Standards of Performance for
Fossil-Fuel-Fired Steam Generating Units for Which
Construction Is Commenced After August 17, 1971
(40 CFR 60 subpart D)

Standards of Performance for
Electric Utility Steam Generating Units for Which
Construction Is Commenced After September 18, 1978
(40 CFR 60 subpart Da)

Standards of Performance for
Industrial-Commercial-Institutional Steam Generating Units
(40 CFR 60 subpart Db)

Standards of Performance for Small
Industrial-Commercial-Institutional Steam Generating Units
(40 CFR 60 subpart Dc)

Response to Public Comments on
Rule Amendments Proposed May 3, 2011 (73 FR 33642)

US Environmental Protection Agency
Office of Air Quality Planning and Standards
Sector Policies and Programs Division
Research Triangle Park, NC 27711

December 2011
Table of Contents

1. Introduction ...

2. Response to Comments on Proposed NSPS Amendments to Subparts D and Da ...

 2.1 General NSPS Rule Development ..

 2.1.1 Fuel and Technology Neutral Approach for Rule Development ... 1

 2.1.2 Selection of Best System of Emission Reduction (BSER) ... 3

 2.1.2.1 Consideration of EGU Energy Efficiency in Selection of BSER .. 3

 2.1.2.2 Consideration of IGCC Technology in Selection of BSER ... 4

 2.1.3 Net Energy Output Based Emissions Standards Format .. 4

 2.1.4 Standards for Reconstructed and Modified EGUs .. 5

 2.1.5 Standards for Combined Heat and Power (CHP) Units Subject to NSPS .. 6

 2.1.6 NSPS during Periods of EGU Startup, Shutdown, and Malfunction .. 6

 2.1.7 Facility-Wide Emissions Averaging ... 7

 2.1.8 Interrelationship of NSPS with other EPA Rulemakings Affecting EGUs .. 8

 2.1.8.1 Source Category Impact Analysis ... 8

 2.1.8.2 Delay of NSPS Rulemaking until NESHAP Affecting EGUs is Finalized 8

 2.1.8.3 Proposal of EGU NSPS Amendments with EGU NESHAP .. 8

 2.2 Rule Applicability ..

 2.2.1 Regulation of IGCC facilities under 40 CFR 60 subpart KKKK .. 9

 2.2.2 Exemption of EGUs Using “Innovative Technologies” .. 9

 2.2.3 Applicability to Permitted EGUs for which Construction Has Not Commenced 10

 2.3 Particulate Matter (PM) Emissions Standards ...

 2.3.1 Selection of BSER for PM Emissions ... 10

 2.3.2 Regulation of Combined PM Emissions .. 11

 2.3.3 Regulation of PM2.5 Emissions .. 12

 2.3.4 Selection of PM Emissions Limit Value .. 12

 2.3.5 PM Control Cost Analysis ... 13

 2.3.6 PM Standards Exemptions ... 13

 2.3.6.1 Opacity Standard Exemption for EGUs Using PM CEMS ... 13

 2.3.6.2 Opacity Standard Exemption for EGUs Complying with a Combined PM Standard 14

 2.3.6.3 PM and Opacity Standard Exemptions for Natural Gas Fired EGUs ... 14

 2.3.6.4 PM and Opacity Standards Exemption for Low-Sulfur Fuel Fired EGUs 14

 2.4 Sulfur Dioxide (SO2) Emissions Standards ... 15

 2.4.1 Selection of BSER for SO2 Emissions ... 15

 2.4.2 Selection of SO2 Emissions Limit Value .. 15

 2.3.3 SO2 Control Cost Analysis .. 16

 2.4.4 Coal Refuse-Fired EGU Exemption from SO2 Standards ... 16

 2.5.1 Selection of BSER for NOX Emissions ... 17

 2.5.2 Combined NOX + CO Emissions Limit ... 17
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACT</td>
<td>Best Available Control Technology</td>
</tr>
<tr>
<td>BSER</td>
<td>Best System of Emission Reduction</td>
</tr>
<tr>
<td>BLD</td>
<td>Bag leak detection</td>
</tr>
<tr>
<td>Btu</td>
<td>British thermal unit</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CCS</td>
<td>Carbon capture and storage</td>
</tr>
<tr>
<td>CEMS</td>
<td>Continuous emissions monitoring system</td>
</tr>
<tr>
<td>CFB</td>
<td>Circulating fluidized bed</td>
</tr>
<tr>
<td>CHP</td>
<td>Combined heat and power</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>COMS</td>
<td>Continuous opacity monitoring system</td>
</tr>
<tr>
<td>CROMERR</td>
<td>Cross-Media Electronic Reporting Regulation</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>EGU</td>
<td>Electric steam generating unit</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>ERT</td>
<td>Electronic Reporting Tool</td>
</tr>
<tr>
<td>ESP</td>
<td>Electrostatic precipitator</td>
</tr>
<tr>
<td>FGD</td>
<td>Flue gas desulfurization</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>IGCC</td>
<td>Integrated gasification combined cycle</td>
</tr>
<tr>
<td>kWh</td>
<td>Kilowatt-hour</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatt</td>
</tr>
<tr>
<td>MWC</td>
<td>Municipal waste combustor</td>
</tr>
<tr>
<td>MWh</td>
<td>Megawatt-hour</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standard</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrogen dioxide</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Nitrogen oxides</td>
</tr>
<tr>
<td>NSPS</td>
<td>New Source Performance Standards</td>
</tr>
<tr>
<td>NSR</td>
<td>New Source Review</td>
</tr>
<tr>
<td>OMB</td>
<td>Office of Management and Budget</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate matter</td>
</tr>
<tr>
<td>PRA</td>
<td>Paperwork Reduction Act</td>
</tr>
<tr>
<td>PSD</td>
<td>Prevention of Significant Deterioration</td>
</tr>
<tr>
<td>SCR</td>
<td>Selective catalytic reduction</td>
</tr>
<tr>
<td>SNCR</td>
<td>Selective non-catalytic reduction</td>
</tr>
<tr>
<td>SIP</td>
<td>State Implementation Plan</td>
</tr>
<tr>
<td>SO₂</td>
<td>Sulfur dioxide</td>
</tr>
<tr>
<td>SOₓ</td>
<td>Sulfur oxides</td>
</tr>
</tbody>
</table>
1. Introduction

On February 27, 2006, the United States Environmental Protection (EPA) promulgated amendments (71 FR 9866) to the new source performance standards (NSPS) for electric utility steam generating units (EGUs) under 40 CFR part 60 subparts D and Da. EPA was subsequently sued by the offices of multiple state Attorneys General and environmental organizations on these amendments. On September 2, 2009, EPA was granted a voluntary remand without vacatur of the 2006 amendments. On May 3, 2011, EPA proposed amendments (76 FR 24976) in response to the voluntary remand. These amendments included proposed new emissions limits for particulate matter (PM), sulfur dioxide (SO$_2$), and nitrogen oxides (NO$_x$) for EGUs that commence construction, reconstruction, or modification on or after May 3, 2011. As part of this action, the Agency also proposed several minor amendments, technical clarifications, and corrections to existing provisions applicable to the fossil fuel-fired EGUs under 40 CFR 60 subparts D and Da, as well as large and small industrial-commercial-institutional steam generating units NSPS under 40 CFR part 60 subparts Db and Dc.

A 90-day period ending August 4, 2011 was provided for the public to submit comments regarding the proposed subparts D, Da, Db, and Dc amendments. Approximately 200,000 comments were entered into EPA’s Air and Radiation docket assigned for this NSPS rulemaking (number EPA-HQ-OAR-2011-0044). Many of these comments were duplicative of comments submitted to EPA’s Air and Radiation docket assigned for the development of the proposed national emission standards for hazardous air pollutant (NESHAP) from coal- and oil-fired EGUs under CAA section 112 (number EPA-HQ-OAR-2009-0234).

EPA reviewed all of the comments entered into docket EPA-HQ-OAR-2011-0044 and grouped the commenters into three general categories. The first category is commenters submitting duplicative copies of comments also submitted to docket EPA-HQ-OAR-2009-0234 regarding the proposed NESHAP rulemaking, and which do not contain any comments specifically related to the proposed NSPS amendments. The second category consists of commenters stating only general support or opposition to the NSPS rulemaking. Commenters supporting the amendments frequently included statements requesting that EPA establish the most stringent air emissions standards possible for EGUs. Commenters opposing the amendments frequently stated that the proposed NSPS amendments are overly stringent and burdensome and would inhibit or prevent the construction of new coal-fired EGUs, thereby increasing costs for electricity. The third and final category of public commenters are those providing comments regarding specific issues and topics related to the rule development and proposed rule language for amendments to 40 CFR 60 subparts D, Da, Db, and Dc.

This document presents a summary of the public comments entered into docket EPA-HQ-OAR-2011-0044 regarding specific issues and topics related to the development of the proposed NSPS amendments to 40 CFR 60 subparts D, Da, Db, and Dc (i.e., comments submitted by commenters in the third category) and EPA’s responses to those comments. The comment summaries pertaining to subparts D and Da are grouped by topic in Section 2 of this document. Comments pertaining to proposed amendments specific to subparts Db and Dc are included in Section 3. Tables 1 and 2 match the commenter to the docket entry number cited in Sections 2 and 3 for specific legal or technical comments. Some of the comment sets were signed or submitted on behalf of multiple commenters.
<table>
<thead>
<tr>
<th>EPA-HQ-OAR-2011-0044 Document No.</th>
<th>Date Submitted</th>
<th>Name and Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4634</td>
<td>August 4, 2011</td>
<td>James S. Pew Earthjustice</td>
</tr>
<tr>
<td>4635</td>
<td>August 4, 2011</td>
<td>Thomas C. Perry National Mining Association</td>
</tr>
<tr>
<td>4656</td>
<td>August 4, 2011</td>
<td>William D. Bissett Kentucky Coal Association</td>
</tr>
<tr>
<td>4673</td>
<td>August 4, 2011</td>
<td>Reid T. Clemmer PPL Services Corporation</td>
</tr>
<tr>
<td>4674</td>
<td>August 4, 2011</td>
<td>Martha E. Rudolph State of Colorado Colorado Department of Public Health and Environment</td>
</tr>
<tr>
<td>4686</td>
<td>August 4, 2011</td>
<td>John T. Heard The Virginia Coal Association</td>
</tr>
<tr>
<td>4698</td>
<td>August 2, 2011</td>
<td>Ronald A. Amirikian State of Delaware Department of Natural Resources & Environmental Control</td>
</tr>
<tr>
<td>4712</td>
<td>August 4, 2011</td>
<td>John M. McManus American Electric Power</td>
</tr>
<tr>
<td>4713</td>
<td>August 4, 2011</td>
<td>William O’Sullivan State of New Jersey Division of Environmental Protection</td>
</tr>
<tr>
<td>4714</td>
<td>August 4, 2011</td>
<td>Mark R. Vickery State of Texas Texas Commission on Environmental Quality</td>
</tr>
<tr>
<td>4715</td>
<td>August 4, 2011</td>
<td>Erika Padgett Elizabeth Wheeler Clean Wisconsin Kim Wright Midwest Environmental Advocates Peter Bakken Wisconsin Interfaith Power and Light George Meyer Wisconsin Wildlife Federation</td>
</tr>
<tr>
<td>4765</td>
<td>August 4, 2011</td>
<td>Alex Hofmann Theresa Pugh American Public Power Association</td>
</tr>
<tr>
<td>4766</td>
<td>August 4, 2011</td>
<td>Chris M. Hobson Southern Company</td>
</tr>
<tr>
<td>4768</td>
<td>August 3, 2011</td>
<td>James A. Landreth SCE&G</td>
</tr>
<tr>
<td>4770</td>
<td>August 3, 2011</td>
<td>Desi M. Chari The Dow Chemical Company</td>
</tr>
<tr>
<td>4830</td>
<td>August 4, 2011</td>
<td>Rae E. Cronmiller National Rural Electric Cooperative Association</td>
</tr>
<tr>
<td>4832</td>
<td>August 4, 2011</td>
<td>Kathleen L. Barrón Exelon Corporation</td>
</tr>
<tr>
<td>Document No.</td>
<td>Date Submitted</td>
<td>Name and Affiliation</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>4833</td>
<td>August 4, 2011</td>
<td>JoAnne Rau Randal Griffin Dayton Power and Light Company</td>
</tr>
<tr>
<td>4834</td>
<td>August 4, 2011</td>
<td>Jay Hudson Santee Cooper</td>
</tr>
<tr>
<td>4836</td>
<td>August 4, 2011</td>
<td>F. William Brownell Craig S. Harrison Lauren Freeman Hunton & Williams LLP Counsel to the Utility Air Regulatory Group (UARG)</td>
</tr>
<tr>
<td>4839</td>
<td>August 4, 2011</td>
<td>Verne Shortell NRG Energy, Inc.</td>
</tr>
<tr>
<td>4841</td>
<td>August 4, 2011</td>
<td>Robert D. Bessette Council of Industrial Boiler Owners</td>
</tr>
<tr>
<td>4893</td>
<td>August 4, 2011</td>
<td>Tom Thompson, Eco Power Solutions (USA) Corp</td>
</tr>
<tr>
<td>4984</td>
<td>August 4, 2011</td>
<td>Brian H. Moeck The Large Public Power Council</td>
</tr>
<tr>
<td>4985</td>
<td>August 4, 2011</td>
<td>Raymond L. Evans FirstEnergy Corporation</td>
</tr>
<tr>
<td>4989</td>
<td>August 4, 2011</td>
<td>John M. McManus American Electric Power</td>
</tr>
<tr>
<td>4997</td>
<td>August 4, 2011</td>
<td>Les Oakes Cynthia AM Stroman King & Spalding LLP Counsel to The IPP Coalition</td>
</tr>
<tr>
<td>5000</td>
<td>August 4, 2011</td>
<td>John L. Stowell Duke Energy</td>
</tr>
<tr>
<td>5074</td>
<td>August 4, 2011</td>
<td>David Gardiner Alliance for Industrial Efficiency</td>
</tr>
<tr>
<td>5075</td>
<td>August 4, 2011</td>
<td>Caroline Choi Progress Energy</td>
</tr>
<tr>
<td>5077</td>
<td>August 4, 2011</td>
<td>John W. Myers Tennessee Valley Authority</td>
</tr>
<tr>
<td>5087</td>
<td>August 4, 2011</td>
<td>Raymond L. Evans FirstEnergy Corporation</td>
</tr>
<tr>
<td>5089</td>
<td>August 4, 2011</td>
<td>Thomas C. Perry National Miming Association</td>
</tr>
<tr>
<td>5208</td>
<td>August 3, 2011</td>
<td>G. Vinson Hellwig State of Michigan Department of Environmental Quality</td>
</tr>
<tr>
<td>5195</td>
<td>August 4, 2011</td>
<td>Kerry Kelly Waste Management</td>
</tr>
<tr>
<td>5210</td>
<td>August 4, 2011</td>
<td>Susanne Brooks Elena Craft Mark MacLeod Hilary Sinnamon Mandy Warner Peter Zalzal Environmental Defense Fund</td>
</tr>
<tr>
<td>Document No.</td>
<td>Date Submitted</td>
<td>Name and Affiliation</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>5240</td>
<td>August 4, 2011</td>
<td>Michael J. Nash</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gulf Coast Lignite Coalition</td>
</tr>
<tr>
<td>5279</td>
<td>August 3, 2011</td>
<td>Eric Redman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summit Texas Clean Energy, LLC</td>
</tr>
<tr>
<td>5470</td>
<td>August 3, 2011</td>
<td>Mark J. Sadlacek</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Los Angeles Department of Water and Power</td>
</tr>
<tr>
<td>5477</td>
<td>August 15, 2011</td>
<td>Williw R. Taylor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U.S. Department of the Interior</td>
</tr>
<tr>
<td>5715</td>
<td>August 4, 2011</td>
<td>Ann Brewster Weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clean Air Task Force</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sanjay Narayan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sierra Club</td>
</tr>
<tr>
<td></td>
<td></td>
<td>James S. Pew</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Earthjustice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>John Walke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Natural Resources Defense Council</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Janice E. Nolen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>American Lung Association</td>
</tr>
<tr>
<td></td>
<td></td>
<td>John Suttles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Southern Environmental Law Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Joseph Mendelson III</td>
</tr>
<tr>
<td></td>
<td></td>
<td>National Wildlife Federation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Justin Bloom</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scott Edwards</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waterkeeper Alliance</td>
</tr>
<tr>
<td>5749</td>
<td>July 20, 2011</td>
<td>Myra C. Reece</td>
</tr>
<tr>
<td></td>
<td></td>
<td>State of South Carolina</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bureau of Air Quality, South Carolina Department of Health and Environmental Control</td>
</tr>
<tr>
<td>17620 in</td>
<td>August 4, 2011</td>
<td>S. William Becker</td>
</tr>
<tr>
<td>17622 in</td>
<td>August 4, 2011</td>
<td>David Foerter</td>
</tr>
<tr>
<td>Docket No. EPA–HQ–OAR–2009–0234</td>
<td></td>
<td>Institute of Clean Air Companies</td>
</tr>
<tr>
<td>17711 in</td>
<td>August 4, 2011</td>
<td>Paul Noe and Robert Glowninski</td>
</tr>
<tr>
<td>Docket No. EPA–HQ–OAR–2009–0234</td>
<td></td>
<td>American Forest & Paper Association (AF&PA) and American Wood Council (AWC)</td>
</tr>
<tr>
<td>17755 in</td>
<td>August 3, 2011</td>
<td>Eddie Terrill</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oklahoma Department of Environmental Quality</td>
</tr>
<tr>
<td>17852 in</td>
<td>August 4, 2011</td>
<td>Gregory C. Staple</td>
</tr>
<tr>
<td>17878 in</td>
<td>August 4, 2011</td>
<td>Ben Yamagata</td>
</tr>
<tr>
<td>17975 in</td>
<td>August 4, 2011</td>
<td>Environmental Integrity Project</td>
</tr>
</tbody>
</table>
2. Response to Comments on Proposed NSPS Amendments to Subparts D and Da

