.01	0.01	4								
68 1	02 3/96	5 E	E Ca	alabasas	Flare (#8)	PM (TSP)	0.0029	1426	0.3130	446.34	12.64	1,012	27.10	8,907	0.22	1 0.10	0.008	0.00	8 D	al -	of the measured PM was inorganic						
68 1	02 3/95	5 E	E Ca	labasas	Flare (#9)	PM (TSP)	0.0038	1159	0.3220	373.20	10.57	1.012	22.66	7.570	0.24	7 0.1	2 0.010	0.01	1 D	al ·	of the measured PM was inorganic						
					Sto E Aueroo										0.21	0.1	0.012	0.01	6	_							
69 1	02 10/90	0 K	< P.,	onto Lille	Elaro (#2)	DM (TOD)	0.0052	830	0.4170	246.11	0.90	1.012	21.02	10 249	0.46	0.2	1 0.022	0.05	2 D	oI	but 0.0007 antited of the measured BM use increases						
	02 10120			A LINE	1 1010 (#2.)	1101/	0.0000	0.00	0.4170	040.11	5.00	1,012	21.02	10,245	0.40	0.2	0.044	0.04			be coor grade of the measured of m was morgane.						
68 1	02 2/93	S K	K Pu	iente Hills	Flare (#2)	PM (ISP)	0.0036	10/1	0.4320	462.67	13.10	1,012	28.09	11,382	0.35	1 0.15	0.012	0.01	2 0	at	but 0.0001 gridsct of the measured PM was inorganic		\rightarrow				
68 1	02 8/95	5 К	K Pu	iente Hills	Flare (#2)	PM (TSP)	0.0005	713	0.3750	267.38	7.57	1,012	16.24	9,770	0.04	2 0.0	9 0.0026	5 0.00	3 D	no	data on organic/inorganic fractions						
					Flare Average										0.28	5 0.13	0.012	0.01	2								
68 1	02 10/90	о к	K Pu	iente Hills	Flare (#3)	PM (TSP)	0.0039	776	0.3690	286.34	8.11	1.012	17.39	10.084	0.33	7 0.1	3 0.0194	0.01	9 D	al	but 0.0001 oridacf of the measured PM was inorganic						
68 1	02 5/94	К	C Pu	ente Hills	Flare (#3)	PM (TSP)	0.0023	954	0.4420	426.09	12.07	1.012	25.87	9 1 3 8	0.18	0.0	0 0070	0.00	7 D	101	of the measured PM was inormation						-
					Flare Average										0.25	0.1	7 0.012	0.01	3								-
69 4	02 10***	· ·	(P-	onto Lille	Flare (#4)	DM /TOD	0.0007	0.40	0 2220	279.00	7.00	1.010	16.00	11 0 **	0.25	0.44	0.001	0.01	1 0	10-	but 0.0006 existed of the measured BM use increases		+ +				-
	un 10/90	~ К	· Pu	NUMBER OF STREET	- IMPE (#*4)	-m (10r)	0.0035	-040	0.3320	210.88	1.90	1,012	10.93	11,91/	0.35	0.1	0.021	0.02		- 141	un o over general of the mean KG PM Web Borgenic						+
68 1	uz 2/93	зК	< Pu	iente Hills	r lare (#4)	PM (TSP)	0.0049	1044	0.4325	451.53	12.79	1,012	27.42	10,961	0.46	0.20	0.0168	0.01	b D	al	but 0.0001 gridset of the measured PM was inorganic						-
68 1	02 8/95	5 К	K Pu	iente Hills	Flare (#4)	PM (TSP)	0.0008	641	0.3850	246.79	6.99	1,012	14.98	8,925	0.06	1 0.03	0.004	0.00	4 D	no	data on organic/inorganic fractions		L T				_
					Flare Average										0.29	3 0.13	0.014	0.01	4	T.			I — T				
68 1	02 5/91	К	C Pu	ente Hills	Flare (#5)	PM (TSP)	0.0041	701	0.4320	302.83	8.58	1 012	18.39	11 455	0.40	3 0.1	0.0219	0.02	1 D	eT.	of the measured PM was inormation						
69 4	02 5:04		< In-	anto Hille	Elaro (#5)	DM (TOD)	0.0407	0~	0.4205	209 54	11 20	1.012	24.24	0.435	0.77	1 0.2	0.000	0.00	1 6	100	but 0.0002 artificed of the measured DM uses increases	-					
00 1	02 3/94		- F0	Anne milis	Fiale (#0)	PM (IOP)	0.0107	920	0.4305	336.04	11.29	1,012	24.21	6,433	0.77	• 0.3	0.032	0.02	0		bit 0.0002 ghost of the measured PM was inorganic						-
					Flate Average										0.06	0.2	N 0.02	0.02	0	-							_
68 1	02 12/91	1 К	K Po	iente Hills	Flare (#6)	PM (ISP)	0.0034	835	0.3975	332.31	9.41	1,012	20.18	9,874	0.28	5 0.1.	0.014.	5 0.01	4 D	81	but 0.0003 gridsct of the measured PM was inorganic						
68 1	02 2/93	з к	K Pu	iente Hills	Flare (#6)	PM (TSP)	0.0032	1123	0.4240	476.15	13.48	1,012	28.91	11,061	0.30	3 0.13	8 0.010	5 0.01	0 D	81	but 0.0001 gridsof of the measured PM was inorganic						
68 1	02 3/95	5 К	< Pu	ente Hills	Flare (#6)	PM (TSP)	0.0080	785	0.4585	359.92	10.19	1.012	21.85	8.994	0.61	7 0.21	0.028	2 0.02	7 D	aT	but 0.0002 oridact of the measured PM was inorganic						_
					Flare Average										0.40	3 0.1	0.01/	0.01	7								
69 1	02 5/01		< P.,	onto Hille	Elaro (#7)	DM (TOD)	0.0059	0.26	0.4220	204.00	11.10	1.012	22.00	9 902	0.49	2 0.2	0.0201	0.03	0 D	O.L.	of the measured DM une isometric						
CO 1	02 5/04		2 10	ante Lille	Fines (#7)	DM (TOD)	0.0007	700	0.4220	205.40	0.00	4,012	47.04	7,705	0.45	0.2	0.020	0.04	2 0		of the measured PW was integrate.						+
68 1	02 5/94	S K	K Pu	iente Hills	Flare (#7)	PM (ISP)	0.0007	700	0.4220	295.40	8.36	1,012	17.94	7,725	0.04	5 0.0	1 0.0026	0.00	3 D	a1	of the measured PM was inorganic						_
					Flare Average										0.26	9 0.1	2 0.012	0.01	1								
68 1	02 2/93	з к	< Pu	iente Hills	Flare (#8)	PM (TSP)	0.0046	1084	0.4430	480.21	13.60	1,012	29.16	11,581	0.45	7 0.20	0.015	0.01	5 D	a1	but 0.0001 gridscf of the measured PM was inorganic						
68 1	02 3/95	5 K	< Pu	iente Hills	Flare (#8)	PM (TSP)	0.0050	842	0.3380	284.60	8.06	1,012	17.28	9,974	0.42	7 0.19	4 0.0247	0.02	4 D	al	of the measured PM was inorganic						
					Flare Average	1									0.44	2 0.21	0.020	0.02	0								_
69 1	02 6/00		< P.,	onto Hille	Elaro (#9)	DM (TOD)	0.0041	69.4	0.2560	242.50	6.00	1.012	14 70	0 107	0.22	0.1	0.0219	0.05	1 D	ol	but 0.0004 existed of the measured BM use increases						
	02 0000			A LINA	1 1010 (#37)	11017	0.0041	004	0.0000	240.00	0.30	1,012	14.73	2,127	0.04		0.0211	0.04	-		bit obort group of the measure of mineral mogene						
68 1	02 5/94	s K	< P0	iente Hills	Flare (#9)	PM (ISP)	0.0012	890	0.41/5	367.40	10.40	1,012	22.31	9,085	0.09	5 0.0	12 0.004	0.00	4 D	at	of the measured PM was inorganic						+
	_				Flare Average										0.20	8 0.0	4 0.013	0.01	3	_							
68 1	02 6/90) К	K Pu	iente Hills	Flare (#10)	PM (TSP)	0.0040	739	0.3625	267.89	7.59	1,012	16.27	11,641	0.39	9 0.11	0.0245	5 0.02	4 D	al	but 0.0006 gridscf of the measured PM was inorganic						
68 1	02 12/93	3 K	< Pu	ente Hills	Flare (#10)	PM (TSP)	0.0031	942	0.4135	389.52	11.03	1.012	23.65	9.884	0.25	3 0.1	9 0.011	0.01	1 D	81	of the measured PM was increased						
68 1	02 3/95	5 К	C Pu	ente Hills	Flare (#10)	PM (TSP)	0.0031	935	0.4450	417.01	11.81	1.012	25.32	9.455	0.25	1 0.1	4 0.009	0.01	0 D	01	of the measured PM was increasing						-
					Elaro Avoració										0.20	0.1	0.01	0.00	6								
C0 4	00 000		< D.	and a 11th	Time (844)	Del (TOD)	0.0000	045	0.0045	254.02	0.00	4.010	24.25	42,502	0.00	0.4	0.040	0.01	0 0		to a AMAR valida de el de en encorre di PAR una la consecta						
68 1	02 6/90	ј К	K Pu	iente Hills	Flare (#11)	PM (ISP)	0.0036	915	0.3845	351.82	9.96	1,012	21.36	13,503	0.41	0.1	19 0.0195	0.01	a D	at	but 0.0005 gridsct of the measured PM was inorganic						
68 1	02 5/92	2 К	K Pu	iente Hills	Flare (#11)	PM (TSP)	0.0018	954	0.4040	385.42	10.91	1,012	23.40	9,568	0.14	B 0.04	0.005	3 0.00	6 D	a1 -	of the measured PM was inorganic						
68 1	02 2/96	5 К	K Pu	iente Hills	Flare (#11)	PM (TSP)	0.0020	1066	0.3995	425.87	12.06	1,012	25.86	8,233	0.14	1 0.0	4 0.0055	5 0.00	5 D	al	but 0.0001 gridscf of the measured PM was inorganic						
