

Supplement to the Non-Hg Case Study Chronic Inhalation Risk Assessment In Support of the Appropriate and Necessary Finding for Coaland Oil-Fired Electric Generating Units

EPA-452/R-11-013 November 2011

Supplement to the Non-Hg Case Study Chronic Inhalation Risk Assessment In Support of the Appropriate and Necessary Finding for Coal- and Oil-Fired Electric Generating Units

U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park, NC

Introduction

A previous document¹ discussed the methods and results of the chronic inhalation risk assessment of hazardous air pollutants (HAPs) other than mercury from coal- and oil-fired electric utility steam generating units (EGUs) at sixteen case study facilities, which was performed in support of the "appropriate and necessary" finding for coal- and oil-fired EGUs. Several changes were made to the emissions estimates, dispersion modeling, and risk characterization of these facilities in response to public comments on the proposed rule, and this report documents those changes and their impact on the estimated risks from the case study facilities.

1. Emissions

In response to comments on the proposed rule, the emissions data used in the case studies were updated for several facilities in two ways. First, in response to comments that EPA's methodology was not sufficiently refined, EPA used year-specific heat input for the modeled years 2005 through 2009, rather than the average 2007-2009 heat input for all years. Second, in response to comments that EPA's approach to emission factor development should use outlier tests, EPA revised its calculations for emission factors to apply to those units that had not been tested in the ICR. Only the arsenic, chromium, and nickel emissions were recomputed for use in modeling because these pollutants were the key risk drivers for the case studies. Both of these updates were made only to the case study facilities that had estimated cancer risks near 1 in a million at proposal. The subsections below provide more information on these updates. In addition, the detailed calculations for the case study emissions at the unit level are provided in the spreadsheet "Case_Study_Emis_MATS_Final.xlsx," which is included in the docket (EPA-HQ-OAR-2009-0234-2939).

1.1 Unit-Level Annual Heat Input

The preferred source of unit-level annual heat input data was EPA's Clean Air Markets continuous emission monitoring (CEM) program. Unit-level annual heat input data for calendar years 2002-2010 were obtained for all units that report these data to EPA. Heat input data are important because emissions are proportional to heat input. The only facility without CEM data was the HECO Waiau facility (ORIS 766). This facility was contacted directly to obtain actual unit-specific annual heat input data. The year-specific heat input data used for the final rule are an improvement over the approach used at proposal, which used a multi-year average heat input for each modeled year.

Table 1 provides the total facility-level heat input for each year, as well as the average value. While the average value was not used for any calculations, it is provided for comparison to the value used at proposal. For three of the case study facilities remodeled for the final rule, the revised heat input is higher (Amerenue-Labadie, 0.3%; James River, 2.5%; and Conesville, 24%). For the rest of the facilities, the heat input is lower (Dominion – Yorktown, 12%; Chesapeake Energy Center, 8.8%, Heco Waiau, 2.5%; OG &E – Muskogee, 8.6%; PSHNH –

¹ Non-Hg Case Study Chronic Inhalation Risk Assessment for the Utility MACT "Appropriate and Necessary" Analysis, March 16, 2011. Docket ID No. EPA-HQ-OAR-2009-0234-2939. Available at www.regulations.gov.

Merrimack, 16%; and TVA Gallatin, 3.2%). While these facility-level changes give some indication of the impact on risk, because each unit at a facility can contribute differently to the risk, the unit-level heat input changes can give a somewhat different view of the changes. These unit-level changes are available in the case study emissions spreadsheet discussed above.

					-	•	Proposed
Facility	2005	2006	2007	2008	2009	Average	Rule
Amerenue- Labadie	168,514,660	170,157,435	182,401,603	165,591,139	166,226,274	170,578,222	171,126,775
City Utilities of Springfield - James River	16,452,496	15,943,500	13,610,535	15,181,310	11,968,020	14,631,172	14,997,208
Conesville	96,719,546	92,193,174	108,230,769	100,770,581	66,087,859	92,800,386	115,092,253
Dominion - Yorktown	40,366,974	21,700,400	29,638,959	22,409,846	19,286,905	26,680,617	23,447,200
Dominion Chesapeake Energy Center	41,070,023	37,711,371	40,777,823	36,222,677	35,255,050	38,207,389	34,853,246
Heco Waiau	14,673,660	14,397,785	14,935,405	13,320,107	14,884,983	14,442,388	14,080,684
OG&E - Muskogee	106,454,236	104,916,428	87,737,665	104,566,459	92,434,936	99,221,945	90,739,465
PSHNH - Merrimack	34,045,565	34,410,607	36,317,955	30,332,534	25,319,652	32,085,263	26,821,184
TVA Gallatin	73,113,053	74,908,225	77,474,644	79,699,781	64,123,359	73,863,812	71,515,151

Table 1: Final case study heat input (MMBtu) compared to heat input used at proposal.

1.2 Development of Emission Factors

For several of the case study facilities, emission factors were used as the best available alternative source of emissions information because appropriate facility-specific stack test data were not available to compute emissions. The case study facilities using emission factors that were not based on site-specific stack test data are Conesville (3% of the risk driver emissions), PSHNH – Merrimack (35%), and all risk driver emissions at Chesapeake Bay Energy Center, Dominion – Yorktown, OG&E – Muskogee, and Amerenue-Labadie. The risk driver emissions are those emissions that contributed the most to the total facility risk. The emission factors used in these cases were recalculated based on revised methods that had not been used at the time of proposal, including the use of well-established, robust outlier checks (Dixon or Rosner tests), depending on the number of values and when more than three values were evaluated. The complete documentation for the arsenic, chromium, and nickel emission factors is available in the docket in separate documents: Coal_Fired_Utility_Boiler_Arsenic.pdf, Coal_Fired_Utility_Boiler_Chromium.pdf, and Coal_Fired_Utility_Boiler_Nickel.pdf. The same hexavalent chromium percentages of total chromium used at proposal were used for the final rule analysis (12% for coal units and 18% for oil units).

1.3 Emissions Estimates

Tables 2 through 4 give the estimated emissions for the facilities remodeled. These emissions estimates reflect the changes in heat inputs and emission factors described above. While the average values shown were not used in the modeling (the year-specific values were used), they are provided for comparison to the emissions values used at proposal. The detailed calculations and unit-level emissions are available in the case study emissions spreadsheet.

2005	2006	2007	2008	2009	Average	Proposed Rule
1.05E+00	1.06E+00	1.14E+00	1.03E+00	1.04E+00	1.07E+00	1.72E+00
1.96E-02	1.90E-02	1.63E-02	1.82E-02	1.43E-02	1.75E-02	1.78E-02
1.65E-01	1.46E-01	1.76E-01	1.76E-01	1.13E-01	1.55E-01	3.26E-01
2.29E-01	1.32E-01	1.73E-01	1.35E-01	1.17E-01	1.57E-01	2.09E-01
2.57E-01	2.36E-01	2.55E-01	2.26E-01	2.20E-01	2.39E-01	3.46E-01
2.53E-02	2.50E-02	2.56E-02	2.30E-02	2.57E-02	2.49E-02	2.46E-02
6.65E-01	6.56E-01	5.48E-01	6.54E-01	5.78E-01	6.20E-01	9.11E-01
2.76E-01	2.79E-01	2.94E-01	2.46E-01	2.05E-01	2.60E-01	2.33E-01
1.45E-02	1.49E-02	1.54E-02	1.58E-02	1.27E-02	1.47E-02	1.42E-02
	1.05E+00 1.96E-02 1.65E-01 2.29E-01 2.57E-01 2.53E-02 6.65E-01 2.76E-01	1.05E+001.06E+001.96E-021.90E-021.65E-011.46E-012.29E-011.32E-012.57E-012.36E-012.53E-022.50E-026.65E-016.56E-012.76E-012.79E-01	1.05E+001.06E+001.14E+001.96E-021.90E-021.63E-021.65E-011.46E-011.76E-012.29E-011.32E-011.73E-012.57E-012.36E-012.55E-012.53E-022.50E-022.56E-026.65E-016.56E-015.48E-012.76E-012.79E-012.94E-01	1.05E+001.06E+001.14E+001.03E+001.96E-021.90E-021.63E-021.82E-021.65E-011.46E-011.76E-011.76E-012.29E-011.32E-011.73E-011.35E-012.57E-012.36E-012.55E-012.26E-012.53E-022.50E-022.56E-022.30E-026.65E-016.56E-015.48E-016.54E-012.76E-012.79E-012.94E-012.46E-01	1.05E+001.06E+001.14E+001.03E+001.04E+001.96E-021.90E-021.63E-021.82E-021.43E-021.65E-011.46E-011.76E-011.76E-011.13E-012.29E-011.32E-011.73E-011.35E-011.17E-012.57E-012.36E-012.55E-012.26E-012.20E-012.53E-022.50E-022.56E-022.30E-022.57E-016.65E-016.56E-015.48E-016.54E-015.78E-012.76E-012.79E-012.94E-012.46E-012.05E-01	1.05E+001.06E+001.14E+001.03E+001.04E+001.07E+001.96E-021.90E-021.63E-021.82E-021.43E-021.75E-021.65E-011.46E-011.76E-011.76E-011.13E-011.55E-012.29E-011.32E-011.73E-011.35E-011.17E-011.57E-012.57E-012.36E-012.55E-012.26E-012.20E-012.39E-012.53E-022.50E-022.56E-022.30E-022.57E-022.49E-026.65E-016.56E-015.48E-016.54E-015.78E-016.20E-012.76E-012.79E-012.94E-012.46E-012.05E-012.60E-01

Table 2: Final case study arsenic emissions (tons/year) compared to emissions used at proposal.