2.1 General NSPS Rule Development

2.1.1 Fuel and Technology Neutral Approach for Rule Development

Comment: One commenter (4698) stated support for EPA’s decision to adopt a fuel and technology neutral approach to developing the NSPS for new EGUs because it potentially facilitates the selection of a cleaner fuel as part of the overall integrated emissions compliance strategy, and provides flexibility in the design, construction, and operation of the unit in a configuration optimized for a given EGU. One commenter (5210) stated that “fuel neutral” standards should be based on the cleanest burning fuels instead of EGUs that burn pulverized coal, which EPA has used as the basis for the proposed emissions limits. According to the commenter, this approach violates the intent of Congress under Clean Air Act (CAA) section 111 that NSPS for new sources be forward looking and technology forcing. Many commenters (4766, 4830, 4834, 4948, 5077, 17878) oppose using a fuel and technology neutral approach to developing NSPS for EGUs, and instead recommend developing standards based on technology that account for the type of fuel burned. One commenter (4766) stated that EPA has no basis for developing “fuel neutral” standards in which all coal-, gas-, and oil-fired EGUs are subject to identical NSPS emissions limits. This approach unlawfully fails to consider the differences among boilers using different fuel types. Congress gave EPA the authority to “distinguish among classes, types, and sizes” when establishing standards; EPA, therefore, has an obligation to explain how it is applying the CAA Section 111 criteria to each fuel type, and to explain the national policy implications of its choices. A third commenter (4830) stated that it is bad public policy for NSPS to effectively eliminate whole categories of generation types, pollution control devices, and fuels. Diversities in generation design are critical to optimizing a facility for its specific and intended use. For example, fluidized bed combustion (FBC) is an ideal technological choice for intermediate-sized generation, and can utilize a broad array of fuels, from biomass to coal of different ranks. On the other hand, pulverized coal (PC) units have generally less fuel flexibility but are better suited for larger generation uses and can be designed to have superior thermal efficiency. An NSPS that effectively precludes coal, a particular coal rank, or combustion design is in effect tailoring the nation’s future options for electric generation. CAA Section 111’s statutory provisions are directed at disseminating the best system of emission reduction (BSER) throughout an identified source category and not for the purposes of significantly narrowing the nation’s choices for types of steam electric generation and fuel to power it.

Response: The vast majority of subpart Da affected facilities burn coal as the primary fuel. It is within EPA’s authority under the CAA to establish fuel and technology neutral standards. (See, for example, Lignite Energy Council v. EPA, 198 F.3d 930 (D.C. Cir. 1999)). It is also within EPA’s authority to subcategorize standards based on fuel and boiler type. Whichever approach EPA chooses, it is appropriate for it to establish standards for EGUs that allow the use of inherently cleaner burning fuels to comply with the standards. The amended NOX and PM standards for EGUs are largely fuel neutral, since the achievable emissions rate for the best system of emission reduction (BSER) is similar across boiler and fuel types. While the amended SO2 standard does not establish separate standards based on coal rank, it does account for the impact of fuels with inherently high sulfur concentrations on the performance of the BSER technology by providing an alternate percent reduction standard. EPA has concluded that the amended standards allow affected EGUs the flexibility to use the boiler design and fuel types that best meet the site-specific needs of the EGU owner and operator. All of the amended standards have been achieved by primary boiler types (pulverized coal and fluidized beds) and across all coal ranks. Under the adopted fuel neutral approach, owners/operators of affected EGUs have the flexibility to build new units designed to use a cleaner burning fuel as an alternative to installing post-combustion emission control technology or to co-fire cleaner burning fuels with coal and install slightly less-efficient post combustion control technology. Neither natural gas nor distillate oil is typically used in new baseload steam generating units (e.g., boilers with steam turbines). Basing the standards on either of these fuels would result in standards that are neither technically
or economically achievable for a coal-fired EGU. Basing the amended standards on the use of natural gas would preclude the development of new coal-fired EGUs since the standards would not be technically achievable, even with the application of IGCC technology. Natural gas-fired EGUs have demonstrated annual NOX emission rates of less than 0.40 lb/MWh gross output without the use of post combustion controls. This level has not been demonstrated to be achievable for any coal-fired EGUs even when using the best controls. In addition, natural gas and distillate oil have trace amounts of ash and sulfur and correspondingly low PM and SO2 emission rates. Therefore, basing the NSPS on these PM and SO2 emission rates would not be achievable for coal-fired EGUs with any technology EPA is aware of. If the NSPS were to essentially prohibit the construction of new coal-fired EGUs, the regulated community might stop development of promising control technologies, including carbon capture and storage, which can be used on existing coal-fired EGUs in addition to new coal-fired EGUs. EPA has concluded that it is appropriate to continue to allow the construction of properly controlled coal-fired baseload EGU since, such an approach to generating electricity may be the most appropriate approach, from both a technical and financial perspective, in specific circumstances. Basing the standards on what is achievable by BSER employed on a coal-fired unit accomplishes this. EPA has concluded that the use of natural gas and distillate oil will play a dominant role in the future generation of electricity. Rather than burning natural gas or distillate oil in a boiler based EGU, however, we believe that any new baseload electric generation based on the use of either of these fuels would use combined cycle combustion turbines. Combustion turbines burning natural gas and distillate oil generate power more efficiently and economically than a boiler burning natural gas or distillate oil. The efficiency and capital cost benefits of combined cycle facilities outweigh the fact that natural gas and distillate oil are significantly more expensive per unit heat input than coal.

Comment: Several commenters (4836, 4997) stated that IGCC technology is inherently different from other coal-based electric generation technologies and should be regulated separately. The NSPS applicable to IGCC EGUs should address the unique characteristics of IGCC technology. Factors that should be examined to properly consider the design and operational characteristics of IGCC technology include: 1) operating scenarios in which the IGCC EGUs (combustion turbines and duct burner) are combusting different fuels or a combination of fuels, such as natural gas, coal or other carbonaceous compound (petroleum coke, biomass, municipal solid waste, etc.), derived syngas, and/or syngas produced off-site; 2) the applicability of any work practice and fuel sampling provisions as they relate to the design and operation of IGCC EGUs; and 3) the use of heat input and generation output terminology specific to IGCC EGUs.

Response: EPA has concluded that the language is sufficiently clear that the output from an IGCC facility is the combination of the output from the combustion turbine, steam turbine, and any useful thermal output. The heat input to an IGCC facility is the combined heat input to the combustion turbine engine and any fuel input to the duct burners in the heat recovery steam generator. For an IGCC facility that does not coproduce hydrogen or carbon containing chemicals, this value should be close to the energy content of the raw coal input to the gasification system (greater than 95%).

The gasification/purification system should be designed to provide a uniform syngas regardless of the feedstock so it is unclear how the feedstock would impact emissions. The commenter did not provide data indicating that the use of natural gas during periods when the gasification system is not providing syngas would create compliance problems. On the contrary, combined cycle facilities would only need to maintain a NOX emissions rate of 25 ppm to comply with the amended NOX standard. This emissions rate is routinely achieved by both combustion turbines using dry low NOX combustion controls and natural gas-fired diffusion flame combustion turbines using water or steam injection. The combustion of natural gas also results in minimal SO2 and PM emissions. Post combustion controls would not be required to maintain compliance with any of the emission standards.

Comment: One commenter (5210) stated that high thermal efficiency should be used to establish standards, instead of being considered a control technology. In EPA’s current proposed amendments to the NSPS, there is no discussion of thermal efficiency or what efficiency rate was used by the Agency to determine the new standards. The commenter requests that EPA explain in the final rule what thermal efficiency assumptions were used in determining the new NSPS, and whether they are different from the assumptions used in the last amendments. The commenter also recommends that EPA use the greatest feasible thermal efficiency for EGUs as an input to determine the NSPS.
Response: The facilities used to establish the output-based standards included some of the most thermal efficient facilities. Therefore, the emission standards account for both high thermal efficiency and the efficiency of the emissions control equipment. This is the preferred approach when sufficient data is available, and simultaneously accounts for both the thermal efficiency and control equipment efficiency under various operating conditions. We consequently concluded it is not necessary to measure emissions on a heat input basis and then use an assumed efficiency to convert to an output-based standard, but rather directly established output-based standards based on the performance of the best performing facilities.

Comment: One commenter (5240) stated that separate NSPS must be established for the subcategory of EGUs burning coal with a heat input of less than 8,300 Btu/lb as was the case in EPA’s proposed NESHAP standards. According to the commenter, emissions of air pollutants, especially PM and SO₂, are significantly different when burning these types of coal and must be reflected in any applicable NSPS.

Response: The proposed NESHAP subcategory mentioned by the commenter was for Hg and not acid gases or total metals. The commenter provided neither emissions data indicating a subcategory for low Btu fuel such as lignite would be appropriate nor data indicating that SO₂ and PM controls do not work effectively with all types of coal. Fabrics filters, the selected BSER for control of PM emissions, are designed to control emissions to a specified outlet concentration and operate relatively independent of the PM concentration coming into the baghouse. The SO₂ standard has an alternate percent reduction requirement that specifically accounts for the use of high sulfur fuels. In addition, various coal cleaning, upgrading, and drying technologies for low rank coals reduce the ash, sulfur, and moisture content of these coals resulting in a fuel with characteristics similar to that of higher rank coals.

The following are several examples of existing EGUs which demonstrate that the amended SO₂ and PM standards are achievable for low rank coals:

1. The Sandow 5B facility is a subcritical lignite-fired fluidized bed EGU and is presently operating below the amended SO₂ % reduction alternative. Furthermore, both Sandow 5A and 5B are operating below the amended PM standard of 0.090 lb/MWh.

2. The Oak Grove 1 and 2 facilities are supercritical lignite-fired pulverized coal EGUS. Both are presently operating below the amended numerical SO₂ standard, and the Oak Grove 2 facility is also operating below the amended SO₂ % reduction requirement.

3. The Milton R. Young B1 and B2 facilities are subcritical lignite-fired cyclone boiler EGUs. Both are operating below the amended PM standard of 0.090 lb/MWh.

2.1.2 Selection of Best System of Emission Reduction (BSER)

2.1.2.1 Consideration of EGU Energy Efficiency in Selection of BSER

Comment: One commenter (4634) stated that EPA’s failure to set NSPS emissions limits for PM, SO₂, and NOₓ reflecting the use of energy-efficient design is unlawful and arbitrary. New coal-fired EGUs can significantly reduce emissions of all pollution emitted by incorporating energy-efficient design (e.g., use of supercritical boilers), allowing them to produce more electricity from burning a given amount of coal. To satisfy the directives of CAA section 111, EPA must assume a higher efficiency in combination with emissions controls to impose more stringent emissions limits for PM, SO₂ and NOₓ. The commenter questions EPA basing the proposed output-based emissions limits on gross electrical generating efficiency of 36 percent, which the commenter contends is not BSER as required by the CAA. The commenter states that 25 percent of existing EGUs achieve this generating efficiency, or higher and new EGUs can achieve net efficiencies as high as 45 percent.

Response: Efficiency has already been accounted for because the facilities used to establish the amended standards include some of the highest efficiency supercritical facilities and the output-based standards were directly established based on the performance of the best performing facilities. The comment referring to an assumed efficiency of 36% is unclear and appears to refer to the approach taken in previous amendments to subpart Da. The analysis in this rulemaking looked at actual out-put based emissions data and, therefore, it was not necessary to assume a gross efficiency.
2.1.2.2 Consideration of IGCC Technology in Selection of BSER

Comment: One commenter (5715) stated that integrated gasification combined cycle (IGCC) technology is a demonstrated system of emissions control for EGUs and EPA should consider it in determining BSER to control PM, SO₂ and NOₓ emissions from coal-fired EGUs. Another commenter (4997) stated that integrated gasification IGCC technology is a power generation technology and should not be identified as EGU emissions control.

Response: As stated in the proposal preamble, the benefits resulting from reduced emissions of criteria pollutants are not sufficient in all instances to justify the higher capital costs of today's IGCC units. According to the costs and emissions data available from the DOE, the annual costs of a 500 MW IGCC would be $71 million more than a comparable supercritical PC EGU. Even though the IGCC facility would reduce SO₂, NOₓ, and PM emissions by 1,156 tons, 264 tons, and 102 tons respectively, the incremental costs are not justified as a basis for national requirements.

2.1.3 Net Energy Output Based Emissions Standards Format

Comment: Comments were received in support of and in opposition to EPA’s proposal to require affected EGUs to meet the proposed NSPS for PM, SO₂, and NOₓ using an emissions standards format that expresses limits as the allowable amount of pollutant emitted per net energy output by the affected EGU. Several commenters (5715, 5074, 5210) supporting the proposal stated that use of this format will encourage improvements in overall EGU facility energy efficiency, which results in lower air pollutant emissions and is an incentive to minimize parasitic energy demands from pollution control equipment (auxiliary energy demands is synonymous with parasitic energy demands). Many other commenters (4673, 4698, 4712, 4765, 4830, 4836, 4989, 4997, 5000, 5077, 5089, 5208, 17878) oppose the mandatory use of this format, stating that the NSPS should be based on limits on the allowable amount of air pollutant emitted per gross energy output by the affected EGU or on allowable amounts of air pollutants emitted per energy input to the affected EGU. Reasons cited by the commenters for their opposition to requiring mandatory compliance with net energy output based emissions standards include: 1) a significant amount of the parasitic power demands at coal-fired power plants is needed to operate the air pollution control equipment required to comply with air emissions standards; 2) there are monitoring difficulties in measuring net output, especially at facilities operating multiple EGUs; 3) parasitic loads vary on a individual EGU-by-EGU basis and, for a given EGU, on a duty cycle basis (e.g. as the load decreases on a typical EGU, the percent of parasitic power increases; 4) EGUs are not as thermally efficient at lower loads and consequently the amount of fuel that must be used increases on an electrical output basis; 5) at facilities with affected EGUs and also at older, less efficient EGUs which supply power to various auxiliaries throughout the plant, requiring the proposed net output-based NSPS on the affected EGU could actually decrease overall plant efficiency; and 6) a net output approach will be problematic with emerging technologies such as IGCC and certain greenhouse reduction technologies such as carbon capture and sequestration (CCS).