					Flare Average										0.23	5 0.10	0.010	0.01	0								
68 1	02 6/90	С	< Pu	ente Hills	Flare (#12)	PM (TSP)	0.0036	840	0.3855	323.82	9.17	1.012	19.66	11.571	0.35	7 0.1	2 0.018	2 0.01	8 D	al	but 0.0006 oridact of the measured PM was inorganic						_
68 1	02 12/92	з к	C Pu	ente Hills	Flare (#12)	PM (TSP)	0.0051	961	0.3985	382.95	10.84	1.012	23.25	10 399	0.45	5 0.2	6 0.019	0.01	9 D	eT.	of the measured PM was inormation						-
69 1	02 2/05	5 K	< P.,	onto Hille	Elaro (#12)	DM (TOD)	0.0052	890	0.2260	296.99	0.12	1.012	17.42	9,902	0.44	0.2	0.025	0.05	5 D	ol.	of the measured DM use improved						
	02 000	/	<u> </u>	NUTRE FIELD	Time (wiz)	1 // (104)	0.0002	000	0.0200	100.00	0.14	1,012	17.96	5,502	0.44	0.2	0.020	0.01	0		or the measured r w was morganic.						
			< 10	and a 1 little	are reverage	DAL (TOT)	0.000		0.4017	245.22		4	40.15		0.41	0.10	0.02	0.02		-		 -					+
68 1	uz //90	, к	Pu	ATTNE HIS	(#13)	r% (ISP)	U.0046	/49	U.4210	315.33	8.93	1,012	19.15	8,814	U.34	aj 0.15	io U.0182	0.01	<u>ں</u> ہ	al	ou u.uuuz geraaci ol ere measured PM was inorganic						_
68 1	02 5/92	с К	K Pu	iente Hills	⊢lare (#13)	PM (TSP)	0.0026	816	0.4125	336.60	9.53	1,012	20.44	10,220	0.22	sj 0.11	0.011	0.01	1 D	81	of the measured PM was inorganic					1	1
68 1	02 2/96	5 K	< Pu	ente Hills	Flare (#13)	PM (TSP)	0.0016	901	0.4020	362.20	10.26	1,012	21.99	9,250	0.12	0.05	8 0.0058	0.00	6 D	aT.	of the measured PM was inorganic		I — T				
					Flare Average										0.23	4 0.10	6 0.012	0.01	1								
68 1	02 7/90	а к	C Pil	ente Hills	Flare (#14)	PM (TSP)	0.0063	774	0.4300	332.82	9.42	1.012	20.21	9 598	0.51	8 0.2	0.0256	0.02	5 D	01	hit 0.0004 writised of the measured PM was invinante						-
68 1	02 12/02	3 4	< P.,	ente Hills	Flare (#14)	PM (TSP)	0,0049	979	0.4050	397.47	11.26	1.012	24.43	9,847	0.40	4 0.1	13 0.046	0.04	6 P	0.0	of the measured PM was inormation	1					
\vdash	12/90	^	. 10	1 100	Flare Ave		0.0040	5/5	0.4000	501.41	11.20	1,012	47.13	110,0	0.40	1 0.1	0.010	0.01	1 5		n na nasana na tu na na sagada.	 					+
H		-			are reverage										0.46	0.2	0.02	0.02	1	-		 -					+
68 1	uzr //90	, к	N Pu	Anne HIS	r-tare (#15)	PM (ISP)	0.0047	/54	0.3890	29/3.31	8.31	1,012	17.81	10,782	U.43	0.1	v U.0244	0.02	- U	al -	or the measured PM was integrated						-
68 1	uz 2/96	э к	K Pu	iente Hills	1+1are (#15)	PM (TSP)	0.0015	822	U.3710	304.96	8.64	1,012	18.52	10,089	0.13	0.0	e 0.0070	0.00	/ D	al	of the measured PM was inorganic						_
			_		Flare Average										0.28	2 0.12	8 0.016	0.01	5	_							
68 1	02 7/90	к	K Pu	iente Hills	Flare (#16)	PM (TSP)	0.0065	715	0.3835	274.20	7.76	1,012	16.65	8,978	0.50	0.2	0.0300	0.02	9 D	all	but 0.0009 gridscf of the measured PM was inorganic						
68 1	02 12/92	з к	< Pil	ente Hills	Flare (#16)	PM (TSP)	0,0078	895	0.4205	376.77	10.67	1,012	22 RR	11.005	0.73	5 p.32	4 0,032	0.03	1 D	81	but 0.0015 oridact of the measured PM was inorganic						
			- 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Flare Average		2.2010		0			.,012			0.61	0.0	0.02	0.00	d			1					-
60 *	02 5:04		(P-	anto Hille	Elaro (#17)	DM /TOD	0,0000	10.75	0.4100	426.40	12.07	1.010	25.00	10.04*	0.01	0.2	0.03	0.03	e p	0.0	of the measured DM use increasio	 	+ +		-		-
00 1	0/91	K	- I ^{PU}	GIIT we we	- tare (+17)	+'m (10r')	0.0052	1025	0.4160	420.40	12.07	1,012	20.89	10,546	0.48	1 0.2	0.0188	0.01	<u> </u>	141	An and interaction of the intera	 +					
68 1	uzi 5/92	: К	Pu	ATTNE HIS	r-tare (#17)	r% (ISP)	U.0024	968	0.3860	3/3.65	10.58	1,012	22.69	10,181	U.20	0.0	u.0092	0.00	9 U	al -	or one measured htm was inorganic	 -					+
	1				Hare Average										0.34	a 0.1	8 0.014	0.01	4	_							_
68 1	02 12/91	1 K	< Pu	iente Hills	Flare (#18)	PM (TSP)	0.0021	817	0.3995	326.39	9.24	1,012	19.82	9,899	0.17	B 0.00	0.0090	0.00	9 D	a1	of the measured PM was inorganic						
68 1	02 11/90	2 К	< Pu	iente Hills	Flare (#18)	PM (TSP)	0.0035	969	0.4250	411.83	11.66	1,012	25.01	10,135	0.30	4 0.13	8 0.012	0.01	2 D	al	but 0.0001 gridscf of the measured PM was inorganic						
68 1	02 8/95	5 К	C Pil	iente Hills	Flare (#18)	PM (TSP)	0,0049	702	0.4150	291,33	8.25	1,012	17 69	6.613	0.27	B 0.1:	0,015	0.01	5 D	0.0	data on organic/inorganic fractions						-
	1				Flam Auntan	/									0.25	0.1	6 0.01	0.01	2	- 1							-
60 4			< h.	and a 1994	Class (#40)	DAL (TOD)	0.0000	4000	0.0000	440.07	44.00	4.040	25.42	7.054	0.40	0.1	0.01	0.01	c		of the successful PM man languages	 1					+
00 1	0/91	K	- I ^{PU}	GIIT we we	- tare (+ 19)	+'m (10r')	0.0060	1095	0.3620	+10.07	11.86	1,012	20.42	r,d54	0.40	0.18	0.0155	0.01		141	A see interview r in the interview of the second	 +					
68 1	UZ 5/92	с — К	K Pu	iente Hills	1Fiare (#19)	PM (TSP)	0.0024	946	U.3780	357.59	10.13	1,012	21.71	9,980	0.20	0.0	IS 0.009	0.00	a D	al.	of the measured PM was inorganic	 -					+
					Flare Average										0.30	5 0.13	8 0.013	0.01	2	_							
68 1	02 12/91	1 K	< Pu	iente Hills	Flare (#20)	PM (TSP)	0.0061	1037	0.3900	404.43	11.45	1,012	24.56	9,560	0.50	0.2	0.0204	0.02	0 D	a1	of the measured PM was inorganic						
68 1	02 11/90	2 К	< Pu	iente Hills	Flare (#20)	PM (TSP)	0.0033	813	0.4360	354.47	10.04	1,012	21.52	9,521	0.26	9 0.12	2 0.012	5 0.01	2 D	al	but 0.0002 gridscf of the measured PM was inorganic						
			_		Flare Averand										0.38	5 0.13	4 0.014	0.01	6								-
68 4	02 12/04	1 4	(P.	ente Hills	Flare (#27)	PM (TSP)	0.0057	820	0.3890	322.40	9 4 2	1012	19.50	9,646	0.47	0.2	3 0.024	0.05	3 P	0.0	hit 0.0002 writised of the measured PM was inomanic		+ +				-
1 20		-	- 1 ^{ru}	and a 1 mile	(#27)	- m (154)	0.0007	025	0.0090	200.40	40	1,012	10.00	2,315	0.47	1 0.2	0.024	0.02	1 5	10	and a control product of the second of DA bases incoments	 	++				+
68 1	uzi 11/90	∠ K	Pu	ATTAC HES	Intare (#∠2)	PM (ISP)	U.0038	888	0.4310	382.73	10.84	1,012	23.24	10,097	U.32	0.14	u.0142	0.01	1 1	al	ou uuuuu groser oi ine measured PM was inorganic	 -					
	-				hare Average										0.39	<mark>ه 0.1</mark>	0.019	0.01	a l	_		 -				l	-
68 1	02 10/90	0 К	K Pu	iente Hills	[Flare (#24)	PM (TSP)	0.0030	592	0.4030	238.58	6.76	1,012	14.49	10,300	0.26	5 0.13	0.018	0.01	8 D	a1	but 0.0002 gridscf of the measured PM was inorganic						1
68 1	02 10/90	2 K	< Pu	iente Hills	Flare (#24)	PM (TSP)	0.0031	838	0.4150	347.77	9.85	1,012	21.12	9,689	0.25	7 0.1	0.012	0.01	2 D	al	but 0.0003 gridscf of the measured PM was inorganic						
68 1	02 8/95	5 К	< Pu	iente Hills	Flare (#24)	PM (TSP)	0.0006	630	0.4070	256.41	7.26	1.012	15.57	8.046	0.04	1 0.0	0.002	0.00	3 D	0.0	data on organic/inorganic fractions						-
<u> </u>			- 10	1.000	Flare Average		2.2000		2.1270			.,012		-,540	0.10	0.0	5 0.01	0.04	1	-		 -				-	-
	-	-			Site K Average	, ,									0.34	2 0.1	5 0.014	0.0	6	+		 -					-
					WHEN IN AVAILABLE										0.34		0.010		V 1								