Table 3: Final case stu	dy hexava	alent chro	mium emi	issions (to	ns/year) o	compared	to		
emissions used at proposal.									

Facility	2005	2006	2007	2008	2009	Average	Proposed Rule
						-	
Amerenue-Labadie	4.94E-01	4.99E-01	5.35E-01	4.86E-01	4.88E-01	5.00E-01	5.77E-01
City Utilities of Springfield -James River	5.55E-01	5.42E-01	4.66E-01	5.24E-01	4.13E-01	5.00E-01	4.99E-01
Conesville	4.06E-01	2.85E-01	3.77E-01	4.53E-01	2.74E-01	3.59E-01	6.74E-01
Dominion - Yorktown	1.51E+00	2.84E-01	7.78E-01	3.67E-01	2.51E-01	6.37E-01	4.25E-01
Dominion Chesapeake	1.20E-01	1.11E-01	1.20E-01	1.06E-01	1.03E-01	1.12E-01	1.27E-01
Energy Center							
Heco Waiau	2.86E-03	2.89E-03	2.86E-03	2.60E-03	2.91E-03	2.82E-03	2.87E-03
OG&E -Muskogee	3.12E-01	3.08E-01	2.57E-01	3.07E-01	2.71E-01	2.91E-01	3.06E-01
PSHNH -Merrimack	3.69E-02	3.73E-02	3.94E-02	3.29E-02	2.75E-02	3.48E-02	4.77E-02
TVA Gallatin	1.16E+00	1.19E+00	1.23E+00	1.27E+00	1.02E+00	1.17E+00	1.14E+00

Facility	2005	2006	2007	2008	2009	Average	Proposed Rule
Amerenue-Labadie	2.31E+00	2.33E+00	2.50E+00	2.27E+00	2.28E+00	2.34E+00	4.21E+00
City Utilities of Springfield -James River	3.36E+00	3.27E+00	2.80E+00	3.15E+00	2.48E+00	3.01E+00	3.03E+00
Conesville	3.26E+00	2.59E+00	3.25E+00	3.55E+00	2.21E+00	2.97E+00	3.95E+00
Dominion - Yorktown	7.26E+01	1.18E+01	3.63E+01	1.59E+01	1.04E+01	2.94E+01	1.84E+01
Dominion Chesapeake Energy Center	5.63E-01	5.17E-01	5.59E-01	4.96E-01	4.83E-01	5.23E-01	8.89E-01
Heco Waiau	3.96E+00	3.93E+00	4.01E+00	3.60E+00	4.02E+00	3.90E+00	3.87E+00
OG&E -Muskogee	1.46E+00	1.44E+00	1.20E+00	1.43E+00	1.27E+00	1.36E+00	2.23E+00
PSHNH -Merrimack	1.55E-01	1.56E-01	1.65E-01	1.38E-01	1.15E-01	1.46E-01	2.85E-01
TVA Gallatin	5.48E+00	5.61E+00	5.80E+00	5.97E+00	4.80E+00	5.53E+00	5.35E+00

Table 4: Final case study nickel emissions (tons/year) compared to emissions used at proposal.

Annual emissions estimates for all case study facilities are given in Table 5, including estimates for facilities that have been revised as discussed above, and the same estimates used at the time of proposal for facilities without revised emissions estimates.

Facility	Location	Unit Type	Unit ID	As (TPY)	Cr ⁺⁶ (TPY)	Ni (TPY)
Xcel Bayfront	Ashland, WI	1 coal	5			
Cambria Cogen	Ebensburg, PA	2 coal	B1	1.00E-03	3.60E-02	2.20E-01
Calibria Cogen	Ebelisburg, PA	2 COal	B2	1.10E-03	7.80E-03	7.20E-02
			CAN001	5.10E-02	1.90E-02	1.30E-02
SC&E Canadys	Canadys, SC	3 coal	CAN002	4.90E-02	1.80E-02	1.30E-02
			CAN003	2.20E-02	2.40E-03	9.60E-02
			Unit 1	4.1E-02	1.9E-02	8.9E-02
Dominion Chesapeake Energy Center*	Chesapeake, VA	4 coal	Unit 2	4.4E-02	2.1E-02	9.6E-02
Dominion chesapeare chergy celler	Chesapeare, VA		Unit 3	6.5E-02	3.0E-02	1.4E-01
			Unit 4	9.0E-02	4.2E-02	2.0E-01
		4 coal	3	4.6E-02	3.3E-01	1.8E+00
Conesville*	Conesville, OH		4	4.7E-02	1.1E-02	5.1E-01
Conesville*	Conesvine, On	4 COal	5	3.2E-02	7.2E-03	3.5E-01
			6	3.0E-02	6.9E-03	3.3E-01
Exelon Cromby Generating Station	Phoenixville, PA	1 coal	Unit 1	6.60E-02	3.00E-03	1.80E-02
, c		1 oil	Unit 2	2.40E-03	6.00E-04	3.40E-02
			1	3.5E-03	2.8E-01	1.3E+00
TVA Gallatin*	Gallatin, TN	4 cool	2	3.4E-03	2.8E-01	1.3E+00
I VA Gallatili *	Gdildtill, TN	4 coal	3	3.9E-03	3.2E-01	1.5E+00
			4	3.8E-03	3.1E-01	1.4E+00
			3	3.9E-03	1.0E-01	6.3E-01
City Utilities of Springfield -James River*	Springfield, MO	3 coal	4	4.2E-03	3.8E-02	4.1E-01
			5	9.4E-03	3.6E-01	2.0E+00
			1	2.4E-01	1.1E-01	5.4E-01
Amerenue-Labadie*	Labadie, MO	4 coal	2	2.7E-01	1.3E-01	5.9E-01
Amerenue-Labaule		4 COal	3	2.7E-01	1.3E-01	6.0E-01
			4	2.8E-01	1.3E-01	6.1E-01
	Dow NU	2	1	7.8E-02	1.0E-02	4.4E-02
PSHNH –Merrimack*	Bow, NH	2 coal	2	1.8E-01	2.4E-02	1.0E-01
Monticello Steem Flastria Diant	Mount Discourt TV	2	1	6.10E-02	1.16E-01	4.10E-02
Monticello Steam Electric Plant	Mount Pleasant, TX	3 coal	2	6.20E-02	1.17E-01	4.10E-01

Table 5. Case study average annual emissions (2005-2009).

Facility	Location	Unit Type	Unit ID	As (TPY)	Cr ⁺⁶ (TPY)	Ni (TPY)
			3	1.10E-01	1.98E-02	1.70E-01
			4	2.0E-01	9.5E-02	4.4E-01
OG&E –Muskogee*	Fort Gibson, OK	3 coal	5	2.0E-01	9.3E-02	4.4E-01
			6	2.2E-01	1.0E-01	4.8E-01
			GEN1	8.40E-04	3.10E-04	2.40E-03
	Dishmond V(A	8 coal	GEN2	9.00E-04	3.20E-04	8.30E-03
Spruance Genco	Richmond, VA		GEN3	3.50E-03	5.60E-04	6.20E-03
			GEN4	2.40E-03	3.60E-04	4.10E-03
		1 coal-gas	PG7221FA	1.30E-03	7.50E-04	5.00E-03
PSI Energy – Wabash River	West Terre Haute, IN	2 coal	4	1.10E-01	4.50E-03	4.10E-02
			6	3.30E-01	1.40E-02	1.20E-01
			W3	2.0E-03	2.1E-04	3.2E-01
			W4	2.0E-03	2.1E-04	3.0E-01
Heco Waiau*		6 oil	W5	2.8E-03	2.9E-04	4.3E-01
	Waiau, HI	6 oil	W6	2.1E-03	1.2E-04	3.2E-01
			W7	8.5E-03	1.2E-03	1.4E+00
			W8	7.5E-03	7.9E-04	1.2E+00
Dominion – Yorktown*	Yorktown, VA	2 coal	Units 1&2	1.2E-01	5.6E-02	2.6E-01
		1 oil	Unit 3	3.9E-02	5.8E-01	2.9E+01

* Facility was remodeled for the final rule. Facilities not remodeled for the final rule have the same annual emissions estimate for each year.