Response: One of the primary benefits of using net output-based standards is that it provides a more accurate measurement of the environmental impacts of specific EGUs. Net output-based standards recognize the environmental benefit of the minimization of auxiliary loads and operating the facility as efficiently as possible under all conditions. The comment about net output-based standards resulting in less efficient EGUs operating more than higher efficiency EGUs at locations with multiple facilities is unclear. The net output would be measured on an EGU-specific basis as the gross output from the EGU minus auxiliary loads specific to that EGU. If electric power from one EGU were being used to power the auxiliary equipment of a separate EGU then that power would have to be measured and properly accounted for. Due to the lack of net output-based emission rates for multiple types of EGUs with various control configurations over a range of operating conditions, the final rule allows, but does not require, the use of a net-output based standard as an alternative to the gross-output based standard. While gross output-based emission standards are not as accurate a measure of environmental impact as net output-based emission standards, they are superior to input-based emission standards.

The use of a gross output-based standard as it is presently defined does not provide sufficient monitoring to allow an accurate comparison of the environmental impact between different EGUs and recognize efficiency improvements. An EGU with electrically driven boiler feed pumps would have higher gross output than a facility that uses steam driven boiler feed pumps (steam driven feed pumps extract energy from the boiler steam prior to the generator). Consequently, the present definition could potentially drive the installation of electrically driven
boiler feed pumps instead of steam driven boiler feed pumps. From an overall net efficiency basis, it is often more
efficient to use steam driven boiler feed pumps. Electrically driven boiler feed pumps could account for as much
as 3% of the gross electric output of a coal-fired EGU, substantially increasing the parasitic power requirements.
Therefore, we are amending the definition of gross output for new facilities to be the gross output from the
generator(s) minus any electric power requirements to drive the boiler feed pumps. Without this amendment,
switching to a steam driven feed pump to improve net efficiency could appear to decrease gross efficiency. Since
boiler feeds pumps are specific to individual boilers, the monitoring issues mentioned by the commenters are no
longer applicable. In addition, the majority of larger EGUs use steam driven boiler feed pumps and would not be
impacted by the amendment.

Furthermore, the primary parasitic power requirements for an IGCC facility that account for the primary
differences between the net and gross efficiency with a PC boiler are the gas compressors (air separation unit
main compressor, oxygen compressor, and nitrogen compressor). Correspondingly, the gross parasitic power
requirements for an IGCC facility would also subtract out the electric power required to run these compressors.
For facilities that coproduce chemicals, only a portion of the power would be subtracted from the gross output.

The use of net out-based standards is only an alternative. The comment about net output-based standards being
problematic when use in conjunction with CCS is no longer relevant.

Comment: Several commenters (4698, 4766, 4768, 5000) disagree with EPA’s proposal to calculate the net
energy output for an EGU from the EGU’s gross energy output, assuming a 5% parasitic electric load loss factor.
Actual parasitic load can vary across EGUs depending on site-specific factors such as geographic location, EGU
operating mode, and equipment selection. All of these factors affect a facility’s overall auxiliary power load and
hence its net energy output. Therefore, a uniform 5% assumption is inappropriate. One commenter (4698)
recommends that EPA solicit input from EGU architect and engineering companies to develop auxiliary load
estimates for a range of EGU sizes and configurations. Another commenter (4768) states that a 10% parasitic
electric load loss factor would be a more representative value. One commenter’s (5000) experience is that
approximately 7 to 8% of a conventional coal fired station’s power is required to run auxiliary equipment. The
commenter believes that this is a more representative value across the industry considering that units generally
will be operating with SCR, FGD, and PM emissions controls, all of which require auxiliary power. Also, if a
CCS is used in the future, the amount of auxiliary power will dramatically increase.

Response: According to the National Energy Technology Laboratory in the document “Cost and Performance
Baseline for Fossil Energy Plants,” parasitic power requirements for pulverized coal-fired boilers using
supercritical steam conditions varies from 5.2% for high rank coals to 5.9% for low rank coals. These estimates
are based on detailed designs and are the best estimates available to EPA. However, in recognition that parasitic
power requirements can increase in terms of percentage of load at lower loads the final rule uses a 7.5% parasitic
load assumption.

Comment: One commenter (5210) states that output-based standards are only truly effective when determined by
using output based data. The commenter requests that EPA not use input based data to set the NSPS standards and
then simply convert those standards to output based numbers. Instead, the commenter recommends that EPA
finalize output-based standards, based on output data, for all pollutants, regardless of whether compliance is based
on performance tests or continuous emissions monitoring systems (CEMS).

Response: Output-based emissions data was used to establish the amended emissions standards.

2.1.4 Standards for Reconstructed and Modified EGUs

Comment: One commenter (5715) states that EPA’s proposal to allow modified and reconstructed EGUs to meet
less stringent NSPS emission limits than those required for new EGUs is not authorized by the CAA, and is
therefore unlawful. The proposed NSPS for reconstructed and modified EGUs contradict Congressional intent
that as existing sources are upgraded, they control their emissions to a rate reflecting best system of emission
reduction for the industry. The commenter cites specific CAA sections and past court decisions to support this
comment.

Response: Standards under section 111 of the Clean Air Act must be achievable See, National Lime Association
v. EPA, 627 Fed. 2d 416 (D.C. Cir. 1980). With this in mind, we have concluded that section 111(b)(2)’s
authorization to distinguish among classes, types and sizes when establishing NSPS allows us to establish a
subcategory for modified sources in appropriate circumstances. See, Asarco v. EPA, 578 F.2d 319, 330 (D.C. Cir.
1978) (Leventhal, J. concurring) (explaining why the statute permits subcategorizing modified sources). Here,
certain existing facility designs are not capable of operating combustion controls as effectively as newly designed
facilities and, therefore, cannot achieve the same level of emissions reductions as newly designed facilities
through the use of combustion controls. Further, even using the most efficient post combustion controls, these
facilities are not able to achieve the same NOX emissions rate as a newly designed facility. In determining what is
achievable, EPA must consider costs and for modified facilities, the incremental cost effectiveness of adding a
second scrubber to reduce SOX emissions beyond what is achievable by currently installed technology is not cost
effective. The new source PM standard is based on the use of a fabric filter. Existing facilities potentially don’t
have adequate space available to cost effectively retrofit an existing ESP with a fabric filter.

2.1.5 Standards for Combined Heat and Power (CHP) Units Subject to NSPS

Comment: One commenter (5074) states that the net output-based standards in the NSPS should be modified in
the final rule to account for both the thermal and electric generation from combined heat and power (CHP) and
waste heat recovery systems subject to the NSPS. Absent this, the net output-based standards fail to account for
(and incentivize) the full efficiency gains associated with such systems.

Response: Based upon comparison of the criteria pollutant emissions that would result from generating the
thermal and electric output in separate facilities, EPA increased the thermal credit from 50% to 75% in 2006 (71
FR 9866). The definition is as follows:

Gross output means the gross useful work performed by the steam generated and, for an IGCC electric utility
steam generating unit, the work performed by the stationary combustion turbines. For a unit generating only
electricity, the gross useful work performed is the gross electrical output from the unit's turbine/generator sets. For
a cogeneration unit, the gross useful work performed is the gross electrical or mechanical output plus 75 percent
of the useful thermal output measured relative to ISO conditions that is not used to generate additional
electrical or mechanical output or to enhance the performance of the unit (i.e., steam delivered to an
industrial process).

Comment: EPA requested comment on, “whether it is appropriate to recognize the environmental benefit of
electricity generated by CHP units by accounting for the benefit of on-site generation, which avoids losses from
the transmission and distribution of the electricity.” One commenter (5074) states that these avoided losses should
be recognized because such savings are one of the key benefits of distributed generation. Several commenters
(4926, 5074) state that that for CHP units subject to the NSPS, a 5% benefit for avoided transmission and
distribution losses is too low. EPA should adopt a higher multiplier that fully credits the transmission and
distribution savings of CHP and therefore incentivizes such investments.

Response: EPA acknowledges that overall transmission and line losses are closer to 10%. However, the CHP
facilities typically covered by subpart Da are large facilities with relatively large amounts of the generated
electricity being transmitted to other end users, and the benefits are reduced. Therefore, the 5% credit is
reasonable and adequately recognizes the environmental benefit of CHP compared to separate electric and thermal
generation.

2.1.6 NSPS during Periods of EGU Startup, Shutdown, and Malfunction

Comment: Comments were received in support of and in opposition to EPA’s proposal that NSPS emission
limits apply at all times, including start up, shut down and malfunction (SSM). Commenters (4698, 5210) support
the proposal for a number of reasons. The commenters state that startup and shutdown periods are normal phases
of EGU operation and should not be held separate from other normal operating activities. Reasons stated by
commenters (4832, 4834, 4839, 4841, 4984, 5077, 5470) opposing the proposal were varied. One commenter
(4714) states that the DC Circuit Court decision regarding emission limits during SSM periods (Sierra Club vs.
EPA, DC Circuit Court, 2008) was specifically regarding NESHAP rules and not NSPS rules. EPA has not
provided any reasoned explanation or justification for why it is applying the same approach for new, modified,
and reconstructed sources in the proposed NSPS rule revisions. Furthermore, EPA has not appropriately evaluated
applying the same emission limits for normal operations and for SSM periods. Another commenter (4836) states
that coal-fired EGUs co-fire other fuels (typically natural gas or oil) during certain operating modes, such as startup, shutdown, and flame stabilization operations. The proposed NSPS do not address the potential emissions from these co-fired fuels, which will have different emissions profiles from the times the EGU burns coal only. One commenter (4834) states that instead of emission limits, work practices should be proposed for the NSPS to control emissions during SSM periods. Another commenter (4839) states that provisions for SSM periods should follow precedent in the Industrial Boiler MACT Rule. Many of the commenters opposing the proposal state that work practices should be used to control emissions from EGUs during startup and shutdown. For malfunctions, a source should have to address the malfunction as soon as safely practicable. One commenter (17975) states that since maintenance activities are generally carried out for EGU boilers after they have been turned off, the distinction between “maintenance” and “startup/shutdown” is meaningless.

Response: EPA has determined that under the circumstances of this rulemaking it is not appropriate to treat periods of startup and shutdown differently for purpose of complying with the NOx and SO2 standards. The NOx and SO2 CEMS data used to establish the standards include all periods of operation and thus demonstrate that the standards can be met during periods of startup and shutdown. As a result, it is not necessary to attempt to separate the data and establish separate numerical standards during normal operation and periods of startup and shutdown. However, for PM it is not practicable to measure emissions during periods of startup and shutdown and we do not have data upon which to base numerical emission limits during periods of startup and shutdown. Therefore, EPA is finalizing work practice standards instead of numeric emission limits for PM during periods of startup and shutdown. These work practices take into account operation of PM control devices. The NSPS requirements will be identical to the NESHAP requirements and are described in Table 3 to Subpart UUUUU of Part 63. See the relevant startup/shutdown sections of the NESHAP portion of the preamble for additional discussion. EPA is committing to reevaluating this approach during the 8-year review when sufficient PM CEMS data is expected to be available from the EGU population.

For malfunctions, EPA is finalizing the proposed affirmative defense language for exceedances of the numerical emission limits that are caused by malfunctions. As EPA explained in the preamble to the proposed rule, EPA recognizes that even equipment that is properly designed and maintained can fail and that such failure can cause an exceedance of the relevant emission standard. EPA included an affirmative defense in the final rule in an attempt to balance a tension, inherent in many types of air regulation, to ensure adequate compliance while simultaneously recognizing that despite the most diligent of efforts, emission limits may be exceeded under circumstances beyond the control of the source. The affirmative defense simply provides for a defense to civil penalties for excess emissions that are proven to be beyond the control of the source and appropriately balances competing concerns.

2.1.7 Facility-Wide Emissions Averaging

Comment: One commenter (4839) stated that facility-wide emissions averaging should be allowed as a compliance alternative in certain circumstances. EPA should reconsider and support including facility-wide averaging in emission limitations for existing sources subject to the NSPS as an additional compliance alternative. By including this type of flexibility mechanism, EPA will ensure that facilities will retain some degree of flexibility when complying with the rule requirements. Similarly, varying operational modes or combination of systems (e.g., wet/dry scrubber, ESP or fabric filter) could be employed to provide the greatest potential for economically reducing emissions to meet compliance requirements. EPA’s averaging formula should be constructed so that the average emissions by a group of EGUs subject to the NSPS will be no more than what is permitted on an aggregated individual basis. From a practical standpoint, the ability to monitor units with shared stacks may present technical difficulties to the point where separate monitoring is simply not feasible.

Response: While the suggested approach could provide additional flexibility without an increase in emissions to the atmosphere, the present applicability of the NSPS is on a boiler by boiler basis and no change to that approach was proposed. As a result, facility-wide averaging would require a notice and comment rulemaking to at a minimum clearly identify the affected facility, how the averaging would be done, and how modifications and reconstructions would be determined.
2.1.8 Interrelationship of NSPS with other EPA Rulemakings Affecting EGUs

2.1.8.1 Source Category Impact Analysis

Comment: One commenter (4760) states that EPA needs to analyze the combined impacts of all regulatory proposals to the electric industry. Decisions by U.S. electric utilities to add needed electricity generating capacity are being impacted by the breadth and complexity of the numerous rules-- including the NSPS amendments that EPA is implementing to regulate EGU.

Response: The amendments to the NSPS would have a negligible incremental impact on the cost of new coal-fired generation. Annual costs, compared to the existing NSPS requirements, will increase less than 0.3%. In addition, the various regulatory actions impacting air emissions from EGUs require similar controls such that the actual impacts of the NSPS amendments would be even less.

Comment: One commenter (4832) states that EPA proposing substantive changes to 40 CFR 60 subpart Da is outside the scope of the proposed NESHAP rulemaking and the changes have not been properly analyzed or justified. Specifically, EPA is proposing to demonstrate compliance with certain HAP emissions limits under the NESHAP by proxy methods that refer back to SO₂ or PM limits established in 40 CFR 60 subpart Da.

Response: While the proposed SO₂ and PM NSPS amendments are not expected to have any benefits or costs due to the similar benefits and costs in the new source EGU NESHAP requirements, they would be cost effectively achievable in the absence of the NESHAP. Docket entry EPA-HQ-OAR-2011-0044-0002 includes detailed incremental cost effectiveness calculations for each pollutant and EPA has concluded the amended standards are justified in the absence of the NESHAP. If cost and benefits of the proposed amendments were included, it would double count the impacts of the rules.

The NESHAP allows, but does not require, the use of SO₂ and filterable PM as surrogates for acids gases and non mercury metals respectively. Owners/operators that elect to demonstrate compliance with the NESHAP HAP requirements using these surrogates could also concurrently demonstrate compliance with the NSPS standards for those pollutants.

2.1.8.2 Delay of NSPS Rulemaking until NESHAP Affecting EGUs is Finalized

Comment: One commenter (4839) states that the substantial technical comments submitted for the EGU NESHAP warrants a delay of the proposed NSPS to allow EPA sufficient time to consider the more comprehensive affect these revised rules will have on the utility sector. In addition, there are some commonalities in the controls needed to comply with the requirements of the two rules. Syncing the two rules such that they apply to the same set of new sources will allow owners/operators of those sources to better plan for compliance. Finally, since EPA is not under any judicial timeline to promulgate the proposed NSPS, the commenter recommends a delay to account for the considerable time EPA will need to revise the EGU NESHAP and respond to any potential judicial challenges.