Appendix C-3: BOILERS SHEET Background Data for Secondary Pollutant Emission Factors

							Conc.	LFG Fuel		Methane	Methane	Default		Outlet	Emission	Emission	Emission	Emission			Summary	Statistics (kg/h	r/m^3/mir	n)			
BID	AP-42	Date	Landfil ID	Landfill Name	Device ID	Compound	(ppmv or	Flow Rate	Methane	Flow Rate	Flow Rate	Heat Content	Heat Input	Flow Rate	Rate	Rate	Factor	Factor	EF	Comments	Boilers						
Ref.	Ref.	mo/yr					gr/dscf)	(scfm)	Fraction	(scfm)	(m^3/min)	Btu/cf	mmBtu/hr	(dscfm)	(lbs/hr)	(kg/hr)	(lbs/mmBtu)	(kg/hr/m^3/min)	Rating								
		Carbon Monoxide																			Carbon Monoxide			Oxides of Nitrogen		Particulate Matter	
102	68	8/91	A	Puente Hills	Boiler #400	CO	1.30	9740	0.4250	4140	117.22	1,012	251.35	65,722	0.379	0.172	0.0015	0.0015	D	Summary Data Only; Fuel flow estimated via carbon balance.	Mean	0.0054		Mean	0.0323	Mean	0.007
70	53	9/93	A	Puente Hills	Boiler #400	CO	9.60	10870	0.4305	4680	132.51	1,012	284.14	69,770	2.969	1.346	0.0104	0.0102	С	SCAQMD Method 100.1; Fuel flow estimated via carbon balance	Standard Error	0.0031		Standard Error	0.0043	Standard Error	0.000
					Boiler Average	2									1.674	0.759	0.006	0.006			Median	0.0043		Median	0.0293	Median	0.008
102	68	9/90	A	Puente Hills	Boiler #300	CO	2.60	10907	0.3895	4248	120.30	1,012	257.96	68,902	0.794	0.360	0.0031	0.0030	D	Summary Data Only	Standard Deviation	0.0053		Standard Deviation	0.0085	Standard Deviation	0.000
102	68	8/92	A	Puente Hills	Boiler #300	CO	0.03	9720	0.4305	4184	118.49	1,012	254.08	67,490	0.009	0.004	0.0000	0.0000	D	Summary Data Only	Sample Variance	0.00002836091		Sample Variance	0.0000741	Sample Variance	0.00000088
102	68	11/94	A	Puente Hills	Boiler #300	CO	0.10	11390	0.4230	4818	136.43	1,012	292.55	77,190	0.034	0.016	0.0001	0.0001	D	Summary Data Only	Kurtosis	ERR		Kurtosis	2.9973	Kurtosis	ER
102	68	11/95	A	Puente Hills	Boiler #300	CO	7.00	10755	0.3730	4012	113.60	1,012	243.59	65,984	2.047	0.928	0.0084	0.0082	D	Summary Data Only	Skewness	0.8935		Skewness	1.6834	Skewness	-1.429
					Boiler Average										0.721	0.327	0.003	0.003			Range	0.0105		Range	0.0192	Range	0.001
					Site A Average											0.543	0.004	0.004		Used in EF derivation.	Minimum	0.0007		Mnimum	0.0256	Minimum	0.005
102	68	12/92	B	Palos Verdes	Boiler #1	CO	13.90	3573	0.1955	699	19.78	1,012	42.41	14,615	0.900	0.408	0.0212	0.0206	D	Summary Data Only; Includes CNG Fuel Supplement (~5% by v	Maximum	0.0112		Maximum	0.0448	Maximum	0.008
102	68	12/94	В	Palos Verdes	Boiler #1	CO	1.15	3296	0.1880	620	17.55	1.012	37.63	13.578	0.065	0.031	0.0018	0.0018	D	Summary Data Only: Includes CNG Fuel Supplement (~5% by y	sum	0.0163		Sum	0.1291	Sum	0.023
					Boiler Average	2									0.485	0.220	0.012	0.011		Used in EF derivation.	Count	3.0000		Count	4.0000	Count	3.000
102	68	8/92	C	Spadra	Boiler	CO	1.60	3137	0.4255	1335	37.80	1.012	81.05	13.430	0.095	0.043	0.0012	0.0011	D	Summary Data Only	Confidence Level (95.0%)	0.0132		Confidence Level(95.0%)	0.0137	Confidence Level(95.0%	0.002
102	68	9/93	C	Spadra	Boiler	CO	0.80	3752	0.3800	1426	40.37	1.012	86.57	19,720	0.070	0.032	0.0008	0.0008	D	Summary Data Only				Normality test	p<0.15		
102	65	12/94	C	Spadra	Boiler	00	0.30	3926	0.3385	1329	37.63	1.012	80.69	18 110	0.024	0.011	0.0003	0.0003	D	Summary Data Only							
			-	a proto ta	Boiler Average										0.063	0.029	0.001	0.001		Used in EE derivation							
																					Carbon Monoxida			Oxides of Nitropen		Particulate Matter	-
		Nitrogen Oxider						-													Data Relete			Data Rojete		Data Bolote	-
56	30	8/03	D	Counte Canunn	Boiler	NOv	6.00	9950	0.3370	3353	04.05	1.012	203.60	122.657	5 350	2.430	0.0263	0.0256	C	CARP method 100: Llord in EE deduction	0.0012			0.0256		0.002	2
103	66	8/01	A .	Ruente Mille	Boiler #400	NOx	14.10	9740	0.4250	4140	117.22	1,012	251 35	65 722	6 745	3.060	0.0268	0.0261	0	Summary Data Calu	0.0045			0.0292		0.000	2
102	00	0/91	A	Puente Hills	Boller #400	NOA	14.10	5740	0.4250	4140	117.22	1,012	201.30	00,722	0.740	3.000	0.0208	0.0201	0	Summary Data Only	0.0112			0.0282		0.008	0
- /1	D.	8/83	A	Puente Hills	Boller #400	NUX	17.30	10870	0.4305	4680	132.01	1,012	284.14	69,770	8.785	3.980	0.0309	0.0301	U	SCAQMD Method 100.1	0.0007			0.0448		0.006	8
100		0.000		0	Boller Average	2	10.00	10007	0.0005	1010	100.00	1.010	057.00	00.000	7.765	3.023	0.029	0.028	0					0.0305			-
102	68	9/90	A	Puente Hills	Boller #300	NUX	16.60	10907	0.3895	4248	120.30	1,012	257.96	68,902	8.325	3.777	0.0323	0.0314	0	Summary Data Only							
102	65	8/92	A	Puente Hills	Boiler #300	NOx	10.70	9720	0.4305	4184	118.49	1,012	254.08	67,490	5.259	2.385	0.0207	0.0201	D	Summary Data Only	NOTE: Bollers are equipped wi	h LNB/FGR.					
102	65	11/94	A	Puente Hills	Boiler #300	NOx	15.80	11390	0.4230	4818	136.43	1,012	292.55	77,190	8.881	4.028	0.0304	0.0295	D	Summary Data Only							
102	65	11/95	A	Puente Hills	Boiler #300	NOx	16.70	10755	0.3730	4012	113.60	1,012	243.59	65,984	8.024	3.639	0.0329	0.0320	D	SCAQMD Method 100.1							
					Boiler Average	e									7.623	3.457	0.029	0.028									
					Site A Average	2										3.490	0.029	0.028		Used in EF derivation.							
102	65	12/92	B	Palos Verdes	Boiler #1	NOx	18.40	3573	0.1955	699	19.78	1,012	42.41	14,615	1.958	0.888	0.0462	0.0449	D	Summary Data Only							
102	68	12/94	B	Palos Verdes	Boiler #1	NOx	17.70	3296	0.1880	620	17.55	1,012	37.63	13,578	1.750	0.794	0.0465	0.0452	D	Summary Data Only							
					Boiler Average										1.854	0.841	0.046	0.045									
102	68	11/93	B	Palos Verdes	Boiler #2	NOx	23.00	3504	0.2205	773	21.88	1,012	46.91	12,847	2.152	0.976	0.0459	0.0446	D	Summary Data Only							
					Site B Average	2										0.908	0.046	0.045		Used in EF derivation.							
102	68	8/91	C	Spadra	Boiler	NOx	23.40	3240	0.3595	1165	32.98	1.012	70.73	16.410	2.796	1.268	0.0395	0.0384	D	Summary Data Only							
102	68	8/92	C	Spadra	Boiler	NOx	17.70	3137	0.4255	1335	37.80	1.012	81.05	13.430	1.731	0.785	0.0214	0.0208	D	Summary Data Only							
102	65	9/93	C	Spadra	Boiler	NOx	18.10	3752	0.3800	1426	40.37	1.012	86.57	19 720	2 595	1 179	0.0300	0.0292	D	Summary Data Only							
102	65	12/94	Č	Spadra	Boiler	NOx	21.00	3926	0.3385	1329	37.63	1.012	80.69	18 110	2 765	1.256	0.0343	0.0334	D	Summary Data Only							
103	65	12/95	Č.	Spadra	Boiler	NOx	20.30	3953	0.3400	1344	38.06	1.012	81.61	17.357	2.566	1 164	0.0314	0.0306	D	Summary Data Only							
					Site C Average										2 492	1 130	0.031	0.030		Used in EE derivation							
<u> </u>	-	Particulate Matter	-	-	-											1											+
		Particulate matter		0	0.1.1.1000	044 (500)	0.0000	10070	0.1005	1000	100.51	1.010	001.11	00 330	0.704	1 700	0.0100	0.0100									
10	02	9/93	A .	Puente Hills	Dotter #400	PM (TSP)	0.0063	108/0	0.4305	4680	132.01	1,012	284.14	65,770	3.768	1.705	0.0133	0.0129	0	air but 0.0002 gridaci was inorgânic	-						1
102	62	0/91	A .	Fuend Hills	Dotter #400	- rm(ISP)	0.0015	9/40	0.4250	4140	117.22	1,012	201.30	65,722	0.840	0.383	0.0034	0.0033	0	0.0000 grosci ol ine measured PM was inorganic							+
101		11/06		Durante Mille	Doller Average	DM (TED)	0.0044	10765	0.2720	4012	112.00	1.012	242.50	eE 094	2.300	1.040	0.008	0.008	0	all an example DM may be seen in							
102	68	11/95	A	Puend Hills	Doller #300	Pm (TSP)	0.0044	10/55	0.3730	4012	113.60	1,012	243.59	65,984	2.485	1.125	0.0102	0.0099	0	an measured PM was inorganic							1
102	65	11/94	L A	Puente Hills	Boller #300	PM (TSP)	0.0032	11390	0.4230	4818	136.43	1,012	292.55	77,190	2.117	0.960	0.0072	0.0070	0	all measured PM was inorganic							-
102	68	8/92	A	Puente Hills	Boiler #300	PM (TSP)	0.0038	9720	0.4305	4184	118.49	1,012	254.08	67,490	2.198	0.997	0.0087	0.0084	D	all but 0.0001 gr/dscf was inorganic							-
102	68	9/90	A	Puente Hills	Boiler #300	PM (TSP)	0.0034	10907	0.3895	4248	120.30	1,012	257.96	68,902	2.008	0.911	0.0078	0.0076	D	all measured PM was inorganic							+
<u> </u>					Boller Average			<u> </u>							2.203	0.999	0.008	0.008									
L					Site A Average											1.007	0.008	0.008		Used in EF derivation.							
102	68	12/92	B	Palos Verdes	Boiler #1	PM (TSP)	0.0027	3573	0.1955	699	19.78	1,012	42.41	14,615	0.338	0.153	0.0080	0.0078	D	all measured PM was inorganic							
102	68	12/94	B	Palos Verdes	Boiler #1	PM (TSP)	0.0041	3296	0.1880	620	17.55	1,012	37.63	13,578	0.477	0.216	0.0127	0.0123	D	all measured PM was inorganic							
					Boiler Average										0.408	0.185	0.010	0.010									
102	68	11/93	B	Palos Verdes	Boiler #2	PM (TSP)	0.0060	3504	0.2205	773	21.88	1,012	46.91	12,847	0.661	0.300	0.0141	0.0137	D	all measured PM was inorganic							
102	68	12/95	В	Palos Verdes	Boiler #2	PM (TSP)	0.0010	3404	0.2055	700	19.81	1,012	42.47	12,774	0.109	0.050	0.0026	0.0025	D	all measured PM was inorganic							
					Boiler Average	0									0.385	0.175	0.008	0.008									
					Site B Average	-										0,177	0.009	0.009		Used in EF derivation.							
102	68	8/91	С	Spadra	Boiler	PM (TSP)	0.0032	3240	0.3595	1165	32.98	1.012	70.73	16.410	0.450	0.204	0.0064	0.0062	D	all measured PM was increanic							
102	68	8/92	c	Spadra	Boiler	PM (TSP)	0.0059	3137	0.4255	1335	37.80	1.012	81.05	13.430	0.679	0.308	0.0084	0.0081	D	all but 0.0006 gridsof was inorganic							
102	68	9/93	c	Spadra	Boiler	PM (TSP)	0.0032	3752	0.3800	1426	40.37	1.012	86.57	19,720	0.541	0.245	0.0062	0.0061	D	all but 0.0002 gridsof was inorganic							
103	65	12/94	č	Spadra	Boiler	PM (TSP)	0.0049	3926	0.3385	1329	37 63	1,012	80.69	18,110	0,761	0.345	0.0094	0.0092	D	all measured PM was inorganic							1
103	66	12/95	- C	Spadra	Boiler	DM (TSD)	0.0025	3953	0.3400	1344	38.06	1.012	81.61	17 357	0.375	0.165	0.0046	0.0044	0	all moneyred DM was increased	1						1
- 102	00	12/00	- ^C	opeand	Done.	1(13P)	3.0025	3903	0.3400	1344	30.00	1,012	01.01	17,337	0.312	0.105	0.0040	0.0044	5	an interaction r in max marganic							