2. Dispersion Modeling

The methodology used for dispersion modeling of the case study facilities was discussed in more detail in the previous document.² The modeling was done using AERMOD, EPA's preferred model for near-field dispersion. Table 6 provides the model scenario information used for the case study facilities. This information is unchanged from the proposed rule. Table 7 provides the stack parameters used for the final rule modeling.

Facility	Downwash	(population)	Surface station	Upper air station
			Ashland Kennedy	
Xcel Bayfront	No	Rural	Memorial Airport, WI	Minneapolis, MN
			Johnstown Cambria	
Cambria Cogen	Yes	Rural	County Airport, PA	Pittsburgh, PA
			Charleston Intl.	Charleston Intl.
SC&E Canadys	No	Rural	Airport, SC	Airport, SC
Dominion Chesapeake			Norfolk Intl. Airport,	Washington Dulles,
Energy Center*	No	Urban (200,000)	VA	VA
			Zanesville Municipal	
Conesville*	No	Rural	Airport, OH	Wilmington, OH
Exelon Cromby			Philadelphia Intl.	Washington Dulles,
Generating Station	No	Rural	Airport, PA	VA
			Nashville Intl. Airport,	Nashville Intl.
TVA Gallatin*	No	Rural	TN	Airport, TN
City Utilities of				
Springfield -James			Springfield Regional	Springfield Regional
River*	No	Rural	Airport, MO	Airport, MO
			St. Louis Lambert Intl.	
Amerenue-Labadie*	No	Rural	Airport, MO	Lincoln, IL
			Concord Municipal	
PSHNH – Merrimack*	No	Rural	Airport, NH	Albany, NY
Monticello Steam				
Electric Plant	No	Rural	Tyler Pounds Field, TX	Shreveport, LA
			Muskogee Davis Field,	
OG&E –Muskogee*	No	Rural	ОК	Norman, OK
			Richmond Intl. Airport,	Washington Dulles,
Spruance Genco	No	Urban (200,000)	VA	VA
PSI Energy – Wabash			Terre Haute Hulman	
River	No	Rural	IN, Regional Airport	Wilmington, OH
			Honolulu Intl Airport,	
Heco Waiau*	Yes	Urban (300,000)	Н	Lihue, HI
Dominion –			Newport News Intl.	Washington Dulles,
Yorktown*	Yes	Rural	Airport, VA	VA

Table 6.	Model	scenario	information.
	TITUT	scenario	mitor mation.

* Facility was remodeled for the final rule.

² Non-Hg Case Study Chronic Inhalation Risk Assessment for the Utility MACT "Appropriate and Necessary" Analysis, March 16, 2011. Docket ID No. EPA-HQ-OAR-2009-0234-2939. Available at www.regulations.gov.

abit 7. Stack	parameter uata.	r	1	T	1	1	1	r	r		
Facility	Location	Unit Type	Unit ID	Lat	Long	Stack Height (m)	Stack Temperature (K)	Stack Velocity (m/s)	Stack Diameter (m)		
Xcel Bayfront	Ashland, WI	1 coal	5	46.5872	-90.9018	59.44	371.48	13.05	1.86		
Cambria		1 0001	B1	40.4748	-78.703	70.10	466.48	27.83	2.29		
Cogen	Ebensburg, PA	2 coal	B1 B2	40.4748	-78.703	70.10	466.48	27.83	2.29		
0080			CAN001	33.0646	-80.6235	60.96	415.37	11.00	4.88		
SC&E Canadys	Canadys, SC	3 coal	CAN002	33.0653	-80.6232	60.96	412.04	12.62	4.88		
	0 0001	CAN003	33.065	-80.6218	60.96	413.71	19.93	4.88			
Dominion			Unit 1	36.7705	-76.3012	53.34	430.35	17.37	3.97		
Chesapeake			Unit 2	36.7706	-76.3011	53.34	429.25	17.37	3.97		
Energy	Chesapeake, VA	Chesapeake, VA	Chesapeake, VA	4 coal	Unit 3	36.7709	-76.3009	60.96	407.05	17.98	3.97
Center*			Unit 4	36.7712	-76.3008	60.96	427.05	21.34	4.27		
			3	40.1648	-81.9044	137.16	416.48	10.31	5.33		
с III *	o :" ou		4	40.1862	-81.8787	243.84	416.48	25.30	7.93		
Conesville*	Conesville, OH	4 coal	5	40.1856	-81.8798	243.84	324.82	23.90	7.93		
			6	40.1856	-81.8798	243.84	324.82	23.90	7.93		
Exelon Cromby Generating	Phoenixville, PA	1 coal	Unit 1	40.1524	-75.5303	91.44	388.71	17.92	4.27		
Station	· · · · · · · · · · · · · · · · · · ·	1 oil	Unit 2	40.152	-75.5304	91.44	388.71	17.11	4.27		
			1	36.3156	-86.4005	152.70	406.48	17.07	7.62		
			2	36.3156	-86.4005	152.70	406.48	17.07	7.62		
TVA Gallatin*	Gallatin, TN	4 coal	3	36.3151	-86.4009	153.01	395.37	18.90	7.62		
			4	36.3151	-86.4009	153.01	395.37	18.90	7.62		
City Utilities of			3	37.1084	-93.2602	60.96	427.59	9.45	3.65		
Springfield -	Springfield, MO	3 coal	4	37.1084	-93.2598	60.96	427.59	10.06	3.65		
James River*			5	37.1084	-93.2605	106.68	433.15	27.70	3.12		
			1	38.5626	-90.8381	213.36	436.21	32.66	6.25		
Amerenue-	Labadia MO	4 cool	2	38.5621	-90.8377	213.36	424.21	30.32	6.25		
Labadie*	Labadie, MO	4 coal	3	38.5614	-90.8371	213.36	413.54	31.96	6.25		
			4	38.5614	-90.8371	213.40	446.93	34.83	6.25		
PSHNH –	Bow, NH	2 coal	1	43.142	-71.4685	68.58	391.48	41.98	2.62		
Merrimack*	DUW, INF	2 (00)	2	43.1418	-71.4682	96.62	422.04	36.92	4.42		

Table 7. Stack parameter data.

Facility	Location	Unit Type	Unit ID	Lat	Long	Stack Height (m)	Stack Temperature (K)	Stack Velocity (m/s)	Stack Diameter (m)
Monticello Steam Electric Plant Mount Pleasant, TX		1	33.0907	-95.0375	121.92	453.15	24.69	6.55	
	3 coal	2	33.0914	-95.038	121.92	453.15	24.69	6.55	
		3	33.0923	-95.0378	140.21	354.26	26.52	2.44	
OG&E -		4	35.7618	-95.2886	106.68	402.04	14.02	7.31	
Muskogee*	Fort Gibson, OK	3 coal	5	35.7619	-95.288	106.68	402.04	14.02	7.31
Musikogee			6	35.7621	-95.2872	152.40	402.04	25.13	6.55
			GEN1	37.4552	-77.4312	76.20	355.37	17.03	2.62
Spruance	Richmond, VA	nond, VA 8 coal	GEN2	37.4555	-77.4309	76.20	355.37	17.03	2.62
Genco	Nichihonu, VA		GEN3	37.4557	-77.4307	76.20	355.37	17.03	2.62
			GEN4	37.4559	-77.4304	76.20	355.37	17.03	2.62
		1 coal-gas	PG7221FA	39.5303	-87.4256	68.58	452.59	19.17	5.49
PSI Energy – Wabash River	West Terre Haute, IN	2 coal	4	39.5274	-87.4232	137.16	410.93	34.26	7.62
		2 (00)	6	39.5274	-87.4232	137.16	410.93	34.26	7.62
			W3	21.3891	-157.9615	42.09	469.26	12.25	3.05
			W4	21.389	-157.9613	42.09	469.26	12.25	3.05
		د منا	W5	21.3888	-157.9612	41.91	414.26	12.25	2.74
Heco Waiau*	Waiau, HI	6 oil	W6	21.3887	-157.961	41.91	414.26	12.25	2.74
			W7	21.3885	-157.9606	41.91	392.04	16.12	3.20
			W8	21.3884	-157.9603	41.91	392.04	16.12	3.20
Dominion –		2 coal	Units 1&2	37.2154	-76.4622	98.80	417.35	22.60	4.90
Yorktown*	Yorktown, VA	1 oil	Unit 3	37.2152	-76.4612	149.05	415.93	33.52	6.86

* Facility was remodeled for the final rule.

The list below discusses the inputs used in the modeling of the case study facilities for the final rule, and notes where there were differences compared to the proposed rule.