Response: While the EGU NSPS amendments and NESHAP were included in the same package and are related in terms of the types of required controls, they are independent rulemakings that both serve the purpose of reducing emissions of pollutants. EPA has sufficiently replied to comments submitted on both proposals. The purpose of the comment referring to syncing the two rules in unclear. For the most part, the comment argues for delaying finalizing the NSPS. The comment referring to syncing the two, however, addresses the issue of which EGU will be subject to the final NSPS standards and the final NESHAP standards for new sources. The universe of EGU subject to both standards was identified on the date the proposed rule was published in the Federal Register. Consequently, new sources are the same for the NESHAP and NSPS and those sources will be subject to both sets of standards. If the commenter’s intent is to address the relationship between compliance with the NSPS by reconstructed and modified sources and compliance with the NESHAP by existing sources, compliance with the two sets of requirements cannot be synced.

2.1.8.3 Proposal of EGU NSPS Amendments with EGU NESHAP

Comment: Several commenters (4839, 5087) state that the inclusion of a proposed NSPS rule within the extensive and comprehensive proposed EGU NESHAP is inappropriate and circumvents the appropriate comment
period that should be afforded each rule individually. The release of NSPS and EGU NESHAP in the same proposal notice with one 60-day comment period suggests that EPA is rushing its regulatory agenda and short-circuiting the regulatory process. Since EPA is not under a court ordered deadline to develop NSPS amendments, each of these rulemakings should have been proposed separately with their own comment period.

Response: The proposed 60 day comment period was extended an additional 30 days to provide sufficient time for the public to review and comment on both proposals.

2.2 Rule Applicability

2.2.1 Regulation of IGCC facilities under 40 CFR 60 subpart KKKK

Comment: EPA requested comment on whether or not an IGCC EGU that co-produces hydrocarbons or hydrogen should be subject to the combustion turbine NSPS under 40 CFR 60 subpart KKKK instead of the EGU NSPS under 40 CFR 60 subpart Da. Several commenters (4836, 5715) state that an IGCC EGU that coproduces hydrocarbons or hydrogen should be subject to subpart Da. One commenter (4836) states that IGCC EGUs are designed and structured differently than natural gas-fired combined cycle EGUs. For the sake of clarity and regulatory certainty, there should not be a mechanism that would require a particular EGU to switch back and forth between different NSPS standards, even if an IGCC is capable of using natural gas as a fuel. Such units that may co-produce hydrocarbons or hydrogen still convert coal or oil into electricity, and apportioning the parasitic load would be difficult. The commenter requests that EPA provide a heat input-based alternative based on the raw feed stock to the gasifier for these units instead of struggling to make them demonstrate compliance with an output-based standard. Another commenter (5715) states that not applying subpart Da to certain IGCC EGUs that co-produce hydrocarbons or hydrogen is not logical. All IGCC facilities that sell more than one third their potential electric output capacity and more than 25 megawatts of electricity (MWe) to the grid are and should be classified as an EGU subject to 40 CFR 60 subpart Da whether the EGU produces other useful byproducts or not, consistent with the applicability of EGUs to 40 CFR 60 subpart Da that are classified as combined heat and power units.

Response: The IGCC facilities that meet the existing applicability criteria will continue to be regulated under subpart Da. EPA concluded that a gross output based standard, using the revised definition of gross output, is appropriate and can be relatively easily measured for all affected facilities, including IGCC facilities. A heat input based standard would require an IGCC facility owner/operator to measure the coal input to the gasification system and assume all of the energy is input to the stationary combustion turbine and heat recovery steam generator, and calculate a site specific f-factor and employ a stack flow meter and CO₂ CEMS or a fuel flow meter. EPA has concluded that the additional complexity associated with such an approach would not yield improved results compared to an output-based standard.

2.2.2 Exemption of EGUs Using “Innovative Technologies”

Comment: One commenter (5715) states that EPA is not authorized under the CAA to allow the proposed exemption of certain EGUs using “innovative technologies” from complying with the NSPS emissions standards. The CAA only allows EPA to grant a compliance time extension for such affected EGUs on a case-by-case basis that meet certain conditions specified in the statute. Several commenters (4839, 4893, 4984) support the proposed exemption. One commenter (4839) requests that to avoid precluding the development of new technologies, EPA should consider a broader applicability of the exemption to include all DOE-funded commercial-scale technology demonstration projects.

Response: As explained in the proposal preamble, the compliance time extensions under section 111(j) of the Act are not adequate for owners/operators of new EGUs that would be affected facilities subject to subpart Da to secure the funding necessary for construction. As such, the development of promising technologies that offer potential reductions in criteria, hazardous, and GHG emissions could be restricted. The permits will be granted on a case-by-case basis and depend on the anticipated emissions performance of the specific technology. Since neither multi-pollutant controls or pressurized fluidized bed boilers have demonstrated at the size necessary for applicability to subpart Da we cannot do a separate analysis to determine an appropriate emissions rate.
To facilitate development of emerging technologies that offer potential for future emissions reductions, the commercial demonstration permit exemption will be maintained as proposed for pressurized fluidized beds and multi-pollutant control technologies. Neither of these technologies is generally applicable to existing facilities, and overly stringent standards could impede their future development and make financing projects cost prohibitive. The majority of existing facilities already have some form of emissions control technology. Installing a multi-pollutant control technology is not necessary and pressurized fluidized beds are sufficiently different from traditional designs that retrofits are unlikely. However, advanced combustion controls are applicable to existing facilities and the exemption is not necessary to further the development of the technology. That exemption is not included in the final amendments.

DOE-funded technology demonstration projects are typically installed at existing EGUs and would not trigger applicability of the NSPS requirements. Therefore, the exemption would not be applicable. If DOE were to request that EPA evaluate the appropriateness of an exemption for DOE-funded technology demonstrations at some point in the future, such an exemption could be considered in a future rulemaking.

2.2.3 Applicability to Permitted EGUs for which Construction Has Not Commenced

Comment: One commenter (4830) states that EPA must appropriately accommodate permitted facilities for which construction will not have commenced prior to the date of the NSPS regulation. Several electric utility entities have recently obtained air permits authorizing the construction of new units. However, they were not in a position to commence construction on these new units prior to the date that EPA intends to apply the proposed NSPS to facilities that have not commenced construction (May 4, 2011). As a result, these units will be regulated as new sources under this proposed rule. This situation creates significant inequities for the projects that are permitted but have not commenced construction prior to the proposed NSPS, and ultimately, this proposal may prevent the projects from being implemented, depending on the NSPS adopted in the final rule.

Response: Section 111(a) of the CAA defines a new source as one for which construction or modification commences after the publication of proposed regulations applicable to the source. In this case, the relevant date is May 4, 2011 and any source which commences construction or modification after that date is a new source for purposes of the final regulations. EPA has long defined “commenced” in this context to mean “that an owner or operator has undertaken a continuous program of construction or modification or that an owner or operator has entered into a contractual obligation to undertake and complete, within a reasonable time, a continuous program of construction or modification.” (40 CFR 60.2). Merely obtaining an air permit authorizing construction does not meet this requirement. EPA disagrees that the NSPS amendments will prevent projects from going forward. While amended NSPS typically require the installation of improved emissions control equipment, the impacts of complying with the amended standards would not ultimately change the investment decisions of the owner/operator of an affected facility. On average, the standards have minimal impact on the capital cost of a new EGU, cost less than $10/kW (less than a 1% increase). Furthermore, the final standards are achievable for a range of technologies and coal types and, therefore, would not require significant redesign of already permitted facilities or impact the decision on the type of boiler used or fuel selection.

2.3 Particulate Matter (PM) Emissions Standards

2.3.1 Selection of BSER for PM Emissions

Comment: Several commenters (4765, 4836, 5089, 5715) state that the proposed NSPS for PM emissions does not reflect the application of the BSER. Commenters differ as to which PM emissions control technologies should be used as BSER for establishing the NSPS emission limits. One commenter states that EPA’s proposal to require new facilities to meet the same limits already achieved by many existing sources is contrary to the clear requirements of the statute and Congressional purpose to require new sources to apply the best demonstrated systems of pollution control. Instead, EPA sets PM standards that are “achievable” by all new sources (and even many existing sources) rather than standards that are “achievable” through the application of the best adequately demonstrated system of emissions control, as the CAA requires. One commenter (4765) states that CAA §111(a)(1) does not allow EPA to base an NSPS on a BSER that is a combination of technologies and EPA has not attempted to do so in the past.
Response: The amended PM standard is a filterable only standard. As a result, a fabric filter was identified as BSER. The BSER can take into account multiple factors including, but not limited to, choice of generation technology, fuel selection, and multiple emission control technologies. Nothing in the CAA limits BSER to a single emissions control technology.

2.3.2 Regulation of Combined PM Emissions

Comment: Many comments were received in support of and in opposition to the proposal to establish a new combined PM emissions limit for EGUs that is determined by adding the measured condensable PM plus the measured filterable PM. Commenters’ (4698, 4710, 5715, 5210) reasons for supporting the proposal include 1) some state permitting agencies already regulate condensable PM for steam generating; and 2) methods now exist to both measure and control condensable PM. One commenter (4714) notes that the State of Texas has regulated condensable PM through permitting for more than three decades.

Commenters (4712, 4766, 4836, 4989, 5075, 5077, 5089, 5208) oppose the proposal for a number of reasons. Changing the existing NSPS for PM from a filterable PM standard to a combined PM standard by basing the proposed emissions limit on the performance of the top 20% best performing units is unlawful and arbitrary. EPA cannot establish a combined PM emissions limit because the Agency failed to follow the CAA statutory requirements for establishing a standard by not identifying the condensable PM component, how to control condensable PM, or what BSER is for reducing condensable PM emissions. Also, BSER for filterable and condensable PM components are separate. There is no basis for establishing an emissions limit at the emission rate expected by the best performing 20% of the industry, when EPA has not provided any guidance on how the rest of the industry might seek to comply. Commenters also state that the proposed compliance procedures for the combined PM standard are unworkable because EPA Test Method 202 is inadequate to measure the condensable PM component.

Response: EPA Test Method 202 was promulgated in December 2010. The revised test method is as precise and accurate in measuring condensable PM as Method 5 or 17 are at measuring filterable PM. We have concluded it would be possible to establish and determine compliance with a combined PM standard (Method 5 plus Method 202), but based on comments received and on further consideration since the proposal, we have concluded it is appropriate to amend only the filterable PM standard at this time. Post proposal, EPA has become aware of the complex interactions between control equipment configurations and the combined PM emissions rate that make it difficult to set a nationwide standard for combined emissions at this time. In a future rulemaking, we will specifically request comment on the following factors necessary to establish a nationwide standard: i) the appropriate monitoring procedures, ii) whether separate standards for condensable PM and filterable PM have any benefit over a combined PM standard, and; iii) the appropriate numerical standards in each case. To gather a basis for the rule, subpart Da is amended for new facilities to require Method 202 testing and reporting of those emissions each time a Method 5 or 17 performance test is performed. This approach minimizes the burden to the regulated community, while at the same time collecting sufficient data for evaluation of a nationwide standard. If appropriate, EPA will include condensable PM in the PM standard in a future rulemaking that accounts for annual variability. The incremental cost of Method 202 over Method 5 or 17 is less than $700 (10% of PM testing cost).

While EPA plans on evaluating separate filterable and condensable PM standards, we support the present approach that recent permits have taken in establishing a combined PM standard that includes both filterable and condensable PM. Controls required by an NSPS help in achieving and protecting the NAAQS. In the context of a PM standard, the relevant NAAQS is for PM\textsubscript{10} and PM\textsubscript{2.5}. For this source category, a combined PM measurement represents mostly PM\textsubscript{2.5} emissions since the filterable controls remove the larger sized PM. The primary distinction between filterable and condensable PM is based on temperature, not the form of the PM in the ambient air. The NSPS establishes standards that can be met through the use of the best controls for managing the ambient air pollutant. With regard to setting an NSPS for PM emissions, we chose to issue a filterable only standard, rather than a combined PM standard, in part because of the difficulties that may exist in quantifying particle size in a wet stack environment and recognition that many new EGU will employ wet scrubbers. Further, while the technology that best controls filterable PM may be different from that which best controls condensable PM, the available data do not establish a distinct line that differentiates the filterable PM and condensable PM across a number of sources. This is demonstrated by the fact that the Part III EGU NESHAP ICR data, indicates that some units with
lower combined PM emissions had relatively low filterable PM emissions with somewhat higher condensable PM emissions, while other units had a more balanced control of filterable and condensable PM.

In the proposal, we identified dry sorbent injection (DSI) to neutralize SO₃ to sulfate prior to removal by a mist eliminator or particulate control and a wet ESP as control technologies for condensable PM. However, there are several additional measures that control condensable PM. These include, but are not limited to, (1) the selection of catalysts which minimize the formation of SO₃ from SO₂, (2) minimizing the temperature at which the particulate matter control device operates, (3) minimizing the ammonia slip when SCR or SNCR is used, and (4) a more efficient mist eliminator. In addition, the sulfuric acid mist portion of condensable PM emissions is strongly dependent on the sulfur content of the incoming coal. All of these factors need to be taken into consideration in establishing a meaningful national standard. At this time we do not have sufficient knowledge to determine the combination of control technologies which will achieve the best level of control of both filterable PM and condensable PM across a number of sources and, thus, cannot establish a technical basis for an appropriate national combined PM emissions standard. The additional condensable PM test data will allow us to evaluate the capabilities of a combination of techniques to reduce PM emissions. One potential outcome could be a national PM standard that is based on the sulfur content of the coal, similar to the format for the SO₂ emissions standard. Since we did not propose that approach, we plan on doing a future notice/comment rule that specifically requests comment on the best approach for setting a national standard that achieves the best level of control of both filterable and condensable PM across many sources.

Even though we are not establishing a national PM standard that includes condensable PM, emissions of condensable PM by facilities subject to the amended requirements in subpart Da would not be uncontrolled. All new facilities in this source category would be subject to PSD and be required to account for condensable PM in performing the required analysis under that program. In addition, condensable PM emissions are generally lower for facilities with lower filterable PM emissions and high SO₂ control rates. Since the amended NSPS will require greater control of the emission of these pollutants, there should be some reduction in emissions of condensable PM.

2.3.3 Regulation of PM₂.₅ Emissions

Comment: One commenter (4841) states that a separate filterable PM₂.₅ standard should not be established due to both measurement issues with respect to wet stacks and also because control technologies installed for combined PM, NOₓ, and HCl/SO₂ will result in reductions of both direct PM₂.₅ and PM₂.₅ precursors.

Response: Due to monitoring limitations and the commonality of controls for PM₁₀ and PM₂.₅, the amendments do not include a separate standard for PM₂.₅.

2.3.4 Selection of PM Emissions Limit Value

Comment: Several commenters (4714, 4765, 4836, 5075) state that the proposed PM emissions limit is not achievable on a nationwide basis, and as a result the final rule needs to be revised upwards to reflect the actual levels of performance achievable. Several commenters (4673, 4836) state that the proposed PM emissions limit is so stringent that it would effectively preclude construction of new coal-fired EGUs. Several commenters (4712, 4989) state that the methodology EPA used to select the proposed PM emissions standard does not sufficiently address variability in EGU fuel use, equipment design, and operation. One commenter (4713) states that PM emission limits for new source EGUs should be the same in the NSPS and NESHAP. One commenter (5210) examined the emissions limits in 27 permits and permit applications for proposed coal-fired EGUs and concludes that a combined PM standard of 0.030 lb/MMBtu best reflects BSER for new EGUs. Moreover, of the 27 permit and permit application limits reviewed, 14 listed both a filterable PM limit and a combined PM limit. The commenter also requests that EPA either adopt the most stringent feasible filterable PM standard for modified EGUs or finalize a combined PM standard that reflects a BSER requiring additional controls for condensable PM for these units.