Appendix C-3: ENGINES SHEET Background Data for Secondary Pollutant Emission Factors

-																											
						LFG Fuel		Methane	Methane	Default		Conc.	Outlet	Emission	Emission	Emission	Emission				Summary S	statistics (kg/	hr/m^3/min)				
AP-42	BID	Date	Landfill ID	Landfill Name Device ID	Compound	Flow Rate	Methane	Flow Rate	Flow Rate	Heat Content	Heat Input	(ppm or	Flow Rate	Rate	Rate	Factor	Factor	EF	Comments			IC Engines					
Ref.	Ref.	mo/yr				(scfm)	Fraction	(scfm)	(m^3/min)	Btu/cf	mmBtu/hr	gr/dscf)	(dscfm)	(lbs/hr)	(kg/hr)	(lbs/mmBtu)	kg/hr/m*3/mir	Rating									
	c	bon Mono	tide																	Carbon Mono	xide		Oxides of Ni	rogen	P	rticulate Mat	fer
5	0 6	2/94	A	Chicopee IC Engine	CO	421	0.4400	185	5 5.25	5 1,012	11.25	444.0	3,272	6.439	2.920	0.5725	0.557	A	Lean combs.; EPA M. 7E; Fuel flow estimated via carbon balance.	Mean	0.4469		Mean	0.3012		n/a	1
4	7 6	7/91	В	Johnston IC Engine	CO	590	0.5260	0 310	8.7	3 1,012	18.83	466.0	4,580	9.460	4.290	0.5024	0.489	A	Lean combs.; EPA M. 7E; Fuel flow estimated via carbon balance.	Standard Erro	0.0330		Standard Err	0.1044			
6	7 10	3/88	C	Toyon Canyor IC Engine	CO	714	0.5220	0 373	3 10.5	5 1,012	22.63	366.0	5,690	9.231	4.186	0.4079	0.397	A	CO analyzed by TCA method; Exhaust flow estimated via carbon balance.	Median	0.4087		Median	0.2111			
6	4 9	12/90	D	Bakersfield IC Engine	CO	784	0.4312	2 338	9.5	7 1,012	20.51	348.2	5,586	8.621	3.910	0.4203	0.409	A	CARB Method 1-100.	Standard Dev	0.0738		Standard De	0.2557			
6	5 9	4/91	E	Otay IC Engine	CO	588	0.5350	315	5 8.9	1 1,012	19.10	354.9	4,791	7.537	3.418	0.3946	0.384	B	Method not specified; Exhaust flow estimated via carbon balance.	Sample Varia	0.0054		Sample Varia	0.0654			
																				Kurtosis	+0.7038		Kurtosis	4.7038			
	,	rogen Oxi	es																	Skewness	0.9993		Skewness	2.1226			
4	7 6	7/91	В	Johnston IC Engine	NOx	590	0.5260	0 310	8.7	3 1,012	18.83	86.0	4,580	2.868	1.301	0.1523	0.148	A	Lean comb.; EPA M. 10; Fuel flow estimated via carbon balance.	Range	0.1730		Range	0.6603			
6	7 10	3/88	С	Toyon Canyor IC Engine	NOx	714	0.5220	0 373	3 10.5	5 1,012	22.63	453.0	5,690	18.769	8.512	0.8294	0.807	A	NOx analyzed by Phenoldisulfonic Acid (PDSA) method; Exhaust flow estimated via carbon balan	c Minimum	0.3837		Minimum	0.1463			
6	4 9	12/90	D	Bakersfield IC Engine	NOx	784	0.4312	2 338	9.5	7 1,012	20.51	141.2	5,586	5.743	2.605	0.2800	0.272	A	Lean comb.; CARB 1-100.	Maximum	0.5567		Maximum	0.8065			
6	5 9	2/91	E	Otay IC Engine	NOx	588	0.5350	315	5 8.9	1 1,012	19.10	160.0	4,791	5.582	2.531	0.2922	0.284	B	Method not specified; Exhaust flow estimated via carbon balance.	Sum	2.2344		Sum	1.8074			1
5	0 6	2/94	A	Chicopee IC Engine	NOx	421	0.4400	0 185	5 5.25	5 1,012	11.25	72.8	3,272	1.734	0.787	0.1542	0.150	A	Lean combs.; EPA M. 10; Fuel flow estimated via carbon balance.	Count	5.0000	1	Count	6.0000	1		
5	1 6	2/94	F	Richmond IC Engine	NOx	330	0.5600	0 185	5 5.23	3 1,012	11.22	65.8	3,522	1.688	0.765	0.1504	0.146	A	EPA M. 7E; Fuel flow estimated via carbon balance.	Confidence Le	0.0916		Confidence L	0.2683			
																				Normality test	p<0.2		Normality tes	a p<0.05			
	Pa	ticulate M	tter																				Normality tes	p>0.2			
6	4 9	12/90	D	Bakersfield IC Engine	PM	784	0.4312	2 338	9.5	7 1,012	20.51	0.020	5586.0	0.977	0.443	0.0476	0.046	B	EPA Method 5.				Geometric M	0.2424			
6	δ 9	4/91	E	Otay IC Engine	PM	588	0.5350	315	5 8.9	1 1,012	19.10	0.003	4791.0	0.123	0.056	0.0064	0.006	D	no supporting data; excluded from EF derivation.								
																				Carbon Mono	xide		Oxides of Ni	brogen	Pi	rticulate Mat	ter
																				Data Points			Data Points			Data Points	
																				0.5567			0.1481		One va	lid data point	= 0.046
																				0.4886			0.8065	5			
																				0.3967			0.2723	8			1
																				0.4087			0.2842	2			
													1		1					0.3837			0.1499				1
																							0.1463				