- 1. Each boiler or combination of boilers was modeled as an individual emission point in AERMOD, unchanged from the proposed rule analysis.
- 2. Hourly emissions for 2005-2009 were modeled explicitly for each emission point for arsenic, chromium (VI), and nickel. Five-year average concentrations were calculated within AERMOD. For the proposed rule analysis, a unit emission rate (1 gram per second) was used, and the resulting hourly concentrations were scaled using hourly heat input values to derive pollutant-specific 5-year average concentrations calculated outside of AERMOD. This methodology difference does not change the concentration estimates.
- 3. Building parameterization and surface characteristics were unchanged from the proposed rule analysis.
- 4. Some stack parameters changed because of new data received during the public comment period.
- 5. Current versions of AERMINUTE (11059) and AERMET (11059) were used, and the meteorological data used for the proposed rule analysis were reprocessed using these versions. Beta versions of AERMINUTE and AERMET were used for the proposed rule analysis.
- 6. Receptor locations (Census blocks within 20 km of the source) were unchanged from the proposed rule analysis. The current version of AERMAP (11103) was used to calculate source and receptor elevations, whereas version 09040 was used for the proposed rule analysis.
- 7. The current version of AERMOD (11103) was used. A beta version of AERMOD was used for the proposed rule analysis.

As noted above, updated versions of AERMAP, AERMINUTE, AERMET, and AERMOD were used in the modeling of the case study facilities for the final rule. The changes between versions 09040 and 11103 of AERMAP resulted in no differences in elevations of sources and receptors. The meteorological data used for the proposed rule were reprocessed using versions 11059 of AERMINUTE and AERMET, and processed along with the proposal emission inputs in version 11103 of AERMOD to compare differences due to AERMET and AERMOD changes. The differences in the modeled concentrations were insignificant between the beta and current versions of AERMET and AERMOD.

3. Chronic Inhalation Risk Assessment

For chronic inhalation exposures, we used the 5-year average ambient concentrations of HAP estimated from the refined dispersion modeling. The estimated ambient concentration at each nearby census block centroid was used as a surrogate for the chronic inhalation exposure concentration for all the people who reside in that census block. We assessed non-cancer health effects from chronic exposures by comparing the chronic inhalation exposure concentration to the Reference Concentration values. We calculated the maximum individual risk, or MIR, for each facility as the cancer risk associated with a continuous lifetime (24 hours per day, 7 days per week, and 52 weeks per year for a 70-year period) exposure to the maximum concentration at the centroid of an inhabited census block. Individual cancer risks were calculated by multiplying

the estimated lifetime exposure to the ambient concentration of each HAP (in micrograms per cubic meter) by its cancer unit risk estimate (URE), which is an upper bound estimate of an individual's probability of contracting cancer over a lifetime of exposure to a concentration of 1 microgram of the pollutant per cubic meter of air. We used URE values for arsenic and hexavalent chromium from EPA's Integrated Risk Information System (IRIS), which is a human health assessment program that evaluates quantitative and qualitative risk information on effects that may result from exposure to environmental contaminants. Unit risk estimates in IRIS have undergone both internal and external peer review.

In the preamble to the proposed rule, we discussed the reasons for using 65% of the IRIS URE for nickel subsulfide for all nickel compounds. In July 2011, we completed an external peer review (using three independent expert reviewers) of the methods used to evaluate the risks from nickel compounds emitted by EGUs in a report titled, "Methods to Develop Inhalation Cancer Risk Estimates for Chromium and Nickel Compounds."³ Based on the views of major scientific bodies such as the International Agency for Research on Cancer (IARC), the World Health Organization (WHO), and the European Union's Scientific Committee on Health and Environmental Risks (SCHER), and those of the expert peer reviewers who commented on our approaches to risk characterization of nickel compounds, we consider all nickel compounds to be carcinogenic as a group and do not consider nickel speciation or nickel solubility to be strong determinants of nickel carcinogenicity.

Based on this review, we decided to use 100 percent of the current IRIS URE for nickel subsulfide, rather than assuming that 65 percent of the total mass of emitted nickel might be nickel subsulfide, as used in previous analyses. We used the IRIS URE value because IRIS values are typically preferred for use in HAP risk assessments performed in support of air toxics regulations under the Clean Air Act.⁴ The IRIS values are preferred because they are developed in accordance with EPA risk assessment guidelines and because of the level of peer review IRIS values receive. We used 100 percent of the IRIS value because of the concerns about the potential carcinogenicity of all forms of nickel raised by the major national and international scientific bodies. Nevertheless, taking into account that there are potential differences in toxicity and/or carcinogenic potential across the different nickel compounds, and given that there have been two URE values derived for exposure to mixtures of nickel compounds that are 2-3 fold lower than the IRIS URE for nickel subsulfide ⁵, the EPA also considers it reasonable to use a value that is 50 percent of the IRIS URE for nickel subsulfide for providing an estimate of the lower end of a plausible range of cancer potency values for different mixtures of nickel compounds.

The health reference values used in the assessment are given in Table 8.

³ Mercury and Air Toxics Standards Rule Docket, ID No. EPA-HQ-OAR-2009-0234. Available at www.regulations.gov.

⁴ http://www.epa.gov/ttn/atw/toxsource/chronicpriority.html

⁵ Two UREs (other than the current IRIS values) have been derived for nickel compounds: one developed by the California Department of Health Services (http://www.arb.ca.gov/toxics/id/summary/nickel_tech_b.pdf) and the other by the Texas Commission on Environmental Quality

⁽http://www.epa.gov/ttn/atw/nata1999/99pdfs/healtheffectsinfo.pdf).

		URE		RfC	
Pollutant	CAS Number	(1/µg/m3)	Source	(mg/m³)	Source
Arsenic	7440382	4.3E-03	IRIS	0.000015	CalEPA
Chromium (VI)	18540299	0.012	IRIS	0.0001	IRIS
Nickel	7440020	0.00048	IRIS	0.00009	CalEPA
HCI	7647010			0.02	IRIS

Table 8. Health reference values used in the assessment.

3. Results.

The results of the assessment are given in Table 9. Based on estimated actual emissions, the highest estimated lifetime cancer risk from any of the sixteen case study facilities was 20 in a million, driven by nickel emissions from the one case study facility with only oil-fired EGUs. For the facilities with coal-fired EGUs, there were five with maximum cancer risks greater than 1 in a million (the highest was five in a million), four driven by hexavalent chromium, and one driven by nickel from an oil-fired EGU. There were also two facilities with coal-fired EGUs with cancer risks at 1 in a million. All of the facilities had non-cancer target-organ-specific hazard index (HI) values less than one, with a maximum HI value of 0.4 (also driven by nickel emissions from the one case study facility with only oil-fired EGUs).

The cancer risk estimates from this assessment indicate that the EGU source category would not be eligible for delisting under section 112(c)(9)(B)(i) of the CAA, which specifies that a category may be delisted only when the Administrator determines "... that no source in the category (or group of sources in the case of area sources) emits such hazardous air pollutants in quantities which may cause a lifetime risk of cancer greater than one in one million to the individual in the population who is most exposed to emissions of such pollutants from the source...." We note that, since these case studies do not cover all facilities in the category, and since our assessment does not include the potential for impacts from different EGU facilities to overlap one another (i.e., these case studies only look at facilities in isolation), the maximum risk estimates from the case studies may underestimate true maximum risks.