Response: For the reasons explained previously, EPA is issuing a final standard for filterable PM only. The amended standard is appropriate for a national requirement as it represents BSER for both new and modified facilities and takes variability into account. Data submitted as part of the EGU NESHAP ICR for pulverized coal EGUs burning bituminous and subbituminous coals and fluidized bed EGUs burning lignite, petroleum coke, and
bituminous coal with multiple performance tests show that the amended PM standard is demonstrated and achievable. The data also show that an ESP can be used with coals with ash contents of up to 9 lb/MMBtu to achieve the standard. Data for EGUs that only reported a single performance test as part of the EGU NESHAP ICR, demonstrate that the amended standard is achievable by EGUs equipped with an ESP when using coals with ash contents of up to 14 lb/MMBtu. That data also demonstrate that the amended standard is achievable by EGUs equipped with a fabric filter when using coals with ash contents of up to 68 lb/MMBtu. Further, the amended new source standard of 0.090 lb/MWh, which is consistent with the EGU NESHAP standard, accommodates IGCC facilities in multiple operating modes. We are not changing the PM standard for modified facilities finalized in 2006 because modified facilities would have to increase the size of any existing ESP or retrofit a fabric filter beyond what the present standard requires to meet the amended new source standard and some existing facilities would be unable to do this because of space constraints.

Commenter 5210 misinterpreted the proposed combined PM standard of 0.055 lb/MWh as being 0.055 lb/MMBtu. The proposed standard is actually an order of magnitude more stringent than the comment suggests. In addition, if we were establishing a combined PM standard, which we are not, it does not appear that the suggested standard of 0.030 lb/MMBtu (~0.30 lb/MWh) combined PM would reflect BSER for combined PM. Since the amended filterable PM standard is 0.090 lb/MWh, the suggested standard would result in an approximate allowable condensable PM emissions rate of 0.21 lb/MWh (the resultant combined standard would be 0.30 lb/MWh). 206 of the 272 condensable PM data points in the EGU NESHAP ICR are below this value, indicating that a more stringent standard would be indicative of the BSER.

Comment: One commenter (5279) states that the proposed PM emissions limit should be revised to address the use of duct burners at IGCC facilities when fired using syngas and using natural gas. The commenter states that higher PM emission limits than the proposed limit are required when operating under either of these two scenarios.

Response: The PM standard is based on the permit conditions for an IGCC and accounts for both operating conditions.

2.3.5 PM Control Cost Analysis

Comment: Many commenters (4635, 4656, 4765, 4766, 4686, 4830, 4836, 5075, 5089, 5240) state that EPA failed to independently calculate the control costs for implementing the proposed PM emissions limit as required by the CAA § 111(a)(1). It specifies that EPA “take[e] into account the cost of achieving such reduction and any non-air quality health and environmental impact and energy requirements…” when establishing NSPS. Instead, EPA has unlawfully relied on the PM emissions reductions that it anticipates to occur through implementation of the proposed NESHAP for EGUs. EPA concludes that the proposed NSPS PM emissions standard will not result any costs or benefits attributable to implementing the NSPS.

Response: Docket item EPA-HQ-OAR-2011-0044-0002 includes an independent incremental cost analysis and a secondary environmental impacts analysis for the proposed NSPS PM emissions standard. EPA concluded that these costs and benefits would support the amended NSPS in the absence of the NESHAP.

2.3.6 PM Standards Exemptions

2.3.6.1 Opacity Standard Exemption for EGUs Using PM CEMS

Comment: Several commenters (4673, 4766, 4836) state that EPA should exempt EGUs subject to 40 CFR 60 subpart D and using PM CEMS from the opacity standard requirements. For affected EGUs that monitor PM emissions directly with a method EPA has determined as “sufficiently accurate,” the surrogate opacity standard is no longer necessary to assure compliance with the applicable PM emissions limit. EPA should finalize the exemption proposed in 2008 for any EGU subject to 40 CFR 60 subpart D that demonstrates continuous compliance with the applicable PM emissions limit on a 24-hour (not 3-hour) average basis.

Response: We agree with the commenters that using PM CEMS provides not only a continuous check on the ability of the PM control device to minimize filterable PM emissions but also a direct, continuous measure of compliance with the filterable PM emissions standard. However, PM and opacity are separate standards. Should source owners/operators want a different averaging time under subpart D, they can petition the Administrator in
accordance with the requirements in 40 CFR 60.42(c). Furthermore, the EGU NESHAP includes an existing source filterable PM standard of 0.030 lb/MMBtu as an alternate to measuring total metals. Therefore, the vast majority of subpart D facilities will be installing controls that would allow them to control PM emissions to such an extent that the opacity standard would no longer be applicable.

2.3.6.2 Opacity Standard Exemption for EGUs Complying with a Combined PM Standard

Comment: One commenter (4836) supports EPA’s proposed opacity standard exemption for affected EGUs complying with a combined PM emissions limit.

Response: The final rule amendments do not include a combined PM emissions limit (see Section 2.3.3) and, therefore, the proposed exemption is no longer relevant.

2.3.6.3 PM and Opacity Standard Exemptions for Natural Gas Fired EGUs

Comment: Several commenters (4836, 4841, 17711, 17852) support EPA’s proposed opacity standard exemption for natural gas fired EGUs. However, one commenter (4836) does not understand why EPA proposes to limit the Subpart D exemption to those facilities subject to a federally enforceable permit limiting fuel use. No such condition is attached to the proposed Subpart Da exemption. The commenter also does not understand why EPA has not proposed to exempt Subpart Da facilities that combust only natural gas from the filterable PM standards. Those facilities also will have negligible filterable emissions. As long as the facility is actually combusting only natural gas, it should be exempt from filterable PM and opacity standards regardless of a pre-existing permit restriction.

Response: The “federally enforceable permit” requirement has been removed from subpart D so that the exemption applies to facilities that elect to switch to natural gas, but that maintain the ability to burn other fuels without a permit modification in the future. The opacity standard would be effective immediately if the facility switches back to other fuels. The second part of the comment is unclear since the proposed language in paragraphs §60.42Da(a)(4), (e), and (g) exempt natural gas-fired EGUs from the PM standard.

Comment: One commenter (5749) states that EPA should clarify the circumstances under which 40 CFR 60 subpart Da may apply to gaseous fuel firing, where such gaseous fuel is not a fossil fuel (for example, where a non fossil gaseous fuel is combusted in combination and/or alternately with a fossil fuel). To the extent that Subpart Da would apply under any such circumstance, EPA should extend the Subpart Da exemption from PM and opacity limits for natural gas units to also apply to gaseous fuel fired units, such as those firing landfill gas. The commenter believes that landfill gas and other non fossil gaseous fuels have emission profiles similar to those of natural gas, and should be encouraged as viable alternatives to fossil fuels, including natural gas.

Response: A facility that only burns non fossil gaseous fuels would not be subject to subpart Da even if it met the applicability criteria of being capable of combusting more than 250 MMBtu/h of fossil fuel and supplying more than one-third of its potential electric output capacity and more than 25 MW net-electrical output to any utility power distribution system for sale. Owners/operators of units that are capable of combusting more than 250 MMBtu/h of fossil fuel that co-fire non fossil fuels would, however, be subject to subpart Da. We have concluded it is not appropriate to provide an outright exemption for all co-fired gaseous fuels since they can potentially contain contaminants that result in PM emissions and opacity. However, the amount of sulfur in a gaseous fuel is a general indication of the amount of impurities. Therefore, gaseous and liquid fuels with potential SO2 emissions rates of less than 0.060 lb/MMBtu are included in the PM exemption, but not the opacity exemption. Other gaseous fuels do not necessarily burn as completely as natural gas. Subpart Da already includes reduced opacity monitoring for owners/operators burning gaseous fuels other than natural gas.

2.3.6.4 PM and Opacity Standards Exemption for Low-Sulfur Fuel Fired EGUs

Comment: One commenter (4836) supports EPA’s proposal to exempt EGUs that combust only gaseous or liquid fossil fuel with potential SO2 emission rates of 0.060 lb/MMBtu or less from the otherwise applicable filterable PM standard, provided the EGU does not use post-combustion SO2 or NOX controls. One commenter does not support this option for other forms of oil, especially for No. 4 oil and other grades. Another commenter (4698) opposes the exemption because opacity emissions from EGU firing such fuels is not generally due to fuel ash and impurities but rather is more a function of incomplete fuel combustion.
Response: EPA agrees that opacity and filterable PM emissions from low sulfur oil-fired boilers are a result of incomplete combustion and do not result from fuel ash or impurities. However, EPA believes that 20% opacity would rarely occur at facilities burning these fuels. Therefore, subparts D, Da, and Db are amended to include a provision providing state permitting authorities the flexibility to approve site-specific monitoring requirements for distillate oil containing less than 500 ppm sulfur, while still maintaining the opacity standard itself. This flexibility will be especially beneficial to owners/operators who only burn distillate oil as a backup fuel. The state would then have the flexibility to approve a site specific plan, or (?) require the use of the opacity monitoring procedure set forth in the rule, or the owner/operator could monitor carbon monoxide emissions.

2.4 Sulfur Dioxide (SO₂) Emissions Standards

2.4.1 Selection of BSER for SO₂ Emissions

Comment: Many commenters (4712, 4715, 4765, 4836, 5715, 4989) state that EPA failed to state the BSER that the Agency selected as the basis for establishing the proposed SO₂ emissions standards. One commenter (5715) states that the proposed SO₂ emissions rates are not the result of an analysis of the application or performance of the BSER for SO₂ emissions – instead they are based on the SO₂ emissions rates that are already being achieved by existing EGUs. EPA’s BSER determination analysis was not based on the application of new and innovative multi-pollutant control options nor the application of systems of emissions reductions that allow control of greenhouse gas emissions (which EPA is regulating under a separate rulemaking) along with control of SO₂.

Response: The BSER for SO₂ is the same as in the 2006 final amendments, low sulfur coal and a spray dryer or high sulfur coal and a wet scrubber. In this remand, the achievable standards were reevaluated, but no new technology developments have taken place so the BSER technologies were not changed. The facilities used to establish the numerical standard used low sulfur coal and a spray dryer, and the facilities used to establish the percent reduction requirement burned high sulfur coal and used a wet scrubber. EPA has concluded it is not appropriate to base the amended SO₂ standard on potential GHG requirements that have not been proposed.

2.4.2 Selection of SO₂ Emissions Limit Value

Comment: Many commenters (4715, 4765, 4768, 4836, 5715, 4989, 5075, 5077) state that the proposed NSPS SO₂ emissions limit does not reflect the application of the BSER, and that the methodology EPA used to select the proposed SO₂ emissions limit value does not sufficiently address variability in EGU fuel use, equipment design, and operation. One commenter (4836) included an analysis of the data set used by the Agency in evaluating the achievability of the proposed SO₂ emissions limit using the BSER. Based on this analysis, the commenter states that an appropriate SO₂ emissions limit is 1.25 lb/MWh for new units with an optional reduction limit of 96%. In contrast, another commenter (4715) states that EPA did not set the NSPS SO₂ emissions limit based on the best demonstrated unit in its data set. According to the commenter, nearly all of EPA’s sample units (12 of 15 units) could meet the proposed NSPS of a 97% reduction in SO₂, and a third of the units (5 of 15 units) could meet a 98% reduction. Furthermore, all of the units in the data set that tested in the 97% reduction range, excepting one, tested in the upper limits of the 97% range. This fact indicates that a 98% reduction limit is achievable. EPA should incentivize the most efficient use of control technologies to achieve the maximum amount of SO₂ reduction. The reduction limit for SO₂ should be set at 98% for this NSPS. One commenter (5210) examined emissions limits of six existing coal units (at Intermountain Power, Colstrip, and Navajo) and the emissions limits in 29 permits and permit applications. Based on those data, the commenter recommends setting a SO₂ standard of at least 0.7 lb/MWh to reflect BSER for all EGUs.

Response: Emissions data for both fluidized bed and pulverized coal EGUs demonstrate that a 97% reduction in potential SO₂ emissions is achievable. While short term data indicates that greater than 97% reduction may at times be achievable, that level of reduction has not been demonstrated to be achievable on a long term basis. Furthermore, even a 97% reduction in potential emissions has only been demonstrated to be achievable for coals with nominal uncontrolled SO₂ emissions of greater than approximately 3.5 lb/MMBtu. Assuming a gross efficiency of 36%, this correlates to a numerical emissions rate of 1.0 lb/MWh. Setting a numerical standard below 1.0 lb/MWh, which would be the result of requiring a emissions reduction of more than 75%, could limit the ability to use medium sulfur coals in new EGUs and drive the market toward subbituminous and low-sulfur bituminous coals.

15
While subbituminous coal and low-sulfur bituminous coal have inherently low sulfur content and thus low SO₂ emission rates, neither is a viable option for establishing a national standard as the use of these ranks of coal is not practicable for some facilities due to transportation constraints, costs, and supply limitations. The transportation logistics and costs render the use of subbituminous coal by all new coal-fired generation unfeasible. Subbituminous coal is mined in the western states and requires long distance transportation, resulting in increased emissions from locomotives, increased energy consumption, and potential additional rail line construction due to existing rail system limitations. The use of lower sulfur eastern bituminous coal is also problematic as it is in high demand across the eastern United States and abroad. The increased demand does not just come from the electric generation sector, the coal is also in demand for use as a raw material in manufacturing. In addition, available veins of low-sulfur eastern bituminous coals are being exhausted. In addition, adding a subbituminous-fired boiler at an existing site designed to burn bituminous coal would require significant design changes to the coal material handling equipment and other existing ancillary equipment.

Comment: One commenter (17622) states that Table 17- SO₂ Emissions Performance Data in the proposal notice (76 FR 25065) used by EPA to select the SO₂ performance level for EGUs lists the best performing units in terms of percentage SO₂ control and the subsequent commentary incorrectly indicates that with the exception of the HL Spurlock Units 3 and 4, all utilize wet limestone scrubbing technology. The three units at the Harrison Station utilize wet magnesium on demand lime scrubbing technology, not wet limestone technology.

Response: The Harrison technology description has been corrected.

2.3.3 SO₂ Control Cost Analysis

Comment: Many commenters (4635, 4656, 4765, 4766, 4686, 4830, 4836, 4989, 5075, 5240) state that EPA failed to independently calculate the control costs for implementing the proposed SO₂ emissions limit as required by CAA §111(a)(1). It specifies that EPA, “tak[e] into account the cost of achieving such reduction and any non-air quality health and environmental impact and energy requirements…” when establishing NSPS. Instead, EPA has unlawfully relied on the SO₂ emissions reductions that the Agency anticipates from implementation of the proposed NESHAP for EGUs. EPA concludes that the proposed NSPS SO₂ emissions limit will not result any costs or benefits attributable to implementing the NSPS.

Response: In proposal docket item EPA-HQ-OAR-2011-0044-0002 an incremental cost analysis and a secondary environmental impacts analysis include control costs for implementing the proposed SO₂ emissions limit. On the basis of that information, EPA concludes the SO₂ limits are achievable and cost effective independent of the NESHAP.

2.4.4 Coal Refuse-Fired EGU Exemption from SO₂ Standards

Comment: One commenter (5715) states that EPA’s proposal to exempt EGUs burning more than 75% coal-refuse on an annual basis from the proposed NSPS for SO₂ emissions and instead allow such units to meet the existing NSPS for SO₂ emissions is unlawful. The commenter states that in proposing to establish such an exemption, EPA failed to distinguish these EGUs as a subcategory warranting separate emissions standards in accordance with the proper statutory requirements as provided by 42 U.S.C. §7411(b)(2) (“the Administrator may distinguish among classes, types and sizes within categories of new sources for the purpose of [setting NSPS]. One commenter (5210) states that new coal refuse-fired EGUs can meet the same standard as other EGUs. The commenter recommends that EPA adopt a SO₂ standard of 0.07 lb/MWh output for units burning 75% or more coal refuse.

Response: Coal refuse-fired EGU is a subcategory for the purposes of the SO₂ standard under the existing NSPS. We neither proposed to eliminate the subcategory, nor in any other way reopened the issue of whether the subcategory is appropriate.

