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Introduction 
Factor analytic models have been used for receptor modeling for a long time, first based on the Principal 
Component Analysis (PCA) approach. Recently models based on the non-negatively constrained Positive 
Matrix Factorization (PMF) approach have gained popularity. In the analysis of temporal-spatial data, 
factor analytic models have been called Empirical Orthogonal Functions (EOF). Such models consider the 
data as organized in a two-way matrix. One dimension (row numbers) corresponds to time while the 
second dimension (column numbers) corresponds to the two spatial dimensions x and y. Data on one row 
of the matrix correspond to observations made in a single day at all locations of the measuring network. 
Similarly, data on one column represent the time series measured at one location. In the EOF approach, the 
matrix is analyzed similarly as in PCA, although the name of the method is different, probably because of 
historical reasons. 

The data matrix is denoted by X and its elements by xij, i=1,...,I, j=1,...,J. The equation for EOF can be 
written in matrix form as 

 T= +X GF E  (1.1) 

In component form, the equation is 
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The columns of matrix F represent spatial coefficients, each column of G contains a time series, and E is 
the matrix of residuals that are not fitted by the model. The task of the fitting is to determine the elements 
of G and F so that the norm of E is minimized. Each pair of corresponding columns of G and F represents 
a ”concentration field”, an entity that has a certain time behavior and a certain spatial pattern. In the 
framework of EOF, the columns of G are constrained to be orthogonal to each other, and similarly the 
columns of F. The fitting is usually achieved by Singular Value Decomposition (SVD). 

The equations (1.1) and (1.2) are also fundamental in the approach called Positive Matrix Factorization 
(PMF) (Paatero 1997). The additional constraints are different, however. In PMF, the elements of G and F 
are usually required to be non-negative. Also, the weight of each data value xij is individually adjustable in 
the definition of the norm that is to be minimized. Application of PMF to PM2.5 spatial-temporal data has 
been successful (Eberly and Cox, to be published).  

The present work describes an enhanced model that utilizes auxiliary or parametric variables that have 
been measured concurrent with the PM2.5 data values. Technically, the enhanced model is an example of 
quasi-multilinear fitting. In practice, the fitting of the model is based on the program Multilinear Engine 
(ME-2) (Paatero 1999). Description of the mathematical model is written in the form of a script. The 
program ME-2 reads the script and fits the model by using the information in the script.  
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Terminology 
Time and location are independent variables in this modeling. The concentration of PM2.5 is a dependent 
variable, meaning that the values of PM2.5 are not chosen at will but depend on the values chosen for 
location and time. 

The present work builds on the methodology that was first published by Paatero and Hopke (2001). In that 
paper, a number of auxiliary variables, such as wind speed and wind direction, were used for improving the 
factor analytic model of source apportionment. In that paper those variables were called independent. Such 
terminology may be confusing because the values of auxiliary variables do depend on place and time. In 
the present paper, a different term is adopted, based on the idea that on one hand, the auxiliary variables do 
depend on place and time, while on the other hand they do influence the dependent variables. Hence they 
are called parametric variables. Similarly, the term parametric factors is reserved for such factor elements 
that represent the dependence of the independent variable PM2.5 on values of parametric variables. 

The experimental data to be analyzed 
PM2.5 measurements made at every third day of year 2000 were analyzed. The domain of measurements 
consists of the area between 32 and 43 degrees North and 72 and 96 degrees West. Within this area, 304 
locations were included in the data set. Some of these locations consist of a single station, while others 
represent averages of several stations situated within a single grid cell. There are no missing values in 
PM2.5 data. Of the 304 locations, 82 were classified as rural, the rest as urban. 

In this work, the following parametric variables were used: 24h-average temperature T,  24h-average 
specific humidity Q ,  24h-average pressure P (= deviation from average pressure at the location),  ozone 
daily maximum 8-hour average concentration Z,  and 6AM-9AM average wind velocity vector (VX,VY). 
Ozone data is provided for May-October, inclusive, only. The meteorological variables were not monitored 
at the geographical locations of the PM2.5 stations. Instead, the nearest available met station was 
connected to each PM2.5 location. A very small number of missing values occur for some met stations. 
The corresponding PM2.5 data have been omitted from the analysis as if they are missing values. 

The quasi-multilinear model for PM2.5 distributions 
The mathematical model is defined by the following general equation: 
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The matrices G and F, consisting of unknown factor elements, have a similar meaning as in the 2-way 
factor analytic model. In contrast, the values mijp are not unknown adjustable values but functionals that 
depend on the values of parametric variables at site j on day i. The functionals can in principle be defined 
in different ways. In this work, the dependence is defined as a product of effects related to different 
parametric variables: 

 ( ) ( ) ( ) ( ) ( , )ijp p ij p ij p ij p ij p ij X ijYm T Q P Z V V= T Q P Z V  (2.2) 

The definitions of the first four functionals are structurally similar. For each factor, each functional has a 
unique definition. In contrast, each definition is the same for all sites and for all times. Intuitively this can 
be understood so that the shapes of functionals attempt to mirror laws of physics and chemistry. Those 
laws are the same for all times and all places. During the iteration, the shapes of the functionals are 
determined numerically so that a best possible fit (smallest possible values of the residuals) are achieved. 
In practice, the functionals are implemented as tables that define the value of any functional, e.g. T1, for all 
values of temperature T, creating a dependence T1(T). The values contained in the tables that determine the 
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functionals are called parametric factors. In the fitting algorithm, they are treated similarly as the usual 
factor elements gip and fjp. 