Appendix C-3: TURBINES SHEET Background Data for Secondary Pollutant Emission Factors

					LFG Fuel		Methane	Outlet	Emission	Emission						Summary Statistics (g/hr/m^3/min	1)	
AP-42	BID	Date	Landfill ID	Device ID	Flow Rate	Methane	Flow Rate	Flow Rate	Factor	Factor	EF	Comments				Gas Turbir	es		
Ref.	Ref.	mo/yr			(scfm)	Fraction	(m^3/min)	(dscfm)	(lbs/mmBtu)	(kg/hr/m^3/min)	Rating								
		Carbon	Monoxide								-			Carbon Monoxid	le	Oxides of Nitrog	n		Particu
46	63	12/93	A	Gas Turbine	945	0.5320	14.24	30,155	0.1673	0.163	A	EPA Method 3; Used in EF derivation		Mean	0.4479	Mean	0.0830	1	n/a
48	66	8/89	В	Gas Turbine (#1)	1222	0.5840	20.21	26,974	0.0914	0.089	С	EPA Method 10		Standard Error	0.3230	Standard Error	0.0346	3	
48	66	8/89	В	Gas Turbine (#2)	1002	0.5840	16.57	26,662	0.1125	0.109	С	EPA Method 10		Median	0.1418	Median	0.0682	2	
48	66	8/89	В	Gas Turbine (#3)	1244	0.5840	20.57	26,429	0.0792	0.077	С	EPA Method 10		Standard Deviation	0.6461	Standard Deviation	0.0693	3	
				Site B Average					0.094	0.092		Calc. EF's slightly higher than those reported; site avg. Used in EF derivation.		Sample Variance	0.4174	Sample Variance	0.0048	3	
68	102	5/90	С	Gas Turbine (#1)	1852	0.3395	17.80	30,559	0.1071	0.104	D	Summary Data Only		Kurtosis	3.9592	Kurtosis	-2.5855	5	
68	102	12/90	С	Gas Turbine (#1)	1751	0.4050	20.08	30,012	0.0955	0.093	D	Summary Data Only		Skewness	1.9879	Skewness	0.6103	3	
68	102	8/91	С	Gas Turbine (#1)	1195	0.4255	14.40	28.684	0.1062	0.103	D	Summary Data Only		Range	1.3242	Range	0.1428	3	
68	102	10/92	C	Gas Turbine (#1)	1522	0 4290	18.49	29.625	0 1225	0 119	D	Summary Data Only		Minimum	0.0918	Minimum	0.0265	5	
68	102	9/93	č	Gas Turbine (#1)	1475	0.4395	18.36	27 450	0 1452	0 141		Summary Data Only	1	Maximum	1 4 1 6 0	Maximum	0 1692	2	
68	102	3/95	C C	Gas Turbine (#1)	1481	0.4520	18.96	30.895	0 1279	0.124		Summary Data Only		Sum	1 7914	Sum	0.3322		
68	102	11/95	C C	Gas Turbine (#1)	1902	0.4005	21.57	30 748	0.1656	0.124	D	Summary Data Only		Count	4 0000	Count	4 0000		
	102	11/00		Turbine Average	1002	0.4000	21.07	00,740	0.1000	0.101		Used in FE derivation		Confidence Level(95.0%)	1.0281	Confidence Level(95.0%)	0 1103	3	
68	102	0/03	C	Gas Turbine (#2)	1215	0.4380	15.07	20.180	1 5750	1 532	D	Summary Data Only		Normality test	pr0.01	 Normality test	000.2		
68	102	11/94	C C	Gas Turbine (#2)	1311	0.4325	16.06	21 151	1 3 3 7 0	1 300	D	Summary Data Only	-	NormaEly test (lognormal)	p=0.01	Normany test	p= 0.2		
	102	11/04		Turbine Average	1011	0.4020	10.00	21,101	14560	1,416		Liead in EE derivation		Geometric Mean	0.2249				
				Site C Average					0.700	0.769			-	Concerte mourt	0.1145				
				Site C Average					0.780	0.700			-	Carbon Manavid		Oxides of Nitrog			Bortion
		Nitrogo	n Ovidor										-	Carbon Monoxid		Data Bainte			Faitice
40	62	10/02	I Oxides	Cas Turbina	045	0.5220	14.04	20.455	0.0393	0.007		PDA MARKARON DA AN PERMANANA	-	Data Points		Data Points			Dat
46	60	12/93	A	Gas Turbine	945	0.5320	14.24	30,155	0.0282	0.027	A	EPA Method 22; Used in EF derivation.		0.1627		0.0274			average of
49	00	7/09	8	Gas Turbine (#1)	701	0.4140	13.22	20,974	0.1401	0.130	A .	EPA M. 20		0.0918		0.1692			0.021
49	00	7/69	B	Gas Turbine (#2)	791	0.4140	9.27	20,002	0.1992	0.194	~	EPA M. 20		0.1210	J	0.1091			
49	66	7/89	в	Gas Turbine (#3)	824	0.4140	9.60	20,429	0.1828	0.178	A	EPA M. 20		1.4160	-	0.0265			
60	100	5.000	6	Site B Average	1050	0.2205	17.00	20.550	0.1/4	0.169	0	Used in EF derivation.	-		-				
68	102	5/90	C O	Gas Turbine (#1)	1852	0.3395	17.80	30,559	0.1195	0.116	0	Summary Data Only	-						
68	102	12/90	C	Gas Turbine (#1)	1/51	0.4050	20.08	30,012	0.1030	0.100	0	Summary Data Only		0.224850320149295	9				
68	102	8/91	C	Gas Turbine (#1)	1195	0.4255	14.40	28,684	0.14/5	0.143	D	Summary Data Only	-						
68	102	10/92	C	Gas Turbine (#1)	1522	0.4290	18.49	29,625	0.0963	0.094	D	Summary Data Only			-				
68	102	9/93	С	Gas Turbine (#1)	14/5	0.4395	18.36	27,450	0.1046	0.102	D	Summary Data Only			-				
68	102	3/95	С	Gas Turbine (#1)	1481	0.4520	18.96	30,895	0.1218	0.118	D	Summary Data Only							
68	102	11/95	С	Gas Turbine (#1)	1902	0.4005	21.57	30,748	0.0925	0.090	D	Summary Data Only							
				Turbine Average					0.1122	0.109		Used in EF derivation.							
68	102	9/93	С	Gas Turbine (#2)	1215	0.4380	15.07	20,180	0.0296	0.029	D	Summary Data Only							
68	102	11/94	С	Gas Turbine (#2)	1311	0.4325	16.06	21,151	0.0248	0.024	D	Summary Data Only							
				Turbine Average					0.0272	0.026		Used in EF derivation.							
-				Site C Average					0.070	0.068									
		Particul	ate Matter																
68	102	5/90	С	Gas Turbine (#1)	1852	0.3395	17.80	30,559	0.0117	0.0113	D	all but 0.0004 gr/dscf measured PM was inorganic							
68	102	12/90	С	Gas Turbine (#1)	1751	0.4050	20.08	30,012	0.0102	0.0099	D	all measured PM was inorganic							
68	102	8/91	C	Gas Turbine (#1)	1195	0.4255	14.40	28,684	0.0167	0.0163	D	all but 0.0003 gr/dscf measured PM was inorganic							
68	102	10/92	C	Gas Turbine (#1)	1522	0.4290	18.49	29,625	0.0000	0.000	D	all but 0.0002 gr/dscf measured PM was inorganic							
68	102	9/93	С	Gas Turbine (#1)	1475	0.4395	18.36	27,450	0.0000	0.000	D	all measured PM was inorganic							
68	102	3/95	C	Gas Turbine (#1)	1481	0.4520	18.96	30,895	0.0208	0.0203	D	all measured PM was inorganic							
68	102	11/95	C	Gas Turbine (#1)	1902	0.4005	21.57	30,748	0.0313	0.0305	D	all measured PM was inorganic							
				Turbine Average					0.0130	0.0126		Used in EF derivation.							
68	102	7/90	С	Gas Turbine (#2)	1398	0.4380	17.34	20,415	0.0184	0.0178	D	all measured PM was inorganic	1		1				
68	102	11/91	С	Gas Turbine (#2)	1301	0.4095	15.09	22,937	0.0249	0.0242	D	all but 0.001 gr/dscf of PM measured was inorganic							
68	102	9/93	С	Gas Turbine (#2)	1215	0.4380	15.07	20,180	0.0482	0.0469	D	all but 0.001 gr/dscf of PM measured was inorganic							
68	102	11/94	c	Gas Turbine (#2)	1311	0.4325	16.06	21.151	0.0321	0.0312	D	all measured PM was inorganic			1 1				
			-	Turbine Average					0.0309	0.0300	_	Used in EF derivation.							
				Site C Average				1	0.0219	0.0213					1 1				
				and O / Wordgo			0		0.0210	0.0210		1		1				1	1