Coal refuse-fired EGU is not a subcategory for other pollutants. The Northeastern 31 EGU is the best performing coal-refuse-fired EGU in terms of NOₓ. The facility has demonstrated a NOₓ emissions rate of 0.85 lb/MWh and we are therefore amending the standard accordingly. Furthermore, the previous 8 PM performance tests at the Northampton NGC01 coal refuse-fired EGU have been under the amended PM standard of 0.090 lb/MWh.
2.5 Nitrogen Oxides (NOX) Emissions Standards

2.5.1 Selection of BSER for NOX Emissions

Comment: One commenter (5715) states that the proposed NSPS to control NOX emissions (a combined NOX/CO standards and an alternative NOX standard) does not reflect the application of BSER. EPA’s selection of selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR) with advanced combustion controls does not represent BSER for control of NOX emissions. Furthermore, EPA failed to state the BSER that the Agency selected for controlling CO emissions. The commenter states that EPA’s BSER analysis did not evaluate the NOX and CO emissions reductions achievable by all available NOX and multipollutant control technologies.

Response: The available data does not demonstrate that SCR can be applied to fluidized bed boilers in all circumstances. As a result, EPA believes that SNCR in combination with good combustion controls achieve the lowest NOX emissions rate, and are, therefore, considered BSER for such boilers. While it may be possible to apply regenerative SCR to fluidized bed boilers, it is a relatively new technology and emissions rates are not yet available. For pulverized coal boilers, BSER was determined to be the use of advanced combustion controls and SCR. The only currently viable CO controls on EGUs are combustion controls as thermal oxidation and catalytic reduction have not been demonstrated on EGUs.

2.5.2 Combined NOX + CO Emissions Limit

Comment: Many commenters (4673, 4712, 4836, 4989) object to establishing a mandatory NOX + CO NSPS emissions limit for EGUs at this time because of limited CO emissions data and the inadequate methodology used to determine the emissions limit. An analyses prepared by one commenter concludes that such a standard is unachievable for many EGUs much of the time. However, several of these commenters (4673, 4836, 4839, 5470) also state that a combined NOX and CO emissions limit could provide an advantage in terms of compliance flexibility. These commenters do not object to establishing an NOX + CO emission limit that EGU owners/operators could chose to comply with as an alternative to a NOX emissions limit. Other commenters (4715, 5715) support EPA establishing a mandatory NOX + CO NSPS emissions limit for EGUs. However, one commenter states that EPA failed to explain why the Agency believes that a NOX + CO emissions limit of 1.2 lb/MWh for new sources reflects application of the BSER, when it is at a significantly higher emissions rate than its NOX-only emissions limit proposed alternative. The commenter concludes that the NSPS emissions limit for NOX + CO should be lowered to reflect BSER, or at the very least, EPA must select a standard at the low end of the proposed range. Another commenter (17620) states that setting a sufficiently stringent CO standard that avoids poor combustion would be a better option than adopting a combined limit for NOX + CO. Allowing inappropriately high CO levels by establishing a combined standard will simply permit sources to use less effective SCR controls and emit higher levels of organic HAPs than would limits that are based on the level of NOX reduction and CO levels achievable by high efficiency SCRs controls.

Response: While EPA believes that the limited data available supports the achievability of a combined NOx/CO standard in at least some circumstance, it does not support the imposition of such a standard across the board. As a result, the combined NOX/CO standard will be provided as an alternative to the amended NOX standard. The alternative standard will be 1.1 lb/MWh, as that is the lowest standard that has been demonstrated as achievable for both pulverized coal and fluidized bed technologies. This combined standard is much more stringent than recent separate NOX and CO limits in BACT permits. The majority of BACT-based CO standards are 0.10 lb/MMBtu or greater. This translates to an approximate CO emissions rate of 1.0 lb/MWh. With corresponding BACT-based NOX standards of 0.70 lb/MWh, this corresponds to an equivalent combined standard of 1.7 lb/MWh. The combined standards for coal refuse-fired and modified EGUs were determined by adding a CO factor, 0.4 lb/MWh, to the NOX standard. This is the best CO emissions rate that has been demonstrated for both fluidized bed and pulverized coal boilers.

Comment: One commenter (5210) states that EPA must set the most protective NOX standard. While supporting EPA’s suggested benefits of a combined NOX + CO standard, the commenter states concern over if and how the Agency weighed the different health and environmental impacts of NOX and CO in determining the proposed combined standard. It appears the Agency weighed them equally, which the commenter believes is not
appropriate, given the greater health and environmental impacts of NO\textsubscript{X} and its contribution to ozone. While the commenter does not want CO emissions to significantly increase as a result of NO\textsubscript{X} controls, the commenter is concerned that the flexibilities of a combined NO\textsubscript{X} + CO standard will provide for an ultimately more lenient NO\textsubscript{X} standard, resulting in fewer reductions. Therefore, the commenter recommends that EPA at the least set the most stringent standard feasible for NO\textsubscript{X}, in order to protect public health and the environment from the harmful impacts of ozone, PM, and other NO\textsubscript{X} related emissions. Another commenter (5208) states that a combined NO\textsubscript{X} + CO standard potentially would allow higher NO\textsubscript{X} emissions that would not protect the more stringent nitrogen dioxide (NO\textsubscript{2}) National Ambient Air Quality Standard (NAAQS).

Response: The combined standard is based on the best performing facilities. New facilities would, at a minimum, have to reduce emissions to below the existing subpart Da NO\textsubscript{X} standard established in 2006 to comply with the standard. Therefore, it is a tightening and not a relaxation of the existing requirements and would not result in increased NO\textsubscript{X} emissions.

Other federal and state permitting programs are designed to take into account the specific health and environmental issues. In regions where reductions in NO\textsubscript{X} emissions would result in more significant health and environmental benefits the permit could require the maximum reductions in NO\textsubscript{X}. However, as described in the preamble this could lead to significant increases in CO emissions such that the combined standard would not be achievable.

2.5.3 NO\textsubscript{X} Emissions Limit

Comment: Several commenters (4712, 4765, 4768, 4836, 5075) state that the proposed NO\textsubscript{X} emissions limit is not achievable on a nationwide basis, and the final rule should, therefore, be revised upwards to reflect the actual levels of performance achievable. In addition, a separate NO\textsubscript{X} emissions limit should be set for modified EGUs subject to the NSPS. Several commenters (4712, 4768) state that the methodology EPA used to select the proposed NO\textsubscript{X} emissions limit value does not sufficiently address variability in EGU fuel use, equipment design, and operation. One commenter (4768) includes their analysis of the data on which EPA based its determination that the proposed NO\textsubscript{X} emissions limit is achievable using BSER. Based on this analysis, the commenter asserts that an appropriate NO\textsubscript{X} emissions limit is 0.83 lb/MW\textsubscript{h} for new units and 1.1 lb/MW\textsubscript{h} for modified or reconstructed units. The commenter states that the NO\textsubscript{X} emissions standard for modified units should be based on the performance of cell burners, wet-bottom boilers, and cyclone fired EGUs. The commenter further notes that recent consent decrees for SCR-equipped cyclone boilers require NO\textsubscript{X} emissions between 0.100 to 0.120 lb/MMBtu.

Response: The available data demonstrates that the proposed standard of 0.70 lb/MW\textsubscript{h} is achievable by both new and retrofit pulverized coal and fluidized bed boilers burning various coal types. This is true for modified units as well as new and reconstructed units; however, in recognition of the difficulties of retrofitting certain modified facilities with advanced combustion controls, the final NO\textsubscript{X} standard for modified facilities is 1.1 lb/MW\textsubscript{h}. Since the CEMS data used in establishing the standards included long term data, various operating conditions and variability are inherently accounted for. The comment about cell burners and wet-bottom boilers is unclear. The Cardinal 1, 2, and 3, Muskingum River 5, and Belews Creek 1 EGUs are cell burners retrofit with SCR and have demonstrated emission rates below 0.70 lb/MW\textsubscript{h}. In addition, the Dallman 4 EGU is a wet-bottom boiler with SCR operating below 0.70 lb/MW\textsubscript{h}. Cyclone boilers are the only EGU design that has not been demonstrated to be able to achieve the proposed standard. Subbituminous cyclone-fired EGUs (Coffeeen, Baldwin, and Allen S. King) have demonstrated NO\textsubscript{X} emission rates of less than 0.95 lb/MW\textsubscript{h} are achievable. However, no bituminous or lignite-fired cyclone EGUs have achieved comparable emission rates. The best performing bituminous and lignite-fired cyclone EGUs without SCR are the Merrimack and Leland Olds facilities. These EGUs have demonstrated that cyclone EGUs can maintain NO\textsubscript{X} emission rates to less than 4.0 lb/MW\textsubscript{h}. The addition of 75% efficient SCR (or a multi-pollutant control technology) to these facilities would reduce NO\textsubscript{X} emissions to less than 1.1 lb/MW\textsubscript{h}.

The differences in the calculated 30-day emission rates between the commenter and the EPA is attributed to the procedure used to calculate the 30-day averages. The EPA 30-day averages are calculated using the procedures described in the proposal (sum of emissions of the applicable pollutant divided by the sum of the gross output), while the commenter used the average of the hourly emission rates for the 30-day period. As stated in the
proposal, the EPA procedure results in lower numerical emission rates because hours with high emission rates but low heat inputs (typical of startup, shutdown, and low load operation) are not weighted as heavily.

Comment: One commenter (5077) states that emissions during startup and shutdown periods have a particularly large impact on NOX emissions, even after taking into account the compensating effect of a 30-day rolling average. Hence, these periods need to be excluded in the evaluation of compliance with the standard. Further, EPA should set a higher NOX NSPS standard for modified units, since older modified units typically have higher heat rates than new units.

Response: The CEMS data used to establish the standards includes emissions during startup and shutdown, so there is no reason to separately evaluate those periods. The standard accounts for emissions typically being higher during periods of startup and shutdown and at the same time is sufficiently stringent to require owners/operators to minimize emissions during all periods of operation to comply with the 30-day standard. The final standard for modified units (1.1 lb/MWh) is based on CEMS data from facilities using subcritical steam conditions and accounts for the higher heat rates of older facilities.

Comment: One commenter (4830) states that the proposed NOX NSPS of 0.70 lb/MWh appears to eliminate the further use of lignite coal for new EGUs. Section 111(a) requires EPA to explain the economic and energy impacts when establishing NSPS. Lignite coal is an abundant resource in the upper mid-west and Gulf Coast areas and elimination of it as an energy source would have significant regional economic impacts. EPA has the discretionary authority to subcategorize EGUs such that lignite-fired EGUs could have different NOX standards based on BSER for lignite. Thus, EPA should subcategorize the lignite NOX NSPS for new units. In addition, EPA has not demonstrated that non-lignite-fired units can meet the preferred 0.70 lb/MWh considering the inclusion of startup and shutdown periods into the compliance period. Accordingly, the alternative standard of 0.80 lb/MWh is more representative of what can be realistically achieved for non-lignite units, and no level lower than that should be considered for the NOX NSPS for new units.

Response: While the lignite-fired Oak Grove pulverized coal facilities use supercritical steam conditions (3,535 psi and 1,010 °F), increasing the steam temperature and pressure to those used at the Weston 4 facility (3,775 psi and 1,085 °F) would reduce fuel use and emission rates by approximately 2.5%. The figure below shows the impact of various steam conditions on the relative heat rate of an EGU. In addition, upgrading the heating value of the lignite from 6,800 Btu/lb to 10,000 Btu/lb would improve the efficiency of the EGU by almost 4%. Designing either of these things into a new lignite-fired EGU using the same control configuration as Oak Grove 1 would theoretically reduce the NOX emissions rate to less than the 0.70 lb/MWh amended NOX standard. The permit for Oak Grove requires an NOX emissions rate of 0.080 lb/MMBtu. Using the same control configuration, a gross efficiency of 39% would be required to comply with the amended NOX emissions rate. This level of efficiency has been widely demonstrated for supercritical boilers burning subbituminous coals. A facility burning upgraded lignite would be expected to similar efficiencies as a subbituminous-fired EGU.

The Sandow 5B facility is a subcritical (2,420 psi and 1,005 °F) lignite-fired fluidized bed EGU and is presently operating below the combined NOX/CO standard. Furthermore, increasing the steam temperature and pressure to those used at the Weston 4 facility would reduce fuel use and emission rates by approximately 5%. In addition, upgrading the heating value of the lignite from 6,300 Btu/lb to 10,000 Btu/lb would improve the efficiency of the EGU by almost 5%. Implementing both of these for a newly designed EGU using the same control configuration as Sandow 5B would theoretically reduce the NOX emissions rate to below the 0.70 lb/MWh amended NOX standard. Fluidized bed boilers are not limited in application since they are available in various sizes, the largest individual unit is 460 MW, and are able to utilize supercritical steam conditions.
As described elsewhere in the response to comments, the 0.70 lb NO\textsubscript{X}/MWh is achievable for all of the primary coal (and petroleum coke)-fired EGUs.

2.6 Compliance Requirements

2.6.1 Opacity Monitoring

Comment: Many commenters (4712, 4836, 4989) support EPA’s proposal to allow affected EGUs using a PM continuous monitoring system (CEMS), a fabric filter bag leak detection system (BLDS), or an electrostatic precipitator (ESP) predictive model to be exempted from the existing requirement to install a continuous opacity monitoring system (COMS).

Response: The final rule amendments include a provision allowing affected EGUs using a PM CEMS, a fabric filter BLDS, or an electrostatic precipitator (ESP) predictive model to be exempted from installing a COMS.

Comment: Several commenters (4673, 4836) support EPA’s proposal to reduce the frequency of visible emissions testing for affected EGUs that are subject to an opacity standard, but are not required to use a COMS. The commenters further note that when EGUs are subject to state air permit requirements to conduct Method 9 visible opacity tests, visible emissions testing requirements under the NSPS are redundant and may conflict with the state requirements. The commenter recommends that EPA add a provision in the rule explicitly allowing permitting authorities the discretion to waive any NSPS visible emissions testing as long as the state testing is at least as frequent.

Response: All the boiler rules have been amended to allow the permitting authority the discretion to establish site-specific monitoring plans for owners/operators of facilities burning fuels that typically result in low opacity. The frequency of Method 9 performance testing for owners/operators of facilities with some visible emissions, but with all 6-minute readings of less than 5%, has been reduced from every 6 months to every 12 months. The frequency of opacity monitoring for owners/operators of facilities with higher opacity is unchanged. The additional testing frequency for facilities with opacities of 5% and higher is necessary to adequately assure compliance with the opacity standard.

2.6.2 PM Continuous Emission Monitoring

Comment: Several commenters (4989, 5077) oppose removal of the option to use Method 19 of Appendix A when the PM CEMS minimum data availability conditions are not met. One commenter (5077) states that removal of the option to use Method 19 of Appendix A eliminates a credible option to provide data when monitor availability falls below a required threshold. Without the Method 19 option, a source that does not meet the data
availability requirements would have to obtain data using “other monitoring systems.” EPA provides no reason in the proposed rule for removing the Method 19 option.

Response: The redline included the intended edits and the amendatory language was in error. The option to use Method 19 has not been removed in the final rule.

Comment: Several commenters (4989, 5077) stated concerns about the ability of PM CEMS to meet the proposed 90% availability requirement on a 30-day rolling average basis because of the limited number of installations of PM CEMS on EGUs. One commenter (5077) requests that EPA consider using a 75% data availability requirement when validating a required reporting duration (i.e., 30 day rolling average).

Response: We find the commenter's concern about a limited number of PM CEMS installations on utility units to be misplaced, as over 100 EGUs have installed and are operating PM CEMS. As we are unaware of situations that have caused or may cause data availability from these units with PM CEMS to be below ninety percent, we find that that level is achievable in the field and that there is no need to lower it.

Comment: One commenter (4989) states that for the PM CEMS missing data procedures EPA is proposing to replace references to “valid” data with the phrase “non-out-of-control” data. Neither of these terms are defined in Subpart Da.

Response: The part 63 definition for “out-of-control” has been added to subpart Da. This amendment improves consistency for reporting and reduces burden to the regulated community.