Max FacilityMax RiskRisk DriverMax HI Max HIMax DriverMax riskMax Risk DriverMax HIHI DriverXcel Bayfront4.0x10 ⁻⁹ Formaldehyde0.005HCINot RemodeledNot RemodeledCambria Cogen5.0x10 ⁻⁷ Chromium VI0.003NickelNot RemodeledNot RemodeledSC&E Canadys6.0x10 ⁻⁷ Arsenic0.009HCINot RemodeledNot RemodeledCogen5.0x10 ⁻⁷ Arsenic0.009HCINot RemodeledNot RemodeledDominion Chesapeake EnergyChromium VI0.05HCI2x10-6Chromium VI0.05HCI ² Conesville3.0x10 ⁻⁶ Chromium VI0.01NickelX10-6Chromium VI0.02NickelConesville3.0x10 ⁻⁷ Arsenic0.008NickelNot RemodeledNickelStation3.0x10 ⁻⁷ Arsenic0.006Nickel2x10-6Chromium VI0.007NickelSpringfield - James River8.0x10 ⁻⁷ Arsenic0.006Nickel5x10-6Chromium VI0.004ArsenicMorticelloChromium VI0.004Arsenic7x10-7Chromium VI0.004ArsenicSpringfield - James RiverSut0 ⁻⁶ Chromium VI0.004ArsenicNot RemodeledMorticelloChromium VI0.004Arsenic7x10-7Chromium VI0.004ArsenicOGGalarinNickelO.01Arse		Proposed Rule Assessment					Final Rule Assessment			
Xcel Bayfront4.0x10 ⁹ Formaldehyde0.005HClNot RemodeledCambria Cogen $5.0x10^7$ Chromium VI0.003NickelNot RemodeledSC&E Canadys $6.0x10^7$ Arsenic0.009HClNot RemodeledDominion Chesapeake Energy Center $3.0x10^6$ Chromium VI0.05HClNot RemodeledConesville $3.0x10^6$ Chromium VI0.05HCl $2x10-6$ Chromium VI 0.05^8 HCl ³ Conesville $3.0x10^6$ Chromium VI0.01Nickel $2x10-6$ Chromium VI 0.008 NickelStation $3.0x10^7$ Arsenic0.008Nickel $2x10-6$ Chromium VI 0.007 NickelStation $3.0x10^7$ Arsenic0.006Nickel $2x10-6$ Chromium VI 0.007 NickelStation $3.0x10^7$ Arsenic0.006Nickel $2x10-6$ Chromium VI 0.007 NickelSpringfield - James River $8.0x10^6$ Chromium VI 0.004 Nickel $5x10-6$ Chromium VI 0.004 ArsenicPSHNH - Dermunk $1.0x10^6$ Arsenic 0.016 Arsenic $7x10-7$ Chromium VI 0.004 ArsenicPGaE - Muskogee $1.0x10^6$ Arsenic 0.016 Arsenic $1x10-6$ Arsenic 0.01 ArsenicStrame Electric Plant $6.0x10^7$ Chromium VI 0.003 Arsenic $1x10-6$ Chromium VI 0.008 ArsenicSpringf		Max			HI	Max		Max	HI	
Bayfront4.0x10 ⁻⁹ Formaldehyde0.005HClINTREMULTERCambria Cogen5.0x10 ⁻⁷ Chromium VI0.003NickelNot RemuteLCanadys6.0x10 ⁻⁷ Arsenic0.009HClNot RemuteLCanadys6.0x10 ⁻⁷ Arsenic0.009HClNot RemuteLChesapeake Energy Center3.0x10 ⁻⁶ Chromium VI0.05HCl2x10-6Chromium VI0.05HClConesville3.0x10 ⁻⁶ Chromium VI0.01Nickel2x10-6Chromium VI0.008NickelConesville3.0x10 ⁻⁶ Chromium VI0.01Nickel2x10-6Chromium VI0.008NickelCromby GeneratingGeneratingSax10 ⁻⁷ Arsenic0.006Nickel2x10-6Chromium VI0.007NickelTVA Gallatin1.0x10 ⁻⁶ Chromium VI0.006Nickel2x10-6Chromium VI0.007NickelTyd Gallatin1.0x10 ⁻⁶ Arsenic0.006NickelSx10-6Chromium VI0.003NickelSpringfiel - James River8.0x10 ⁻⁶ Chromium VI0.004NickelSx10-6Chromium VI0.004ArsenicDSHNHMerrimack1.0x10 ⁻⁶ Arsenic0.01ArsenicTx10-6Arsenic0.01ArsenicDSHNHMerrimack1.0x10 ⁻⁶ Arsenic0.01Arsenic1x10-6Arsenic0.01ArsenicDSHNHMuskage1.0x10 ⁻⁶ Arsenic0.001 <t< th=""><th>Facility</th><th>Risk</th><th>Risk Driver</th><th>Max HI</th><th>Driver</th><th>risk</th><th>Risk Driver</th><th>HI</th><th>Driver</th></t<>	Facility	Risk	Risk Driver	Max HI	Driver	risk	Risk Driver	HI	Driver	
$ \begin{array}{ c c c c c c } \hline Canadys & 5.0x10^{-7} & Chromium VI & 0.003 & Nickel & Not Remodeled \\ \hline Sc& Canadys & 6.0x10^{-7} & Arsenic & 0.009 & HCl & Not Remodeled \\ \hline Dominion & Chesapeake & Sample & Sam$	Xcel						•			
$ \begin{array}{ c c c c c } \hline Core & 5.0x10^{-7} & Chromium VI & 0.03 & Nickel & Not Remodeled \\ \hline SC&E & & & & & & & & & & & & & & & & & & $	Bayfront	4.0x10 ⁻⁹	Formaldehyde	0.005	HCI	Not Remodeled				
SC&E Canadys6.0x10 ⁻⁷ Arsenic0.009HClIntermation IntermationNot Removement IntermationDominion Chesapeake Energy Center3.0x10 ⁻⁶ Chromium VI0.05HCl2x10-6Chromium VI0.05 ⁻⁸ HCl ³ Conesville3.0x10 ⁻⁶ Chromium VI0.01Nickel2x10-6Chromium VI0.05HClXino ¹⁰ Conesville3.0x10 ⁻⁶ Chromium VI0.01Nickel2x10-6Chromium VI0.008NickelExelon Comby Generating3.0x10 ⁻⁷ Arsenic0.008Nickel2x10-6Chromium VI0.007NickelTVA Gallatin1.0x10 ⁻⁶ Chromium VI0.006Nickel2x10-6Chromium VI0.007NickelTVA Gallatin1.0x10 ⁻⁶ Chromium VI0.006Nickel5x10-6Chromium VI0.003NickelSpringfiel - James River8.0x10 ⁻⁶ Arsenic0.01Arsenic7x10-7Chromium VI0.004ArsenicPSHNH - Merrimack1.0x10 ⁻⁶ Arsenic0.01Arsenic1x10-6Arsenic0.01ArsenicSteam Genco1.0x10 ⁻⁶ Arsenic0.01Arsenic1x10-6Chromium VI0.008ArsenicPlant6.0x10 ⁻⁷ Arsenic0.003Arsenic1x10-6Chromium VI0.008ArsenicSteam Genco1.0x10 ⁻⁶ Arsenic0.001Arsenic1x10-6Chromium VI0.008ArsenicSteam Genco <td>Cambria</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Cambria	-								
Canadys $6.0x10^7$ Arsenic 0.009 HClNot RemoteledDominion Chesapeake Energy Genter $3.0x10^6$ Chromium VI 0.05 HCl $2x10-6$ Chromium VI 0.05^8 HCl 3 Conesville $3.0x10^6$ Chromium VI 0.01 Nickel $2x10-6$ Chromium VI 0.05^8 HCl 3 Conesville $3.0x10^6$ Chromium VI 0.01 Nickel $2x10-6$ Chromium VI 0.008 NickelExelon Cromby Generating $3.0x10^7$ Arsenic 0.008 Nickel $Not Remoteled$ Not RemoteledTVA Gallatin $1.0x10^6$ Chromium VI 0.006 Nickel $2x10-6$ Chromium VI 0.007 NickelSpringfiel - James River $8.0x10^6$ Chromium VI 0.04 Nickel $5x10-6$ Chromium VI 0.03 NickelMerrimack $1.0x10^6$ Arsenic 0.006 Arsenic $7x10-7$ Chromium VI 0.004 ArsenicPSHNH - Merrimack $1.0x10^6$ Arsenic 0.01 Arsenic $1x10-6$ Arsenic 0.01 ArsenicStatam $1.0x10^6$ Arsenic 0.01 Arsenic $1x10-6$ Chromium VI 0.008 ArsenicSpringfiel $0.0x10^7$ Chromium VI 0.003 Arsenic $7x10-7$ Chromium VI 0.004 ArsenicSpringfiel $0.0x10^7$ Arsenic 0.01 Arsenic $1x10-6$ Arsenic 0.01 ArsenicSpringfiel $0.0x10^7$ Chromium VI	Cogen	5.0x10 ⁻⁷	Chromium VI	0.003	Nickel	Not Remodeled				