BID	AP-42	Date	Landfill Name	Control/	Compound	Molecular	>	Control	EF	Comments
Ref.	Ref.#	mo/yr		Utilization		Weight	<	Efficiency	Rating	
56	39	6/91	Coyote Canyon	Boiler	TGNMO (as hexane)	86	=	95.89%	С	Lacking Backup Data
					Benzene	78.12	=	67.29%	С	data point excluded
					1,2-Dichlorobenzene	98.96	=	86.52%	С	
					Perchloroethvlene	165.83	=	97.42%	С	
					Toluene	92.13	=	97.59%	C	
					Xvlenes	106.16	=	99.21%	С	
					Avg. Halo.			91,97%		
					Avg. Non-Halo.			88.03%		
70	53	9/93	Puente Hills	Boiler #400	Benzene	78 12	=	99 79%	D	
		0,00		20101 / 100	Toluene	92.13	=	99.93%	D	
					Xylenes	106.16	=	99.93%	D	
					Xyloneo	Average		99.88%	D	
					Perchloroethylene	165.83	>	99.96%	D	Lacking Backup Data: CE is >99.93
					Methylene Chloride	84 94	=	99.96%	D	
					Dichlorobenzene	98.96	>	99.87%	D	Lacking Backup Data: CE is >99.75
					Districtoberizerie	Average		99 93%	D	
102	68	11/95	Puente Hills	Boiler #300	Benzene	78 12	=	99.86%	р	
102	00	11/55	T dente Tillio	Doller #000	Toluene	02.12	_	00.00%	Б	
					Yvlenes	106.16	-	00 07%	р	Lacking Backup Data: CE is >00.05
					Ayleries	100.10 Average	-	00.01%	D	Lacking Dackup Data, CE 13 - 33.33
					Dereblargethylang	Average	~	99.91 /0	D	
					Methylene Chleride	103.03	-	99.01%		
						04.94	-	99.40%		
					Dichlorobenzene	98.90			ND	
100	~~	10/00	Deles Verdes	Delles #4		Average	_	66.41%	_	Lashing Desluis Data
102	60	12/92	Palos verdes	Boller #1	TGINMO (as nexane)	80	=	99.08%	D	Lacking Васкир Data
					Benzene	78.12	=	99.99%	D	
					Ioluene	92.13	>	99.99%	D	Lacking Backup Data; CE is >99.98
					Xylenes	106.16	=	99.99%	D	Lacking Backup Data; CE is >99.99
						Average		99.99%	_	
					Perchloroethylene	165.83	>	99.90%	D	Lacking Backup Data; CE is >99.80
					Methylene Chloride	84.94	>	99.79%	D	Lacking Backup Data; CE is >99.59
					Dichlorobenzene	98.96	>	99.97%	D	Lacking Backup Data; CE is >99.94
						Average		99.89%		
102	68	12/94	Palos Verdes	Boiler #1	TGNMO (as hexane)	86	>	99.83%	D	Lacking Backup Data; CE is >99.83
				Boiler Average				99.46%		
102	68	11/93	Palos Verdes	Boiler #2	TGNMO (as hexane)	86	=	99.02%	D	Lacking Backup Data
102	68	12/95	Palos Verdes	Boiler #2	TGNMO (as hexane)	86	=	99.56%	D	Lacking Backup Data
					Benzene	78.12	>	99.90%	D	
					Toluene	92.13	>	99.87%	D	
					Xylenes	106.16	>	99.96%	D	
						Average		99.91%		
					Perchloroethylene	165.83	=	98.90%	D	Lacking Backup Data; CE is >99.69
					Methylene Chloride	84.94	=	98.29%	D	Lacking Backup Data; CE is >99.69
					Dichlorobenzene	98.96	=	99.88%	D	Lacking Backup Data; CE is >99.78
						Average		99.02%		
								99.29%		
					Benzene	70 10	_	00.26%	P	
					Toluene	10.12	-	99.00% 00.00%		
					Yulopos	92.13	_	100.00%		Lasking Backup Data: CE is >00.00
					Ayleries	100.10 Average	-	00.00%	D	Lacking Backup Data, CE IS -99.99
					Parablaraathylana	Average 165.92	~	99.70%	Р	Lasking Backup Data: CE is >00.09
					Methylene Chleride	103.03	-	99.99%		Lacking Backup Data, CE is >99.96
					Dishlarahanzana	04.94	-	100.00%		Lacking Backup Data, CE is >100.00
					Dichlorobenzene	90.90			ND	
100	~~	0/04	Onedan	Deller		Average	_	00.00%	_	Lashina Dashua Data
102	00	0/91	Spadra	Boilor		80 00	_	99.42% 00.27%	D	Lauking Dackup Data
102	00	0/92	Spadra	Boilor		00	-	33.31 % 00 67%		Lauring Backup Data: OF is 200.07
102	00	3/30	Spadra	Doller		00	(99.01% 00.700/		Lacking Backup Data, CE is 299.07
102	60 60	12/94 12/05	Spadra	Boiler		80	1	99.12% 01.00%	D D	Lacking Backup Data; CE IS 299.72
102	00	12/95	Spaura	Doller	INVITU (as nexane)	08	-	94.99% 98.64%	U	
			Overall Boiler Ave	rage NMOC CE				98.00%		
			Overall Boiler Hale	o CE				87.31%		
			Overall Boiler Nor	-Halo CE				97.92%		

BID Ref.	AP-42 Ref.#	Date mo/yr	Landfill Name	Control/ Utilization Gas Turbine (#1)	Compound Average	Molecular Weight	> <	Control Efficiency 0.00%	EF Rating	Comments
102	68	5/90	Puente Hills	Gas Turbine (#2)	Renzene	78 12	=	99.07%	П	
102	68	9/93	Puente Hills	Gas Turbine (#1)	Benzene	78.12	=	97.48% 98.28%	D	
102	68	7/90	Puente Hills	Gas Turbine (#2)	Benzene	78.12	=	96.88%	D	
102	68	11/91	Puente Hills	Gas Turbine (#2)	Benzene	78.12	=	96.56%	D	
102	68	9/93	Puente Hills	Gas Turbine (#2)	Benzene	78.12	=	97.55%	D	
102	68	11/94	Puente Hills	Gas Turbine (#2)	Benzene	78.12	=	98.39% 97.34% 97.81%	D	
				Gas Turbine (#1)	Dichlorobenzene	98.96	=	98.35%	D	Lacking Backup Data
				Gas Turbine (#2)	Dichlorobenzene	98.96	>	99.89% 99.12%	D	Lacking Backup Data; CE is >99.82
				Gas Turbine (#1)	Methylene Chloride	84.94	>	99.97%	D	Lacking Backup Data; CE is >99.93
102	68	3/95	Puente Hills	Gas Turbine (#1)	Methylene Chloride	106.16	=	98.48% 99.22%	D	
				Gas Turbine (#2)	Methylene Chloride	84.94	>	99.97%	D	Lacking Backup Data; CE is >99.95
102	68	9/93	Puente Hills	Gas Turbine (#2)	Methylene Chloride	84.94	=	99.91% 99.94% 99.58%	D	
				Gas Turbine (#1)	Perchloroethylene	165.83	>	99.95%	D	Lacking Backup Data; CE is >99.89
				Gas Turbine (#2)	Perchloroethylene	165.83	=	99.95% 99.95%	D	Lacking Backup Data; CE is >99.91
102	68	9/93	Puente Hills	Gas Turbine (#1)	TGNMO (as hexane)	86	=	95.57%	D	
102	68	3/95	Puente Hills	Gas Turbine (#1)	TGNMO (as hexane)	86	>	99.32%	D	TGNMO were ND in exhaust (<1ppm), so CE is >99.32%
102	68	11/95	Puente Hills	Gas Turbine (#1)	TGNMO (as hexane)	86	=	99.03%	D	
102	68	5/90	Puente Hills	Gas Turbine (#1)	TNMHC (as hexane)	86	>	99.55%	D	All Ref. 102 Tests are lacking backup data; summary data only; Eff is >99.95%
102	68	12/90	Puente Hills	Gas Turbine (#1)	TNMHC (as hexane)	86	=	94.75%	D	
102	68	8/91	Puente Hills	Gas Turbine (#1)	TNMHC (as hexane)	86	=	96.77%	D	
102	68	10/92	Puente Hills	Gas Turbine (#1)	TNMHC (as hexane)	86	=	95.86% 97.26%	D	
102	68	11/91	Puente Hills	Gas Turbine (#2)	TNMHC (as hexane)	86	=	90.09%	D	
102	68	9/93	Puente Hills	Gas Turbine (#2)	TGNMO (as hexane)	86	=	92.93% 91.51%	D	
100	00	40/00	D () !!!!	Gas Turbine (#1)	Ioluene	92.13	=	95.62%	D	
102	68	12/90	Puente Hills	Gas Turbine (#1)	Toluene	92.13	=	99.92%	D	
102	68	8/91	Puente Hills	Gas Turbine (#1)	Toluene	92.13	=	99.89%	D	
102	68	10/92	Puente Hills	Gas Turbine (#1)	Toluene	92.13	-	99.83% 98.81%	D	
102	69	11/01	Puonto Hills	Gas Turbine (#2)	Vinyl Chlorido	92.13 62.5	_	00.12%	D	
102	00	11/91	r uente i lins	Gas Turbine (#2)	Yulenes	106.16	_	99.12%	D	
102	68	10/92	Puente Hills	Gas Turbine (#1)	Xylenes	106.16	=	99 97%	D	Eff is >99 97
102	00	10/52	T dente Thilis		Aylenes	100.10		99 19%	D	2110 50.01
				Gas Turbine (#2)	Xylenes	106.16	=	99.93% 99.56%	D	
				Gas Turbine (#1)	halo	Average		99.17%		
				Gas Turbine (#1)	nonnaio	Average		98.76%		
				Gas Turbine (#2)	nanhala	Average		99.34%		
				Gas Turbine (#2)	nonnaio	Average		98.78%		
				Overall	nalu	Average		39.20% 00 770/		
				Overall	NMOC	Average		94.39%		