2.6.3 Electronic Reporting of Performance Test Data

Comment: Several commenters (4712, 4836, 4989, 5077) opposes EPA’s proposal specifying mandatory electronic reporting of PM CEMS performance data and Relative Accuracy Test Audit (RATA) data to EPA’s Central Reporting Data Exchange (CDX) using the Electronic Reporting tool (ERT). The commenters state that this proposed requirement is unlawful, unsupported, and incomprehensible for the following reasons: 1) EPA has not articulated the purpose of the submission and reconciled that with existing reporting requirements, 2) EPA has not used appropriate terms to identify the data required to be submitted, 3) EPA has not submitted an Information Collection Request (ICR) and obtained Office of Management and Budget (OMB) approval as required by the Paperwork Reduction Act (PRA) for the data to be reported, and (4) EPA has not provided a reporting format compliant with EPA’s Cross-Media Electronic Reporting Regulation (CROMERR) requirements.

Response: EPA strongly disagrees with the statement that the submittal of performance data using the ERT is unlawful, unsupported, and incomprehensible. Section 114 of the Clean Air Act specifically allows EPA to require the submittal of emissions (and other environmental data) to develop regulations. In fact, in support of this rulemaking, there was an information collection request (ICR) that affected many facilities. If EPA had had these performance data prior to the rulemaking, then an extensive ICR would not have been needed. We believe that requiring that such data be routinely submitted using the ERT will eliminate, or at least reduce, the need for such an extensive ICR in conjunction with future rulemaking. In answer to item 1 above, the purpose of requiring the submission of the results of performance tests is to support the development of regulations. In addition, performance test data will be used to improve emissions factors, develop control strategies, determine rule effectiveness, and support other air pollution control activities. Assuming the commenters meant performance test reports, rather than performance data, EPA disagrees with the statement that the requirements to submit performance test reports to EPA using the ERT are unsupported. EPA has already required the use of the ERT for several information collection requests and has promulgated several other rules that require its use. Further, EPA as a whole has been working toward electronic submittal of environmental data and information for some time; see, for example, the Risk Management Plan information required in 40 CFR part 68 and the Toxics Release Inventory requirements in the Emergency Planning and Community Right-to-Know Act of 1986. Electronic reporting allows for easier submission and storage of data and will provide stakeholders easier access to the information, thereby facilitating easier review of that information. If the commenters meant the submittal of the PM CEMS data, EPA also disagrees with the commenters on that point. EPA has concluded that the data are important in determining whether a facility is being properly operated. The data are also important for determining compliance with this regulation. Thus, EPA is establishing a system to more readily facilitate the collection and analysis of the data.
EPA is not sure what the commenters intend in stating that the requirements are incomprehensible. The electronic reporting requirement is clear on its face and, for the reasons stated above, electronic reporting of data is a very good solution, both for EPA and for industry, for the collection and review of air quality data. If the incomprehensible comment pertains to the ERT, our response is that the ERT has been used by many source testing companies and is steadily improving. EPA has worked very closely with the source samplers and industry to identify and correct problems encountered with its use. In response to item 2, EPA is not sure what the commenters are asking. EPA developed the ERT using/in collaboration with former source testing personnel and in conjunction with source testing companies. The model for the ERT was and is the performance test requirements in the parts 60 and 61 general provisions. The input of source testing companies was integral to the development of this tool and we are continuing to work closely with source samplers. Thus, common source testing terms are used in the ERT and most of the users of this tool have had little trouble in understanding what is required. The response to item 3 is that EPA will be accounting for ERT use in the ICR for the final regulation. EPA has concluded that requiring the use of this tool will not significantly increase any costs in the reporting of performance test data and will probably eventually result in a reduction in costs. Many source testing companies and most major facilities already use their own systems to gather performance test data electronically. EPA believes that the ERT works well and is ready for general use. EPA also disagrees with the statement in item 4. EPA is working closely with the Office of Environmental Information to establish the procedures necessary to ensure that ERT submittals through EPA’s Central Data Exchange are compliant with the Cross-Media Electronic Reporting Regulation. EPA will have this process completed prior to the time when the ERT submittals are required.

Comment: One commenter (4674), a state air regulatory agency, intends to continue to request affected owner or operators to submit hard copies of stack test reports to the State, in addition to EPA’s collection of stack testing data via the Electronic Reporting Tool (ERT), and therefore supports EPA’s preservation of related requirements in 40 CFR 60.8 and 60.11. The commenter believes that the stack test data reported must be considered along with additional, specific information for each source’s operations. This evaluation cannot be easily conducted with limited data reported in the ERT. The State believes that the stack test data submitted in the ERT, taken at face value, may be misleading unless the context in which the testing was completed is understood. Until the number and degree of source configuration and operation variables can be adequately accounted for and reported in one reporting tool, allowing the associated test data to be wholly considered, the State relies heavily upon the submission of written stack test reports. Thus, the commenter supports EPA’s preservation of the submittal of written performance testing reports to state agencies, and requests that EPA consider a way for states to report to EPA via the ERT that the test is not approvable or was not representative.

Response: EPA agrees that the State and Local Air Pollution Control Agencies (S/Ls) should be able to continue to require stack test reports to be submitted in the format that best suits their needs. However, EPA encourages S/Ls to consider requiring the submission of stack test data electronically as well and the ERT is a readily available tool for S/Ls use. In response to the comment that the stack test data taken at face value may be misleading, EPA disagrees. EPA believes that the data and information required to be submitted in the ERT is the same data and information that is included in written performance test reports and will allow for an adequate review of the stack test and its conduct. The ERT was designed using existing performance test reports. All the data in test reports is also clearly required in the ERT. EPA does believe that the S/Ls have the expertise and knowledge of their sources, such as operation variables and source configuration, and would generally be better able to evaluate stack test reports. Thus, we have designed the ERT, in conjunction with WebFIRE (the repository for ERT data), to allow for S/Ls to conduct a third-party review of the performance test reports. Regarding the comment to have the S/Ls submit the data, EPA is designing the reporting to be submitted by the sources. Where the S/Ls have comments concerning a particular performance test, they need to discuss with the source and have the source resubmit the test report. We have concluded that having the source resubmit their performance test report electronically will eliminate the burden associated with tracking different versions of the test report in different formats.

Comment: One commenter (4770) requests that the reporting requirements in rules Da, Db and Dc be amended to commence on January 1, 2013 so that affected owners and operators have adequate time to familiarize themselves with the requirements and procedures for using the CDX and ERT. Until then, affected facilities should be allowed to continue to submit paper copies of test data to EPA. In addition, the reporting requirements
should be changed to 90 days after completion of correlation and performance tests so that affected facilities have adequate time to gather required data and make adequate resources available to submit the data.

Response: EPA does not agree that the electronic reporting of performance test data through the Central Data Exchange using the Electronic Reporting Tool (ERT) needs to be extended for one year because the ERT is difficult to use. EPA believes that the source testing community, for the most part, has had plenty of experience in the past year using the ERT. EPA has also worked closely with the source testing community to understand and address their concerns with ease of use, so there is no need to extend the commencement date. We agree that it is appropriate to allow the required reports to be submitted 90 days after completion of correlation and performance tests. Among other things, this will provide time for owners/operators to familiarize themselves with ERT. Thus, we are extending the date for submitting the ERT report to 90 days.

2.6.4 Monitoring PM and Opacity Emissions from EGUs Using ESPs

Comment: One commenter (17755) states that the rule is not clear regarding how PM emissions will be monitored for EGUs using ESPs if and when the ESP is not running, e.g., during SSM or offline activities, and if the ESP is not running, commenter asks how these excess emissions will be detected using the ESP Predictive Model. The commenter states concerns that determining compliance with opacity and PM standards will be more complicated without some kind of continuous emission monitor in place. The commenter requests information and guidance on what constitutes an excess emission if there is no continuous emission monitor, and asks the following: how does the EPA anticipate that compliance with the emission limit be determined, would an inspector simply monitor and check all of the parameters established for the ESP Predictive Model, and if the ESP is operating outside the defined parameters is that considered an excess emission.

Response: During periods of startup and shutdown, the ESP predictive model would not apply and the owner/operator would be required to follow the specified work practice standards to minimize emissions.

2.7 Other Proposed Amendments

2.7.1 Rule Definitions

2.7.1.1 Definition of “Affected Facility”

Comment: One commenter (4836) stated that EPA’s rationale for proposing to revise the definition of “affected facility” by adding integrated combustion turbines and fuel cells is vague and ambiguous, and the existing definition should not be revised. Another (4766) stated that EPA should provide additional clarification regarding the proposed expanded definition of “affected facility” under subpart Da to include “integrated” combustion turbines and fuel cells. Although discussed briefly in the preamble, the word “integrated” is still unclear and is not well-defined in the rule. In addition, although EPA suggests that its intent is to encourage and promote the use of such units, it is unclear how EPA’s proposed regulation would accomplish that goal. Without further explanation, the new definition of “affected facility” remains vague and ambiguous and should be eliminated. One commenter (17852) also states that the option to integrate combustion turbines and/or fuel cells with steam generating units is another good way to reduce emissions. The commenter also states that if an owner chooses to integrate and connect a fuel cell or combustion turbine to a steam boiler to use waste heat to improve efficiency, they should be able to elect to consider them an integrated unit for compliance purposes.

Response: The definition has been clarified to specify that “integrated” means the device either supplies useful thermal output to the boiler or electrical output to power auxiliary equipment of the EGU. If the definition were not expanded to include integrated equipment, the intent of subpart Da could be circumvented by having auxiliary equipment provide steam to the EGU to increase the output of the EGU and decrease the corresponding output-based emissions rate without accounting for the emissions from the integrated equipment. The revised definition provides additional flexibilities to reduce emissions.

2.7.1.2 Definition of “Gaseous Fuel”

Comment: One commenter (5195) stated that EPA should clarify within subpart Da that the definition of “fossil fuel” does not include landfill gas, biogases or other materials such as engineered fuels that are produced from processing components of municipal solid waste. Because landfill gas and biogas are included under the proposed
definition of “gaseous fuel,” and the term “gaseous fuel” is included in the definition of “fossil fuel,” there may be an ambiguity with respect to how these definitions relate to each other in implementing subpart Da. The commenter requests that EPA clarify the circumstances under which subpart Da may apply to gaseous fuel firing, where such gaseous fuel is not a fossil fuel (for example, where a non-fossil gaseous fuel is combusted in combination and/or alternately with a fossil-fuel).

Response: The definition of fossil fuel under subpart Da only includes fuels “created for the purpose of creating useful heat.” Since landfill gas and other fuels derived from municipal solid waste are not derived for the purpose of creating useful heat they are not considered fossil fuels under subpart Da. The definition of gaseous fuel includes these fuels strictly to determine the appropriate monitoring requirements in circumstances where non-fossil fuel gaseous fuels are burned in combination with fossil fuels. EGU are subject to the requirements of subpart Da when non-fossil fuel gaseous fuels are burned in combination with fossil fuels.

2.7.1.3 Definition of “IGCC Electric Utility Steam Generating Unit”

Comment: One commenter (4836) stated that EPA’s proposed revised definition of “IGCC Electric Utility Steam Generating Unit” should be reworded to read “The Administrator may waive the 50 percent solid-derived fuel requirement during periods of the gasification system construction, startup and commissioning, shutdown or repair.” Adding startup and commissioning would provide the EPA Administrator with additional authority to resolve any regulatory problems associated with the construction and initial operations of an IGCC EGU. Adding shutdown would allow an operator to combust natural gas for safety reasons during shutdown.

Response: The definition has been amended as suggested.

2.7.1.4 Definition of “Natural Gas”

Comment: One commenter (4836) notes that the proposed Subpart D definition of “natural gas”, and the existing definitions of “natural gas” in 40 CFR 60 subparts Da, Db, and Dc, are slightly different from the definition of “natural gas” in Part 75. Another commenter (5749) stated that the definitions of “natural gas” used for the NSPS are different from the proposed definition of “natural gas” for the EGU NESHAP. The commenters recommend that EPA use this NSPS amendment rulemaking to make the definitions consistent in all of the rules to avoid confusion and unintended results.

Response: In an effort to make the definitions as consistent as possible, the definition of “natural gas” under the NSPS has been amended as follows: i) “maintains a gaseous state under ISO conditions” has been added; ii) the heating value range has been amended to 950 to 1,100 Btu/scf; iii) a statement that natural gas does not include “any gaseous fuel produced in a process which might result in highly variable sulfur content or heating value,” has been added; and, iv) a provision that the “maximum sulfur content is 20 grains per 100 standard cubic feet” has been added. The definition for industrial sources has historically included liquefied petroleum gas and will continue to do so. However, it will be removed for subpart Da affected EGUs to make it more consistent with that used in part 75.

2.7.1.5 Definition of “Petroleum Coke”

Comment: Several commenters (4765, 4836) object to including petroleum coke in the definition of “coal” for purposes of NSPS subpart Da. Reasons cited by the commenters are 1) EPA acknowledged in its NSPS Subpart Y rulemaking that petroleum coke “is a by-product residual from the thermal cracking of heavy residual oil during the petroleum refining process,” (74 FR 25,304, 25,316/1), and therefore is not coal at all; and as a result, the nature of the analysis required for setting NSPS would be different for petroleum coke as compared to coal; 2) EPA has failed to provide emissions data as to whether EPA’s proposed NSPS for PM, NOX or SO2 are achievable when petroleum coke is burned in a EGU, either during periods of normal operation or during periods of startup and shutdown.

Response: When subpart Da was originally promulgated, petroleum coke was not as commonly used in utility boilers. Subsequently, when EPA finalized the industrial boiler NSPS, subpart Db, petroleum coke was recognized as a valuable fuel that has characteristics similar to coal and was therefore included in the definition of coal. From analysis of emissions data from facilities burning petroleum coke EPA has concluded that EGUs burning petroleum coke are able to achieve the amended criteria pollutant standards for coal-fired units.
The Northside 1A and 1B EGUs and the Manitowoc 9 petroleum coke-fired EGUs are achieving the PM standard, the AES Deepwater petroleum coke-fired EGU is achieving the NOX standard, and the Northside 1A facility is achieving the combined NOX + CO standard. While none of the petroleum coke-fired EGUs are achieving the amended SO2 standard, the SO2 technology is directly transferrable and other facilities burning high sulfur fuels have demonstrated that 97% reduction in potential SO2 emissions is achievable. Furthermore, the recent permit for the proposed Las Brisas Energy Center indicates that the amended NOX and SO2 standards are achievable for a new petroleum coke-fired EGU. The proposed Las Brisas Energy Center would burn petroleum coke in a fluidized bed using subcritical steam conditions. The permit conditions for NOX and SO2 are 0.070 lb/MBtu and 0.114 lb/MBtu respectively. The gross EGU efficiency would only have to be 34% (achievable using subcritical steam conditions) and 38% (achievable with supercritical steam conditions) to comply with the amended NOX and SO2 standards, respectively. In addition, based on the sulfur content of the petroleum coke, the SO2 control is designed to control over 97% of the potential SO2 emissions.

2.7.2 General Duty

Comment: One commenter (4836) stated that EPA’s proposal to add to Subpart Da a provision imposing a “general duty to minimize emissions” is neither necessary nor appropriate. Subpart Da facilities already are subject to the general duty under 40 CFR 60.11(d).

Response: EPA agrees that it is not necessary to include a specific provision imposing a “general duty to minimize emissions” in Subpart Da for the reason the commenter articulates. The provision has, therefore, been removed.