Dominion Chesapeake Energy Center3.0x10 ⁶ Chromium VI0.05HCl2x10-6Chromium VI0.05HClConesville3.0x10 ⁶ Chromium VI0.01Nickel2x10-6Chromium VI0.008NickelExelon Cromby Generating3.0x10 ⁷ Chromium VI0.01Nickel2x10-6Chromium VI0.008NickelStation3.0x10 ⁷ Arsenic0.008NickelVVVNotelTVA Gallatin1.0x10 ⁵ Chromium VI0.006Nickel2x10-6Chromium VI0.007NickelTVA Gallatin1.0x10 ⁶ Chromium VI0.006Nickel2x10-6Chromium VI0.007NickelGrif of Springfiel- James River8.0x10 ⁶ Chromium VI0.04Nickel5x10-6Chromium VI0.03NickelAmerenue- Labadie8.0x10 ⁷ Arsenic0.006Arsenic7x10-7Chromium VI0.04ArsenicPSHNH - Plant6.0x10 ⁷ Chromium VI0.003Arsenic1x10-6Arsenic0.01ArsenicOG&E - Plant6.0x10 ⁷ Chromium VI0.003Arsenic1x10-6Chromium VI0.008ArsenicSpruace Genco8.0x10 ⁸ Arsenic0.001Arsenic1x10-6Chromium VI0.008ArsenicSpruace Genco8.0x10 ⁸ Arsenic0.001Arsenic1x10-6Chromium VI0.008ArsenicSpruace Genco8.0x10 ⁸ </td <td></td> <td>7</td> <td></td> <td></td> <td></td> <td colspan="4"></td>		7								
$\begin{array}{cccc} Chesapeake Energy \\ Center 3.0x10^6 & Chromium VI 0.05 & HCl 2x10-6 & Chromium VI 0.05 ^ a & HCl ^ a \\ Conesville 3.0x10^6 & Chromium VI 0.01 & Nickel 2x10-6 & Chromium VI 0.008 & Nickel \\ Exelon Cromby \\ Generating & Assenic 0.008 & Nickel & 2x10-6 & Chromium VI 0.007 & Nickel \\ Station 3.0x10^7 & Arsenic 0.008 & Nickel & 2x10-6 & Chromium VI 0.007 & Nickel \\ TVA Gallatin 1.0x10^6 & Chromium VI 0.006 & Nickel & 2x10-6 & Chromium VI 0.007 & Nickel \\ City Utilities of Arsenic 0.008 & Nickel & Sx10-6 & Chromium VI 0.007 & Nickel \\ Springfiel - & Assenic 0.008 & Nickel & Sx10-6 & Chromium VI 0.007 & Nickel \\ Amerenue & Assenic 0.006 & Arsenic 7x10-7 & Chromium VI 0.003 & Nickel \\ Amerenue & Assenic 0.006 & Arsenic 7x10-7 & Chromium VI 0.004 & Arsenic \\ DSHN + & Assenic 0.01 & Arsenic 1x10-6 & Arsenic 0.01 & Arsenic \\ Merrimack 1.0x10^6 & Arsenic 0.01 & Arsenic 1x10-6 & Arsenic 0.01 & Arsenic \\ Stama & Iox10^7 & Chromium VI 0.003 & Arsenic 1x10-6 & Arsenic 0.01 & Arsenic \\ PSHN + & Assenic 0.01 & Arsenic 1x10-6 & Arsenic 0.01 & Arsenic \\ PSHN + & Assenic 0.01 & Arsenic 1x10-6 & Arsenic 0.01 & Arsenic \\ PSHN + & Assenic 0.01 & Arsenic 1x10-6 & Arsenic 0.01 & Arsenic \\ PSHN + & Assenic 0.01 & Arsenic 1x10-6 & Arsenic 0.01 & Arsenic \\ PSHN + & Assenic 0.01 & Arsenic 1x10-6 & Arsenic 0.01 & Arsenic \\ PSHN + & Assenic 0.01 & Arsenic 1x10-6 & Arsenic 0.01 & Arsenic \\ PSHN + & Assenic 0.01 & Arsenic 1x10-6 & Arsenic 0.01 & Arsenic \\ PSHN + & Assenic 0.01 & Arsenic 1x10-6 & Arsenic 0.01 & Arsenic \\ PSHN + & Assenic 0.01 & Arsenic 0.01 & Arsenic 1x10-6 & Arsenic 0.01 & Arsenic \\ PSHN + & Assenic 0.01 & Arsenic 0.01 & Arsenic 1x10-6 & Arsenic 0.01 & Arsenic \\ PSHN + & Assenic 0.01 & Arsenic 0.01 & Arsenic 1x10-6 & Arsenic 0.01 & Arsenic \\ PSHN + & Assenic 0.01 & Arsenic 0.01 & Arsenic 0.01 & Arsenic \\ PSHN + & Assenic 0.01 & Arsenic 0.01 & Arsenic 0.01 & Arsenic \\ PSHN + & Assenic 0.01 & Arsenic 0.01 & Arsenic \\ PSHN + & Assenic 0.01 & Arsenic 0.01 & Arsenic \\ PSHN + & Assenic 0.01 & Arsenic 0.01 & Arsenic \\ PSHN +$	-	6.0x10 ⁻⁷	Arsenic	0.009	HCI	Not Remodeled				
$ \begin{array}{cccc} {\rm Energy} \\ {\rm Center} & {\bf 3.0x10^{-6}} & {\rm ChromiumVI} & {\bf 0.05} & {\rm HCI} & {\bf 2x10-6} & {\rm ChromiumVI} & {\bf 0.05} & {\rm HCI}^3 \\ {\rm Conesville} & {\bf 3.0x10^{-6}} & {\rm ChromiumVI} & {\bf 0.01} & {\rm Nickel} & {\bf 2x10-6} & {\rm ChromiumVI} & {\bf 0.008} & {\rm Nickel} \\ {\rm Exelon} & {\rm Conesville} & {\rm ChromiumVI} & {\bf 0.01} & {\rm Nickel} & {\bf 2x10-6} & {\rm ChromiumVI} & {\bf 0.008} & {\rm Nickel} \\ {\rm Exelon} & {\rm Conesville} & {\rm ChromiumVI} & {\bf 0.01} & {\rm Nickel} & {\rm 2x10-6} & {\rm ChromiumVI} & {\bf 0.008} & {\rm Nickel} \\ {\rm Conesville} & {\rm 3.0x10^{-7}} & {\rm Arsenic} & {\bf 0.008} & {\rm Nickel} & {\rm 2x10-6} & {\rm ChromiumVI} & {\bf 0.007} & {\rm Nickel} \\ {\rm Station} & {\rm 3.0x10^{-7}} & {\rm Arsenic} & {\rm 0.008} & {\rm Nickel} & {\rm 2x10-6} & {\rm ChromiumVI} & {\bf 0.007} & {\rm Nickel} \\ {\rm City Utilities} & {\rm ChromiumVI} & {\bf 0.006} & {\rm Nickel} & {\rm 2x10-6} & {\rm ChromiumVI} & {\bf 0.007} & {\rm Nickel} \\ {\rm Springfield-} & {\rm Sox10^{-6}} & {\rm ChromiumVI} & {\bf 0.04} & {\rm Nickel} & {\rm 5x10-6} & {\rm ChromiumVI} & {\bf 0.03} & {\rm Nickel} \\ {\rm Amerenue-} & {\rm Labadie} & {\rm 8.0x10^{-6}} & {\rm Arsenic} & {\bf 0.01} & {\rm Arsenic} & {\rm 7x10-7} & {\rm ChromiumVI} & {\bf 0.004} & {\rm Arsenic} \\ {\rm PSHNH-} & {\rm Nach} & {\rm Sox10^{-6}} & {\rm Arsenic} & {\bf 0.01} & {\rm Arsenic} & {\rm 1x10-6} & {\rm Arsenic} & {\bf 0.01} & {\rm Arsenic} \\ {\rm Merrimack} & {\rm 1.0x10^{-6}} & {\rm Arsenic} & {\bf 0.01} & {\rm Arsenic} & {\rm 1x10-6} & {\rm Arsenic} & {\rm 0.01} & {\rm Arsenic} \\ {\rm Steam} & {\rm I.0x10^{-6}} & {\rm Arsenic} & {\bf 0.01} & {\rm Arsenic} & {\rm 1x10-6} & {\rm ChromiumVI} & {\rm 0.008} & {\rm Arsenic} \\ {\rm Spruace} & {\rm Sox10^{-6}} & {\rm Arsenic} & {\rm 0.007} & {\rm HCI} & {\rm Statem} \\ {\rm Spruace} & {\rm Sox10^{-6}} & {\rm Arsenic} & {\rm 0.007} & {\rm HCI} & {\rm Statem} \\ {\rm Spruace} & {\rm Sox10^{-7}} & {\rm Arsenic} & {\rm 0.001} & {\rm Arsenic} & {\rm NotRem {\rm -eled} \\ \\ {\rm Spruace} & {\rm Sox10^{-7}} & {\rm Arsenic} & {\rm 0.007} & {\rm HCI} & {\rm Statem} \\ {\rm Spruace} & {\rm Sox10^{-7}} & {\rm Arsenic} & {\rm 0.001} & {\rm Arsenic} & {\rm NotRem {\rm -eled} \\ \\ {\rm Spruace} & {\rm Sox10^{-7}} & {\rm Arseni$										
Center $3.0x10^{-6}$ Chromium VI 0.05 HCl $2x10-6$ Chromium VI 0.05^{-a} HCl ^a Conesville $3.0x10^{-6}$ Chromium VI 0.01 Nickel $2x10-6$ Chromium VI 0.008 Nickel Exelon Cromby Generating	-									