NOTES: NOTE: For the LACSD Ref. 102 data, only CE data for which detectable concs. at the inlet are presented (for non-detects at the exhaust 0.5 x the detect limits are assumed). Multiple data points were used for compounds where a wide range of CE's were observed (I.e., >1.0%).

BID	Date	Landfill I	I Device ID	Compound	> A	Verage	Flare	Site	Comments	
Ref.	mo/yr			-	< [D.E. (%) A	verage (%)Av	verage (%)		
	NMOC									
102	3/92	А	Flare (#1)		=	99.40	99.40	99.28		Column1
102	2/91	А	Flare (#3)		>	99.97	99.97			
102	10/91	А	Flare (#4)		=	97.27	98.60			Mean 98.4335
102	5/96	А	Flare (#4)		>	99.92				Standard 0.632821
102	12/94	А	Flare (#5)		>	99.80	99.85			Median 99.09273
102	9/90	А	Flare (#5)		>	99.90				Mode NA
102	11/93	А	Flare (#6)		=	97.37	98.58			Standard 1.415031
102	9/90	А	Flare (#6)		=	99.78				Sample V: 2.002312
102	8/92	В	Flare (#1)		=	99.48	99.65	99.09		Kurtosis 3.867357
102	9/94	B	Flare (#1)		=	99.66				Skewness -1.95888
102	5/96	B	Flare (#1)		=	99.80				Range 3,354333
102	7/90	B	Flare $(#2)$		=	99.67	99.26			Minimum 95 97167
102	7/93	B	Flare $(#2)$		=	98.30	00.20			Maximum 99.326
102	5/96	B	Flare $(#2)$		>	99.80				Sum 492 1675
102	8/92	B	Flare $(#2)$		=	98 73	99.18			Count 5
102	6/95	B	Flare $(#3)$		>	99.63	00.10			Confidenc 1 756996
102	8/92	B	Flare $(#4)$		=	99.23	99 44			
102	6/95	B	Flare $(#4)$		>	99.64	00.11			
102	7/90	B	Flare $(#5)$		_	00 56	99.01			
102	7/93	B	Flare $(#5)$		_	99.00	33.01			
102	6/95	B	Flare $(#5)$		_	99.67				
102	0/30 Q/09	B	Flare $(#6)$		_	00 41	00.54			
102	0/92	D	Flare $(#6)$		_	99.41 00.00	99.04			
102	0/90	D	Flare $(#0)$		2	99.00 07.20	08 50			
102	1193 F /00	D	Flare $(\#7)$		_	97.30	98.00			
102	0/90 11/01	D D	Flare $(\#1)$		_	99.70	00 57			
102	0/04	D D	Flare $(#9)$		_	98.29	98.97			
102	9/94	D D	Flare $(#9)$		2	90.04	00.92			
102	11/91	D D	Flare $(#10)$		>	98.98	99.23			
102	11/94	D D	Flare $(#10)$		_	99.47	00.40			
102	9/94	B	Flare $(\#11)$		=	99.40	99.40			
102	11/91 7/09	B	Flare $(\#12)$		=	98.20	98.27			
102	7/93	В	Flare $(\#12)$		=	96.90				
102	5/96	В	Flare $(#12)$		>	99.70	00.00	00.00		
102	1/94	C	Flare (#1)		=	98.90	98.90	99.33		
102	10/91	C	Flare (#2)		=	99.15	99.38			
102	2/92	C	Flare (#2)		=	99.20				
102	5/95	C	Flare (#2)		>	99.80				
102	2/92	C	Flare (#3)		=	99.60	99.70			
102	5/95	С	F'lare (#3)		>	99.80				
102	8/90	С	Flare (#5)		>	99.79	99.39			
102	1/94	С	Flare (#5)		=	98.99				
102	10/91	С	Flare (#6)		=	99.21	99.26			
102	3/93	\mathbf{C}	Flare (#6)		=	99.06				

102	4/96	\mathbf{C}	Flare (#6)	=	99.50		
102	3/93	D	Flare (#1)	=	99.20	99.45	99.31
102	3/95	D	Flare (#1)	>	99.70		
102	3/93	D	Flare (#2)	=	97.10	97.10	
102	2/91	D	Flare (#3)	=	99.42	99.54	
102	2/92	D	Flare (#3)	=	99.50		
102	3/95	D	Flare (#3)	>	99.70		
102	3/90	D	Flare (#4)	>	99.99	99.66	
102	2/92	D	Flare (#4)	=	99.50		
102	3/95	D	Flare (#4)	=	99.50		
102	3/90	D	Flare (#5)	=	99.20	99.15	
102	3/93	D	Flare (#5)	=	99.10		
102	3/90	D	Flare (#6)	>	99.70	99.43	
102	2/94	D	Flare (#6)	=	98.80		
102	3/96	D	Flare (#6)	=	99.78		
102	2/91	D	Flare (#7)	>	99.93	99.74	
102	7/95	D	Flare (#7)	=	99.54		
102	3/96	D	Flare (#8)	=	99.84	99.84	
102	3/96	D	Flare (#9)	=	99.84	99.84	
102	10/90	\mathbf{E}	Flare (#2)	>	99.66	97.44	98.50
102	2/93	E	Flare (#2)	=	98.56		
102	8/95	E	Flare (#2)	=	94.10		
102	10/90	\mathbf{E}	Flare (#3)	>	99.75	99.33	
102	5/94	Е	Flare (#3)	=	98.90		
102	10/90	Е	Flare (#4)	>	99.69	96.69	
102	2/93	E	Flare (#4)	=	96.57		
102	8/95	\mathbf{E}	Flare (#4)	=	93.80		
102	5/91	Е	Flare (#5)	=	99.01	98.71	
102	5/94	\mathbf{E}	Flare (#5)	=	98.40		
102	12/91	\mathbf{E}	Flare (#6)	=	99.21	99.10	
102	2/93	\mathbf{E}	Flare (#6)	=	98.50		
102	3/95	Е	Flare (#6)	=	99.59		
102	5/91	Е	Flare (#7)	=	99.36	98.53	
102	5/94	\mathbf{E}	Flare (#7)	=	97.70		
102	2/93	\mathbf{E}	Flare (#8)	=	97.18	98.34	
102	3/95	\mathbf{E}	Flare (#8)	>	99.50		
102	6/90	\mathbf{E}	Flare (#9)	>	99.60	98.80	
102	5/94	\mathbf{E}	Flare (#9)	=	98.00		
102	6/90	\mathbf{E}	Flare (#10)	>	99.66	99.37	
102	12/93	\mathbf{E}	Flare (#10)	=	98.90		
102	3/95	\mathbf{E}	Flare (#10)	=	99.56		
102	6/90	Е	Flare (#11)	>	99.71	99.46	
102	5/92	Е	Flare (#11)	=	99.21		
102	2/96	Е	Flare (#11)	=	99.46		
102	6/90	Е	Flare (#12)	>	99.65	99.50	
102	12/93	Е	Flare (#12)	=	99.20		