2.7.3 Affirmative Defense Provisions

Comment: One commenter (5210) stated that EPA’s proposed inclusion of the “affirmative defense” for malfunctions is unlawful and contravenes the CAA. The commenter states that the CAA clearly sets forth how the courts are to assess civil penalties, whether the case is brought by a citizen or EPA. 42 U.S.C. § 7413(e). By allowing an affirmative defense in the case of malfunction, EPA goes directly against two expressed intentions of Congress: 1) the burden it places on citizens makes it less likely that they will enforce the CAA, see, e.g., Pennsylvania v. Del. Valley Citizens' Council for Clean Air, 478 U.S. 546, 560 (1986); and 2) several of the factors at issue in the affirmative defense undercut Congress's intent that citizen suit enforcement should avoid re-delving into "technological or other considerations," NRDC v. Train, 510 F.2d 692, 700 (D.C. Cir. 1974). Both result from the technical burden EPA imposes on citizens with the affirmative defense, and both render the defense impermissible. In addition to these problems, there is simply no need for an affirmative defense to penalties to be written into the regulations. EPA has discretion to decide what cases to prosecute, to consider settlements, and to request civil penalties in a case-by-case manner, as long as it acts consistent with the CAA to protect clean air as its top priority, see U.S.C. § 7401. If EPA has the authority to promulgate any type of “affirmative defense”, then the commenter made specific recommendations for the provisions of such “affirmative defense”. Several commenters (4714, 4770, 4830, 4997) stated that the proposed “affirmative defense” provisions to be added to subpart Da need clarifications, are vague or contradictory, and impose requirements that mean that the defense will be entirely useless as a practical matter. Some of the nine requirements that EPA proposed be met in order for a facility to claim an affirmative defense for a malfunction are unreasonable, difficult to demonstrate, and subject to varying interpretation. EPA should revise the affirmative defense provisions in the rule so that the requirements are meaningful to implement. The commenters provided specific recommended changes to the proposed rule language to address these issues. Another commenter (17975) states that EPA has not determined whether some emission control technologies are prone to malfunctions, or explained why EGUs that rely on such equipment should be entitled to an affirmative defense when it breaks down. Requiring government agencies to evaluate and rebut affirmative defenses on a case by case basis is impractical and has proved ineffective.

Response: EPA is finalizing emission standards that apply at all times, including during periods of malfunction. For malfunctions, the EPA is finalizing the proposed affirmative defense language for exceedances of the numerical emission limits that are caused by malfunctions. As EPA explained in the preamble to the proposed rule, EPA recognizes that even equipment that is properly designed and maintained can fail and that such failure can cause an exceedance of the relevant emission standard. The EPA included an affirmative defense in the final rule in an attempt to balance a tension, inherent in many types of air regulation, to ensure adequate compliance
while simultaneously recognizing that despite the most diligent of efforts, emission limits may be exceeded under
circumstances beyond the control of the source.

With respect to the Affirmative Defense and the comment that the provisions are vague or contradictory, the
EPA’s view is that the affirmative defense is consistent with CAA sections 113(e) and 304 and the EPA has
concluded that courts are well equipped and often do evaluate and apply the type of criteria set forth in the
affirmative defense. Many of the conditions were modeled after the conditions of the affirmative defense in
EPA’s SIP SSM policy, which several states have adopted into their SIPs. (See, e.g., State Implementation Plans:
Policy Regarding Excessive Emissions During Malfunctions, Startup, and Shutdown (Sept. 20, 1999); Policy on
Excess Emissions During Startup, Shutdown, Maintenance, and Malfunctions (Feb. 15, 1983)). We do not have
any indication that parties to enforcement proceedings have had any significant difficulties applying the terms of
these SIP affirmative defenses. In addition, EPA’s view is that use of consistent terms in establishing affirmative
defense regulations and policies across various CAA programs will promote consistent implementation of those
rules and policies. The affirmative defense does not require a facility to prove its innocence rather than requiring
an enforcement authority to prove a violation of the CAA or change the burden of proof with respect to
establishing a violation. The affirmative defense applies to penalties and thus is only utilized where a violation
has been established. The burden of proof remains with the plaintiff in an enforcement action. See, e.g., 40 C.F.R.
22.24. If a violation has been established and a source wishes to assert the affirmative defense with respect to
penalties, the source does bear the burden of establishing that the elements of the affirmative defense have been
met. This burden-shifting is appropriate because the source is in a better position to determine the facts required to
establish the defense. See, e.g., Arizona Pub. Serv. Co. v. EPA, 562 F.3d 1116, 1120, 1129-30 (10th Cir. 2009)
(rejecting industry challenge to EPA’s use of an affirmative defense to address excess emissions during
malfunction events.).

Comment: One commenter (4714) states that the proposed rules should be revised to enable EPA to allow state
rules for affirmative defense that are EPA-approved as part of a state implementation plan (SIP) to be used in lieu
of the federal procedures. This flexibility would eliminate duplicative or potentially even conflicting requirements
for both state agencies and regulated entities.

Response: As a general matter, state SIP provisions do not apply in the context of an EPA promulgated NSPS.
States can, and in fact are encouraged to, take delegation of the authority to implement and enforce the
requirements of NSPS; however, in such circumstances, it is still the provisions of the NSPS that apply, not EPA-
approved SIP provisions. EPA, therefore, concludes that inclusion of the Affirmative Defense in the NSPS is
appropriate.

Comment: One commenter (4714) states that an initial notification is required if an affected owner/operator
wishes to claim an affirmative defense and the proposed rule allows notification by either telephone or facsimile.
The commenter states that an electronic reporting mechanism should be allowed for this initial notification.
However, telephone notifications should not be allowed because such notifications are difficult to verify and
enforce. At a minimum, electronic notification that complies with EPA’s Cross-Media Electronic Reporting
Regulation (CROMERR) standards could provide for quick and durable reporting that may be relied upon for
investigative and enforcement purposes.

Response: The EPA accepts documents in electronic format, as long as the format is compatible with the
requirements of the standards. For the affirmative defense provisions, the owner or operator of a facility
experiencing an exceedance of its emission limit(s) during a malfunction must notify the Administrator by
telephone or facsimile (FAX) transmission as soon as possible, but no later than two business days after the initial
occurrence of the malfunction, or if it is not possible to determine within two business days after the malfunction
causd or contributed to an exceedance, no later than two business days after the owner or operator knew or
should have known that the malfunction caused or contributed to an exceedance, but, in no event later than two
business days after the end of the averaging period. The written reports required to demonstrate that the
affirmative defense provisions have been met and requests for an extension of the deadline for submitting these
reports may also be submitted electronically. EPA has concluded that notification by telephone is appropriate
since that notification must be followed by submission of a written report demonstrating that the affirmative
defense provisions, including the notification requirement, have been met.
2.7.4 Subpart Da Mercury Provisions

Comment: Several commenters (4836, 5715) state that it is appropriate to remove the applicable mercury emissions standards provisions vacated by a federal court ruling from the NSPS under 40 CFR 60 subpart Da).

Response: The provisions have been removed. In addition, the amendments to subpart B that occurred as part of the Clean Air Mercury Rule have also been removed.

2.7.5 Removal of References to 30-Day Rolling Averages

Comment: One commenter (4836) stated that EPA’s proposed removal of references to 30-day rolling averages in Subpart Da provisions establishing emission limitations and the addition of new provisions stating that compliance with emission limits in various sections “are determined on a 30-day rolling average basis” does not appear to be intended to change the averaging time of any provision, but could cause confusion and should be better explained.

Response: The revisions are only intended to make the rules easier to read and are not intended to change any of the existing provisions.

2.7.6 Deletion of Obsolete Provision References in Rule

Comment: One commenter (4698) supports EPA proposal to delete “emergency condition” requirements for the SO\textsubscript{2} standard exemption, references to percent reductions for NO\textsubscript{X} and PM, references to the term “solvent refined coal,” and the existing commercial demonstration permit references.

Response: The provisions have been removed.

2.7.7 Proposed Rule Language Corrections and Clarifications

Comment: One commenter (4698) states that in §60.48Da(k)(1)(i) the term “O_{eg}” in Equation 2 should be defined as “Average hourly gross energy output from electric utility steam generating unit” to be consistent with the rule’s definitions.

Response: A “steam generating unit” is a subset of an “electric utility steam generating” and EPA has concluded that the suggested change is not necessary.
3. Response to Comments on Proposed NSPS Amendments to Subparts Db and Dc

3.1 Definition of “Distillate Oil”

Comment: Several commenters (4698, 4770, 4841) support EPA’s proposal to expand the definition of “Distillate oil” in both 40 CFR 60 subparts Db and Dc to include biodiesel and kerosene because it is appropriate to have the same requirements for units burning biodiesel or kerosene as those units firing distillate fuel oil. One commenter (5749) requested that EPA explain why the definition for “distillate oil” in 40 CFR 60 subpart Db of the NSPS includes a limitation on the weight percent nitrogen, while the proposed definition for “distillate oil” in the EGU NESHAP does not.

Response: The definition of distillate oil has been amended as proposed. When the industrial boiler NSPS was originally promulgated, certain provisions in the NSPS assumed low fuel NOx formation and that requires low fuel nitrogen content. This is not necessary for purposes of the EGU NSPS.

3.2 Exemption of Steam Generating Units Subject to Other NSPS

Comment: One commenter (4841) supports EPA’s proposal to i) exempt owners and operators of affected facilities subject to 40 CFR 60 subpart Eb (standards of performance for large municipal waste combustors (MWCs) and 40 CFR 60 subpart CCC (standards of performance for commercial and industrial solid waste incineration) from 40 CFR part 60, subpart Da; ii) exempt owners/operators of affected facilities subject to 40 CFR part 60, subpart BB (standards of performance for Kraft pulp mills) from the PM standards under subpart Db; and, iii) exempt owners/operators of fuel gas combustion devices subject to 40 CFR 60 subpart Ja (standards of performance for petroleum refineries) from the SO2 standard under 40 CFR 60 subpart Db.

Response: The exemptions are included in the final rule.

3.3 Applicability to Temporary Boilers

Comment: One commenter (4766) stated that EPA appears to suggest that separate NSPS requirements should apply to temporary boilers that are on-site for 30 days or less. However, temporary boilers, especially those brought on-site on skids or trucks for construction projects, are not stationary equipment and therefore do not fall under NSPS. In any event, even if such temporary sources could be considered “stationary,” 30 days is not enough time to implement the NSPS.

Response: Section 111(a)(3) defines a "stationary source" as "any building, structure, facility or installation which emits or may emit any air pollutant." Temporary boilers as described by the commenter are stationary sources within the meaning of this definition and are, therefore, subject to the NSPS requirements applicable to boilers in the relevant size category. This conclusion is supported by section 302(z) of the CAA which defines stationary source emissions to include all emissions except those resulting directly from internal combustion engines for transportation purposes or from nonroad engines or nonroad vehicles as defined in section 7550 of the CAA. Temporary boilers are not internal combustion engines and as such are not nonroad engines or nonroad vehicles as defined in section 7550. The fact that they may only be on site for a period of 30 days or less does not alter their status as stationary sources as there is no temporal aspect to section 111(a)(3)'s definition of "stationary source." In recognition of the special considerations associated with temporary boilers the final rule exempts temporary boilers that burn natural gas and/or low sulfur distillate oil from the NSPS. The requirement to limit temporary boilers fuels to inherently cleaner burning fuels minimizing emissions while providing flexibility to the regulated community.

The definition added to 40 CFR 60 subparts Db and Dc is as follows:

Temporary boiler means any generating unit that combusts natural gas and/or distillate oil with a potential SO2 emissions rate of 26 ng/J (0.060 lb/MMBtu) or less, and that is designed to, and is capable of, being carried or moved from one location to another by means of, for example, wheels, skids, carrying handles, dollies, trailers, or platforms. A steam generating unit is not a temporary boiler if any one of the following conditions exists:
(1) The equipment is attached to a foundation.

(2) The steam generating unit or a replacement remains at a location for more than 180 consecutive days. Any temporary boiler that replaces a temporary boiler at a location and performs the same or similar function will be included in calculating the consecutive time period.

(3) The equipment is located at a seasonal facility and operates during the full annual operating period of the seasonal facility, remains at the facility for at least 2 years, and operates at that facility for at least 3 months each year.

(4) The equipment is moved from one location to another in an attempt to circumvent the residence time requirements of this definition.

3.4 Site-Specific Monitoring Plan

Comment: One commenter (4674) requests that EPA provide further guidance on the “written site-specific monitoring plan approved by the permitting authority,” under 40 CFR 60.47c(h). Specifically, the commenter requests that EPA allow permitting authorities to authorize less stringent opacity or other monitoring requirements than identified in the rule. For example, a permitting agency could require affected owners and operators to conduct opacity testing only upon using a fuel for operational reasons rather than for compliance demonstrations. Further, a permitting agency could specify that each periodically required Method 9 does not have to adhere to the 40 CFR part 60 notification and reporting requirements associated with performance tests found in §60.8 and §60.11, but rather the affected owner or operator would be required to submit any deviations with the excess emissions report required under §60.48c(c).

Response: There are no specific requirements in §60.47c(h). The permitting authority for the owner/operator of the affected steam generating unit determines appropriate procedures and criteria for establishing and monitoring specific parameters for the affected facility indicative of compliance with the opacity standard on a site-specific basis. The source specific requirements could be as described in the comment as long as the permitting authority has determined they are appropriate for a specific affected facility.

3.5 Opacity Monitoring

Comment: One commenter (4674), a state air pollution control agency, recommends that EPA consider removing the requirement to complete subsequent Method 9 opacity performance tests after the initial performance test is completed, if the affected owner or operator is able to show in the initial reading that the opacity complies with the standard. It is the experience of the commenter that subsequent opacity readings for sources which have not exceeded the standard are onerous and may actually discourage good air pollution control practices. Alternately, the State suggests that EPA consider expanding the extension associated with proposed changes to 40 CFR 60.47c(a)(1)(i). EPA proposed a change to allow affected owners and operators to extend the time frame to complete a Method 9 performance test from a minimum of every 12 months for sources where the initial performance test showed that there were no visible emissions. EPA proposes to allow those sources to either repeat the performance test every month or within 45 days of using a fuel with an opacity standard. Without the latter option, sources which primarily combust natural gas are often required to undergo a special startup using diesel fuel solely to satisfy the current compliance requirement to complete a Method 9 performance test every 12 months. As proposed, those sources will now only be required to complete a Method 9 performance test within 45 days of using diesel fuel, which will be dependent on the sources’ operational needs and not a compliance requirement. The State is in agreement with EPA’s proposed revision to 40 CFR 60.47c(a)(1)(i). However, this proposed extension is only available to facilities that have no visible emissions observed during the initial 60 minute Method 9 performance test. Pursuant to 40 CFR 60.47c(a)(1)(ii-iv), sources which have any 6-minute opacity average greater than 0% must conduct another Method 9 performance test for compliance purposes in the near term (every 6 months, 3 months, or more frequently). It is the commenter’s experience that all boilers running on diesel experience some degree of opacity during operation, which typically subsides quickly. At least one 6-minute opacity average is likely to exceed 0%. For many of the State’s sources, the primary fuel used is natural gas, and diesel fuel is used only as a backup. Because these sources are likely to have at least one 6-minute opacity average greater than 0% while using diesel fuel, they are required to repeat the Method 9 performance test even if they have ceased using diesel fuel in the interim. Repeating this performance test requires the affected
owner or operator to shut down the boiler and restart using diesel fuel, only to shut down once again to restart using natural gas. It is the State’s experience that, left to the operational needs of the source, a boiler may only utilize diesel fuel once every few years as opposed to the compliance requirement to use diesel fuel every few months. It appears that the 45-day allowance, while intending to limit unnecessary opacity monitoring for sources with no visible emissions, was not extended to sources which may have some visible emissions during operation. Therefore, such sources are required to regularly shutdown their equipment and restart on diesel just to complete the necessary opacity readings. The State suggests that either EPA extend the 45-day allowance to 40 CFR 60.47c(a)(1)(ii-iv), or that a permitting agency may authorize an alternative opacity monitoring schedule by means of the site-specific monitoring plan as discussed §60.47c(h).

Response: Under subpart Dc §60.47c(h), state permitting authorities have the ability to develop an alternate opacity monitoring plan to alleviate the above concerns. To minimize burden, the 45 day testing allowance has been added to all subparts.