$ \begin{array}{ c c c c c c } \hline Conesville & 3.0x10^{-6} & Chromium VI & 0.01 & Nickel & 2x10-6 & Chromium VI & 0.008 & Nickel \\ \hline Exelon & & & & & & & & & & & & & & & & & & &$		2 2 4 2 - 6		0.05		2 40 6		0.05		
Exelon Cromby Generating StationArsenic0.008NickelNot RemodeledVA Gallatin $1.0x10^{-6}$ Chromium VI0.006Nickel $2x10-6$ Chromium VI0.007NickelTVA Gallatin $1.0x10^{-6}$ Chromium VI0.006Nickel $2x10-6$ Chromium VI0.007NickelCity UtilitiesGSpringfield - James RiverSo.010^{-6}Chromium VI0.04Nickel $5x10-6$ Chromium VI0.03NickelAmerenue- Labadie8.0x10^{-7}Arsenic0.006Arsenic $7x10-7$ Chromium VI0.004ArsenicPSHNH - Merrimack1.0x10^{-6}Arsenic0.01Arsenic $7x10-7$ Chromium VI0.004ArsenicMonticello Steam ElectricGo&trimetricGoArsenic $1x10-6$ Arsenic0.01ArsenicMuskogee $1.0x10^{-6}$ Arsenic0.007HClNot RemodeledVISpruance Genco8.0x10^{-8}Arsenic0.007HClNot RemodeledPSI Energy - Wabash River $1.0x10^{-7}$ Arsenic0.001ArsenicNot RemodeledFiltergy - Wabash River $1.0x10^{-7}$ Arsenic0.001ArsenicNot RemodeledFiltergy - Wabash $1.0x10^{-7}$ Arsenic0.001ArsenicNot RemodeledFiltergy - Wabash $1.0x10^{-7}$ Arsenic0.001ArsenicNot RemodeledFiltergy - Wabash $1.0x10^{-7}$ Arsenic0.001<										
Cromby Generating Station3.0x10 ⁻⁷ Arsenic0.008Nickel		3.0X10		0.01	NICKEI	2X10-6	Chromium VI	0.008	NICKEI	
Generating Station $3.0x10^{-7}$ Arsenic 0.008 Nickel \sim Not RemoveledTVA Gallatin $1.0x10^{-6}$ Chromium VI 0.006 Nickel $2x10-6$ Chromium VI 0.007 NickelCity Utilities of springfield - James River $8.0x10^{-6}$ Chromium VI 0.004 Nickel $5x10-6$ Chromium VI 0.03 NickelAmerenue- Labadie $8.0x10^{-6}$ Chromium VI 0.04 Nickel $5x10-6$ Chromium VI 0.03 NickelSPHNH - Berrimack $1.0x10^{-6}$ Arsenic 0.006 Arsenic $7x10-7$ Chromium VI 0.004 ArsenicSteam Electric $1.0x10^{-6}$ Arsenic 0.01 Arsenic $1x10-6$ Arsenic 0.01 ArsenicOG&E - Muskogee $1.0x10^{-6}$ Arsenic 0.01 Arsenic $1x10-6$ Chromium VI 0.008 ArsenicSpruance Genco $8.0x10^{-7}$ Chromium VI 0.003 Arsenic $1x10-6$ Chromium VI 0.008 ArsenicSpruance Genco $8.0x10^{-7}$ Chromium VI 0.003 Arsenic $1x10-6$ Chromium VI 0.008 ArsenicSpruance Genco $8.0x10^{-7}$ Arsenic 0.01 Arsenic $1x10-6$ Chromium VI 0.008 ArsenicSpruance Genco $1.0x10^{-6}$ Arsenic 0.007 HCI \sim \sim \sim \sim Spruance Genco $1.0x10^{-7}$ Arsenic 0.001 Arsenic \sim \sim \sim <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
Station 3.0×10^{-7} Arsenic 0.008 Nickel $Nickel$ $Not Removeled$ TVA Gallatin 1.0×10^{-6} Chromium VI 0.006 Nickel 2×10^{-6} Chromium VI 0.007 NickelCity Utilities of James River8.0 \times 10^{-6}Chromium VI 0.004 Nickel 5×10^{-6} Chromium VI 0.03 NickelAmerenue- Labadie8.0 \times 10^{-6}Chromium VI 0.04 Nickel 5×10^{-6} Chromium VI 0.03 NickelPSHNH - DSHNH - Merrimack1.0 \times 10^{-6}Arsenic 0.006 Arsenic 7×10^{-7} Chromium VI 0.004 ArsenicMonticello Steam Electric Plant6.0 \times 10^{-7}Chromium VI 0.003 Arsenic 1×10^{-6} Arsenic 0.01 ArsenicMuskogee 1.0×10^{-6} Arsenic 0.01 Arsenic 1×10^{-6} Chromium VI 0.003 ArsenicSpruance Genco 8.0×10^{-7} Chromium VI 0.003 Arsenic 1×10^{-6} Chromium VI 0.008 ArsenicSpruance Genco 8.0×10^{-8} Arsenic 0.007 HCl $V = V = V = V = V = V = V = V = V = V =$	-									
TVA Gallatin 1.0×10^{-6} Chromium VI 0.006 Nickel $2 \times 10-6$ Chromium VI 0.007 NickelCity Utilities of Springfield - James River8.0 \times 10^{-6}Chromium VI 0.04 Nickel $5 \times 10-6$ Chromium VI 0.03 NickelAmerenue- Labadie8.0 \times 10^{-7}Arsenic 0.006 Arsenic $7 \times 10-7$ Chromium VI 0.004 ArsenicPSHNH - Merrimack1.0 \times 10^{-6}Arsenic 0.011 Arsenic $1 \times 10-6$ Arsenic 0.01 ArsenicMonticello Steam1.0 \times 10^{-6}Arsenic 0.011 Arsenic $1 \times 10-6$ Arsenic 0.01 ArsenicMonticello Steam1.0 \times 10^{-6}Arsenic 0.01 Arsenic $1 \times 10-6$ Arsenic 0.01 ArsenicMuskogee 1.0×10^{-6} Arsenic 0.01 Arsenic $1 \times 10-6$ Chromium VI 0.008 ArsenicSpruance Genco 8.0×10^{-8} Arsenic 0.007 HClNot RemoteledVot RemoteledPSI Energy - Wabash River 1.0×10^{-7} Arsenic 0.001 ArsenicNot RemoteledVot RemoteledHeco Waiau 1.0×10^{-7} Arsenic 0.001 ArsenicNot RemoteledVot RemoteledPSI Energy - Wabash River 1.0×10^{-7} Arsenic 0.001 ArsenicNot RemoteledVot RemoteledHeco Waiau 1.0×10^{-7} Arsenic 0.001 ArsenicNot RemoteledNot RelD	-	3 0v10 ⁻⁷	Arsonic	0 008	Nickol	Not Remodeled				
City Utilities of Springfield - James River8.0x10 ⁻⁶ Chromium VI0.04Nickel5x10-6Chromium VI0.03NickelAmerenue- Labadie8.0x10 ⁻⁷ Chromium VI0.006Arsenic7x10-7Chromium VI0.004ArsenicPSHNH - Merrimack1.0x10 ⁻⁶ Arsenic0.01Arsenic1x10-6Arsenic0.01ArsenicSteam Electric1.0x10 ⁻⁶ Arsenic0.003Arsenic1x10-6Arsenic0.01ArsenicPlant6.0x10 ⁻⁷ Chromium VI0.003Arsenic1x10-6Chromium VI0.008ArsenicSpruance Spruance1.0x10 ⁻⁶ Arsenic0.01Arsenic1x10-6Arsenic0.01ArsenicPlant6.0x10 ⁻⁷ Chromium VI0.003Arsenic1x10-6Chromium VI0.008ArsenicSpruance Genco8.0x10 ⁻⁸ Arsenic0.007HClNot RemotetefImageImagePSI Energy – River1.0x10 ⁻⁷ Arsenic0.001ArsenicNot RemotetefImageImageRiver1.0x10 ⁻⁷ Arsenic0.001ArsenicImageImageImageImageImageSpruance Briver1.0x10 ⁻⁷ Arsenic0.001ArsenicImageImageImageImageImageSpruance Briver1.0x10 ⁻⁷ Arsenic0.001ArsenicImageImageImageImageImageImageImageImageBriver		1.0×10^{-6}				2x10-6		1	Nickel	
of Springfield - James River8.0x10 ⁻⁶ Chromium VI0.04Nickel5x10-6Chromium VI0.03NickelAmerenue- Labadie8.0x10 ⁻⁷ Arsenic0.006Arsenic7x10-7Chromium VI0.004ArsenicPSHNH - Merrimack1.0x10 ⁻⁶ Arsenic0.01Arsenic1x10-6Arsenic0.01ArsenicMerrimack1.0x10 ⁻⁶ Arsenic0.01Arsenic1x10-6Arsenic0.01ArsenicMonticello Steam1.0x10 ⁻⁶ Arsenic0.003Arsenic1x10-6Arsenic0.01ArsenicPlant6.0x10 ⁻⁷ Chromium VI0.003Arsenic1x10-6Chromium VI0.003ArsenicPlant6.0x10 ⁻⁷ Chromium VI0.003Arsenic1x10-6Chromium VI0.003ArsenicSpruance Genco8.0x10 ⁻⁶ Arsenic0.01Arsenic1x10-6Chromium VI0.003ArsenicSpruance Genco1.0x10 ⁻⁶ Arsenic0.007HCl		1.0/10		0.000	Meker	2,10 0	cinoman vi	0.007	Meker	