102	3/95	\mathbf{E}	Flare (#12)		>	99.65			
102	7/90	\mathbf{E}	Flare (#13)		>	99.78	99.43		
102	5/92	\mathbf{E}	Flare (#13)		=	98.88			
102	2/96	\mathbf{E}	Flare (#13)		>	99.64			
102	7/90	Ε	Flare (#14)		=	97.33	98.39		
102	12/93	Е	Flare (#14)		=	99.44			
102	7/90	Е	Flare (#15)		=	98.24	98.93		
102	2/96	Е	Flare (#15)		>	99.62			
102	7/90	Е	Flare (#16)		=	97.91	98.47		
102	12/93	Е	Flare (#16)		=	99.02			
102	5/91	Е	Flare (#17)		=	97.80	98.25		
102	5/92	Ē	Flare (#17)		=	98.70			
102	12/91	Ē	Flare (#18)		=	99.27	97.13		
102	11/92	Е	Flare (#18)		=	99.32			
102	8/95	Ē	Flare (#18)		=	92.80			
102	5/91	Ē	Flare (#19)		=	99.21	99.00		
102	5/92	Е	Flare (#19)		=	98.79			
102	12/91	Ē	Flare (#20)		=	98.98	99.15		
102	11/92	Е	Flare (#20)		>	99.32			
102	12/91	\mathbf{E}	Flare (#22)		=	99.08	98.54		
102	11/92	Е	Flare (#22)		=	97.99			
102	10/90	Е	Flare (#24)		>	99.68	95.94		
102	10/92	Е	Flare (#24)		=	98.15			
102	8/95	Е	Flare (#24)		=	90.00			
104	12/94	\mathbf{F}	Flare		=	99.00	99.00	99.00	
105	10/93	G	Flare		>	99.98	99.98	99.98	
106	4/96	Н	Flare		=	99.80	99.80	99.80	EF rating downgraded primarily due to NOx emissions data.
107	10/96	Ι	Flare		>	99.13	99.13	99.13	
108	11/93	J	Flare		>	98.46	98.46	98.46	
109	3/94	Κ	Flare		>	99.70	99.70	99.70	
55	8/90	Ν	Flare		>	84.50			
59	8/90	0	Flare		>	97.70			
60	5/90	Р	Flare		=	99.60			
62	4/92	\mathbf{Q}	Flare		>	92.05			
	Individual	l Specie	es	_					
102	12/94	А	Flare (#5)	Benzene	>	99.98			Lacking Backup Data.
				Toluene	>	99.98			
				Xylenes	>	99.98			Lacking Backup Data.
				Ave	age	00.00			
				Perchloroethy	viene >	99.00			Lacking Backup Data.
				Methylene Ch	lloride	N/A			not detected at inlet.
				Dichlorobenze	ene >	99.39			Lacking Backup Data.
100	= 10.2	Б		Avei	rage	00.00			
102	7/93	В	F'lare (#2)	Benzene	>	99.90			Lacking Backup Data.
				Toluene	>	99.98			Lacking Backup Data.

				Xylenes >	99.94
				Average	
				Perchloroethylene =	99.96
				Methylene Chlori(>	99.98
				Dichlorobenzene >	99.04
				Average	
102	2/92	\mathbf{C}	Flare (#3)	Benzene >	99.90
			~ /	Toluene >	99.90
				Xvlenes >	99.90
				Average	
				Perchloroethylene >	99.90
				Methylene Chloric>	99.90
				Dichlorobenzene	N/A
				Average	1011
109	9/99	D	Flare (#4)	Bonzono	99.51
102	2152	D	1 late (#4)	Toluene >	. 99.98
				Yulonoo >	. 99.98
				Average	33.30
				Dorehloroothulono -	00.02
				Methylene Chleric	00.00
				Dishlanshannana >	99.99
				Dichlorobenzene >	99.22
	F /00	Б	\mathbf{E}	Average	
	5/90	E	Flare (#9)	Benzene =	99.57
				Toluene =	99.86
				Xylenes >	99.88
				Average	
				Perchloroethylene =	99.89
				Methylene Chlori(>	99.96
				Dichlorobenzene >	99.23
				Average	
	3&4/1992	L	Flare	Benzene =	38.20
				Toluene	n/a
				Xvlenes	n/a
				Average	not calculated
				Perchloroethylene >	94 40
				Methylene Chloric =	91.80
				Dichlorobenzene	n/a
				Average >	62.07
				Inverage >	02.01
	3&4/1992	Μ	Flare	Benzene =	85.90
				Toluene	n/a
				Xylenes	n/a
				Average =	28.63
				Perchloroethylene >	98.40
				Methylene Chlori(>	90.50

Lacking Backup Data.
Lacking Backup Data. Lacking Backup Data.
Lacking Backup Data.
Lacking Backup Data.
Lacking Backup Data. Lacking Backup Data. Inlet and outlet concentrations were not detected.
Lacking Backup Data. Lacking Backup Data
Lacking Backup Data.
Lacking Backup Data. Lacking Backup Data.
Lacking Backup Data.
Lacking Backup Data. Lacking Backup Data.
not used in emission factor development.

			Dichlorobenzene		n/a
			Average	>	62.97
8/90	Ν	Flare	Benzene	>	98.72
			Toluene	=	99.94
			Xylenes	>	99.89
			Average	=	99.52
			Perchloroethylene	>	98.17
			Methylene Chlorid	le	n/a
			Dichlorobenzene		n/a
			Average	>	32.72
8/90	0	Flare	Benzene	>	83.40
			Toluene	=	99.80
			Xylenes	>	99.40
			Average	>	94.20
			Perchloroethylene	>	98.90
			Methylene Chlorid	le	n/a
			Dichlorobenzene		n/a
			Average	>	32.97

test results not used (-73% DE)

test results not used (-54% DE)

BID	Date			>	Average CE	EF	
Ref.	mo/yr	Device ID	Compound	<	(%)	Rating	Comments
98 De	Dec-90	IC Engine	Methane	=	97.80	В	
			Ethane	=	98.33	В	
			Propane	=	90.46	В	
			Butane	=	94.53	В	
			Pentane	>	98.34	В	
			NMOC	=	97.13	В	
99	Apr-91	IC Engine	NMOC	=	94.59	С	
100	Feb-88	IC Engine	NMOC	=	99.74	D	
		-	Trichloroethylene	=	98.93	D	
			Perchloroethylene	=	99.41	D	
			Methane	=	94.06	D	
101	Mar-88	IC Engine					
			Benzene	=	25.00	D	data point excluded
			Toluene	=	96.67	D	
			Xylene	=	99.22	D	
			Trichloroethylene	=	94.00	D	
			1,1,1-Trichloroethylene	=	90.00	D	
			Perchloroethylene	=	95.00	D	
		Methane	=	62.12	D		
			Avg. NMOC		97.15		
			Avg. All (non-methane) Sp	ecies	89.99		
			Avg. Halo Species		95.47		
			Avg. Non-Halo Species		86.08		

DERIVATION OF CHLORIDE CONTENT

		Default	Moles of	Individual
	Molecular	Concentration	Chloride	Chloride
Compound	Weight	(ppmv)	Produced	Concentrations
1,1,1-Trichloroethane	133.42	0.48	3	0.38
(methyl chloroform)*				
1,1,2,2-Tetrachloroethane*	167.85	1.11	4	0.93
1,1,2-Trichloroethane*	133.42	0.10	3	0.08
1,1-Dichloroethane	98.95	2.35	2	1.66
(ethylidene dichloride)*				
1,1-Dichloroethene	96.94	0.20	2	0.14
(vinylidene chloride)*				
1,2-Dichloroethane	98.96	0.41	2	0.29
(ethylene dichloride)*				
1,2-Dichloropropane	112.98	0.18	2	0.11
(propylene dichloride)*				
Bromodichloromethane	163.87	3.13	2	1.34
Carbon tetrachloride*	153.84	0.004	4	0.004
Chlorobenzene*	112.56	0.25	1	0.08
Chlorodifluoromethane	86.47	1.30	1	0.53
Chloroethane	64.52	1.25	1	0.68
Chloroform*	119.39	0.04	3	0.04
Chloromethane	50.49	1.21	1	0.84
Dichlorobenzene**	147.00	0.21	2	0.10
Dichlorodifluoromethane	120.91	15.70	2	9.09
Dichlorofluoromethane	102.92	2.62	2	1.78
Dichloromethane	84.94	14.30	2	11.78
Fluorotrichloromethane	137.38	0.76	3	0.58
Perchloroethylene	165.83	3.73	4	3.15
(tetrachloroethylene)*				
Trichloroethylene	131.40	2.82	3	2.25
(trichloroethene)*				
t-1,2-dichloroethene	96.94	2.84	2	2.05
Vinyl chloride*	62.50	7.34	1	4.11

Total Chloride Concentration

41.99

Section and Background document information The file b02s04.zip, located on the CD under \programs\misc\, contains the original files that were used to create the final AP-42 section and Background report for Municipal Waste Landfills for Revision Dated September 1997. Much of the information contained in the following files are presented in the Adobe Acrobat versions of these reports. However, users wishing additional detail can use the spreadsheet files to understand the factor development more thoroughly and to perform additional analysis with the data or additional data where available. The following files are contained in the compressed zip file. C02S04.WP6 Revised AP-42 Section for Municipal Solid Waste Landfills in WordPerfect 6.1 for Windows format. B02S04.WP6 Background Report for Landfill Section (Does not include Appendices) in WordPerfect 6.1 for Windows. APPXAX~.XLS APPXAX~.WK3 Appendix A, Summary of all Landfill test report data in Excel version 5 (XLS) and Lotus 1-2-3 (WK3) format. LFBKAPPB.XLS LFBKAPPB.WK3 Appendix B, Background Data for Default LFG Concentrations in Excel version 5 and Lotus 1-2-3 (WK3) format. CONTRO~2.XLS CONTRO~2.WK3 Appendix C, Control Efficiencies information in Excel version 5 and Lotus 1-2-3 (WK3) format. CHLORI~1.XLS CHLORI~1.WK3 Appendix C, Derivation of Chlorine Defaults in Excel version 5 and Lotus 1-2-3 (WK3) format. LFGVOC~1.XLS LFGVOC~1.WK3 Appendix C, Derivation of Default VOC concentrations in Excel version 5 and Lotus 1-2-3 (WK3) format. SECOND.XLS SECOND.WK3 Appendix C, Secondary pollutant emission factors for flares, boilers, engines and turbines in Excel version 5 and Lotus 1-2-3 (WK3) format. TECHMEMO.WP6 Technical memorandum in WordPerfect 6.1 for Windows format. TECH-ABS, WP6 Technical abstract in WordPerfect 6.1 for Windows format. ???????.CGM Graphics in CGM format.

AP-42 Section 2.4 - Municipal Solid Waste Landfills

????????.DRW Graphics in WordPerfect Draw format.

COVER.LTR Cover letter for External Review of Section.

LANDFILL.ADD Address list of External Reviewers.