Springfield - James River8.0x10 ⁻⁶ Chromium VI0.04Nickel5x10-6Chromium VI0.03NickelAmerenue- Labadie8.0x10 ⁻⁷ Arsenic0.006Arsenic7x10-7Chromium VI0.004ArsenicPSHNH - Merrimack1.0x10 ⁻⁶ Arsenic0.010Arsenic1x10-6Arsenic0.01ArsenicMonticelloArsenic0.01Arsenic1x10-6Arsenic0.01Arsenic1x10-6Arsenic0.01ArsenicSteamI ElectricI HantG.0x10 ⁻⁷ Chromium VI0.003ArsenicI ArsenicI <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></br<>										
James River $8.0x10^{-6}$ Chromium VI 0.04 Nickel $5x10-6$ Chromium VI 0.03 NickelAmerenue- Labadie $8.0x10^{-7}$ Arsenic 0.006 Arsenic $7x10-7$ Chromium VI 0.004 ArsenicPSHNH - Merrimack $1.0x10^{-6}$ Arsenic 0.01 Arsenic $1x10-6$ Arsenic 0.01 ArsenicMonticello Steam $1.0x10^{-6}$ Arsenic 0.01 Arsenic $1x10-6$ Arsenic 0.01 ArsenicIdentified Electric Plant $6.0x10^{-7}$ Chromium VI 0.003 Arsenic $1x10-6$ $Not Rem-Eled$ $VertifiedOG&E -Muskogee1.0x10^{-6}Arsenic0.01Arsenic1x10-6Chromium VI0.008ArsenicSpruanceGenco8.0x10^{-8}Arsenic0.007HClVertifiedVertifiedVertifiedVertifiedPSI Energy -WabashRiver1.0x10^{-7}Arsenic0.001ArsenicVertifiedVertifiedVertifiedVertifiedHeco Waiau1.0x10^{-7}Arsenic0.001Arsenic2x10-5^{b}Nickel0.4NickelDominion -VertifiedVertifiedVertifiedVertifiedVertifiedVertifiedVertifiedVertified$										
Amerenue- Labadie8.0x10 ⁻⁷ Arsenic0.006Arsenic7x10-7Chromium VI0.004ArsenicPSHNH - Merrimack1.0x10 ⁻⁶ Arsenic0.01Arsenic1x10-6Arsenic0.01ArsenicMonticello Steam1.0x10 ⁻⁶ Arsenic0.01Arsenic1x10-6Arsenic0.01ArsenicBelectric Plant6.0x10 ⁻⁷ Chromium VI0.003Arsenic $$		8.0x10 ⁻⁶	Chromium VI	0.04	Nickel	5x10-6	Chromium VI	0.03	Nickel	
PSHNH - Merrimack1.0x10 ⁻⁶ Arsenic0.01Arsenic1x10-6Arsenic0.01ArsenicMonticello Steam Electric <td>Amerenue-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Amerenue-									
Merrimack $1.0x10^{-6}$ Arsenic 0.01 Arsenic $1x10-6$ Arsenic 0.01 ArsenicMonticello	Labadie	8.0x10 ⁻⁷	Arsenic	0.006	Arsenic	7x10-7	Chromium VI	0.004	Arsenic	
Monticello Steam ElectricImage: Steam of the second	PSHNH -									
Steam Electric Plant6.0x10 ⁻⁷ Chromium VI0.003ArsenicNot RemoveledOG&E - Muskogee1.0x10 ⁻⁶ Arsenic0.01Arsenic1x10-6Chromium VI0.008ArsenicSpruance Genco8.0x10 ⁻⁸ Arsenic0.007HClNot RemoveledVerticeVerticeVerticePSI Energy - Wabash1.0x10 ⁻⁷ Arsenic0.001ArsenicNot RemoveledVerticeVerticeRiver1.0x10 ⁻⁷ Arsenic0.001ArsenicNot RemoveledVerticeVerticeVerticeHeco Waiau1.0x10 ⁻⁵ Nickel0.4Nickel2x10-5bNickel0.4Nickel	Merrimack	1.0x10 ⁻⁶	Arsenic	0.01	Arsenic	1x10-6	Arsenic	0.01	Arsenic	
Electric Plant6.0x10 ⁻⁷ Chromium VI0.003ArsenicNot RemoteledOG&E - Muskogee1.0x10 ⁻⁶ Arsenic0.01Arsenic1x10-6Chromium VI0.008ArsenicSpruance Genco8.0x10 ⁻⁸ Arsenic0.007HClVot RemoteledVot RemoteledPSI Energy - Wabash1.0x10 ⁻⁷ Arsenic0.001ArsenicNot RemoteledRiver1.0x10 ⁻⁷ Arsenic0.001ArsenicNot RemoteledHeco Waiau1.0x10 ⁻⁵ Nickel0.4Nickel2x10-5 ^b Nickel0.4Nickel	Monticello									
Plant $6.0x10^{-7}$ Chromium VI 0.003 ArsenicNot RemoveledOG&E - Muskogee1.0x10^{-6}Arsenic 0.01 Arsenic $1x10-6$ Chromium VI 0.008 ArsenicSpruance Genco $8.0x10^{-8}$ Arsenic 0.007 HCl $V = V = V = V = V = V = V = V = V = V =$										
OG&E - Muskogee $1.0x10^{-6}$ Arsenic 0.01 Arsenic $1x10-6$ Chromium VI 0.008 ArsenicSpruance Genco $8.0x10^{-8}$ Arsenic 0.007 HClNot RemodeledPSI Energy - Wabash River $1.0x10^{-7}$ Arsenic 0.001 ArsenicNot RemodeledHeco Waiau $1.0x10^{-5}$ Nickel 0.4 Nickel $2x10-5^{b}$ Nickel 0.4 Nickel		-7								
Muskogee $1.0x10^{-6}$ Arsenic 0.01 Arsenic $1x10-6$ Chromium VI 0.008 ArsenicSpruance Genco $8.0x10^{-8}$ Arsenic 0.007 HClNot RemoleledPSI Energy - Wabash River $1.0x10^{-7}$ Arsenic 0.001 Arsenic $Vot Remoleled$ Heco Waiau $1.0x10^{-5}$ Nickel 0.4 Nickel $2x10-5^{b}$ Nickel 0.4 Nickel		6.0x10 ′	Chromium VI	0.003	Arsenic		Not Remo	odeled		
Spruance Genco 8.0x10 ⁻⁸ Arsenic 0.007 HCl Not Remodeled PSI Energy – Wabash Wabash Not Remodeled Not Remodeled Not Remodeled River 1.0x10 ⁻⁷ Arsenic 0.001 Arsenic Not Remodeled Heco Waiau 1.0x10 ⁻⁵ Nickel 0.4 Nickel 2x10-5 ^b Nickel 0.4 Dominion -		1.0.10-6	A	0.01	A	1.10.0	Characteristic 1/1	0.000	A	
Genco 8.0x10 ⁻⁸ Arsenic 0.007 HCl Not Remodeled PSI Energy – Wabash -	-	1.0x10 ⁻⁵	Arsenic	0.01	Arsenic	1x10-6	Chromium VI	0.008	Arsenic	
PSI Energy – Wabash Image: Market Marke		9 0v10 ⁻⁸	Arconio	0.007		Not Remodeled				
Wabash Image: Arsenic O.001 Arsenic Not Remo River 1.0x10 ⁻⁷ Arsenic 0.001 Arsenic Not Remo Heco Waiau 1.0x10 ⁻⁵ Nickel 0.4 Nickel 2x10-5 ^b Nickel 0.4 Nickel Dominion -		0.UX10	Arsenic	0.007	псі					
River 1.0x10 ⁻⁷ Arsenic 0.001 Arsenic Not Remo Not Remo Heco Waiau 1.0x10 ⁻⁵ Nickel 0.4 Nickel 2x10-5 ^b Nickel 0.4 Nickel Dominion -										
Heco Waiau 1.0x10 ⁻⁵ Nickel 0.4 Nickel 2x10-5 ^b Nickel 0.4 Nickel Dominion -		1 0x10 ⁻⁷	Arsenic	0 001	Arsenic		Not Remo	ndeled		
Dominion -		1.0×10^{-5}				2x10-5 ^b			Nickel	
		1.0/10	Mercer	U.T	MCKCI	2.10.5	HICKCI		HICKCI	
	Yorktown	1.0x10 ⁻⁶	Chromium VI	0.02	Nickel	2x10-6 ^b	Nickel	0.03	Nickel	

Table 9. Chronic inhalation risk assessment results.

^a Although HCl was not included in the remodeling of this facility, HCl was the HI driver pollutant at proposal, and this is carried through for the final rule assessment.

^b Based on considering the emitted nickel to be 100% as potent a carcinogen as pure nickel subsulfide; if we consider the emitted nickel to be 50% as potent a carcinogen as nickel subsulfide (see text), estimated risks would be 1×10^{-5} for Heco Waiau and 1×10^{-6} for Dominion - Yorktown.

United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park, NC Publication No. EPA-452/R-11-013 November 2011