The fifth functional V is slightly different: it defines each one of the p values V1 to Vp as a two-way table, 
depending on the two wind velocity components  (VX,VY).  

The functionals Zp(Z), describing the dependence of concentration of PM2.5 on ozone concentration, are 
omitted from equation (2.2) for those days (in winter) when ozone data is not available. 

The fitting of the model means that the sum-of-squares expression Q be minimized. Assuming that the 
individual errors eij are statistically independent, the expression is defined as  
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The values σij are uncertainties associated with each original data value xij, i=1,...,I, j=1,...,J. In the present 
work, each σij was specified by the expression 31 g / m 0.08ij ijxσ µ= + . The symbol Qa denotes the 
auxiliary sum of squares that is created by the auxiliary equations, used for regularization and 
normalization, to be discussed later. The numerical values obtained for Qm and Qa were typically 28000 
and 7800, respectively. 

Multiple solutions 
In contrast to simpler factor analytic models, many multilinear models have many local minima of the 
sum-of-squares expression Q. When the iteration is started from different random initial values, different 
solutions will be obtained. It is necessary to perform multiple computations. From the obtained results, one 
inspects those that have reached the lowest values of Q and chooses such solutions that offer a meaningful 
interpretation. 

The general factors and urban factors 
It is of considerable interest to know how the PM2.5 concentrations in urban locations differ from the 
concentrations in surrounding rural areas. Conceptually we may understand that there is an overall 
component of PM2.5 that has been distributed throughout the troposphere. This component will be present 
equally in rural and urban locations. In addition there will be recently released PM2.5 that occurs mostly 
near its origins in the urban areas.  

In the present model, a number of factors were reserved for only representing such components of PM2.5 
that occur at urban locations. Technically this was achieved so that for the last five factors (p = 13,..., 17), 
the spatial factor elements fjp were forced to be zero corresponding to all rural locations j. These factors are 
called urban factors. The other factors (p = 1,..., 12) are called general factors. 

The term urban excess denotes the increase of PM2.5 in urban areas with respect to rural background 
stations. One should note that there may be more of urban excess than what is contained in the urban 
factors. The explanation is that the contributions rijp for the general factors (p = 1,..., 12) may well have 
larger values at urban locations than in rural ones. The urban factors only explain such part of the urban 
excess that has different behavior than the general factors with respect to time or with respect to parametric 
variables. The dilution effect is one example of such a different behavior: the concentration of locally 
emitted PM2.5 will be lower if the wind is stronger, while the spread-out PM2.5 concentration will not be  
significantly influenced by the wind speed. 
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The separation of the urban factors has not been without problems in the present computations. The reason 
is that in some areas, particularly near some edges of the domain, there are large numbers of urban 
locations without close-by rural stations. In such areas, the urban-only factors are able to explain all 
locations. This distorts the separation so that in these areas, the urban-only factors tend to explain a 
significant fraction of the general PM2.5, too. A paradoxical result emerges: in order to understand what is 
going on in the urban areas, more rural stations are urgently needed! 

Presentation of results 

Contributions of individual factors 
In 2-way factor analysis, there is no question about how to present the results: the columns of factor 
matrices G and F contain the dependence of each factor on time and space. The columns can be plotted as 
such. The only consideration is about normalization; one can normalize either G or F columns. 

Experience has shown that with the multilinear model (2.1), displaying columns of G or F can be quite 
misleading. This is caused by the fact that the parametric variables may be partially collinear with time and 
also with space coordinates. As an example, the average humidity depends on time of year. Thus the 
columns of G do not correspond well to the behavior of the factor with respect to time of year because 
indirect or hidden time dependence may be present as the dependence of the factor on humidity. A better 
picture is obtained by using the contributions rijp, defined in equation (2.1). Each value rijp= mijpgipfjp 
indicates how much the pth factor contributes to the data value xij. The contributions have the dimension of 
the original data values, i.e. micrograms per cubic meter. 

Time averaged contributions of each factor p are obtained so that the values rijp are averaged over time, 
i.e. over the first index i. Plotted in a map, the time-averaged contributions represent the spatial patterns of 
factors. Such maps are shown on the attached figure pages. Time averaged flux density vectors (see below) 
can be plotted together with the time-averaged contributions. The flux pointers indicate the average 
direction of movement of the PM2.5 concentration that the factor explains at each site. 

Similarly, location-averaged contributions represent the average time dependence of each factor p. These 
time series give a better picture of the time behavior of the factors that the columns of matrix G. 

The values mijp in equation (2.1) are dimensionless. Similarly, the five functionals in equation (2.2) are also 
dimensionless. The values of a functional specify how much the contribution to PM2.5, by the factor in 
question, increases/decreases with different values of the argument = the parametric variable. Example: the 
contributions of factor 9 increase with increasing humidity. Thus the values of the functional Q9(Q) are 
above 1 for high values of humidity, (Q>10g/Kg, say) and below unity for lower values of humidity. 

For each functional, its average value has been normalized to unity for each factor. Typically, the values of 
functionals are defined for 12 values of the argument, a parametric variable (humidity, temperature, etc.). 
For in-between argument values, the nearest defined value is used. If there is no dependence, (e.g. factors 3 
and 4 do not seem to depend on ozone concentration) then all values of the functional are ≈1 for the factor 
in question, Z3(Z) ≈1 and Z4(Z) ≈1. The functionals are plotted versus their arguments. Thus the argument 
axis shows the dimension of the parametric variable, g/Kg, oF, mb, ppb, or m/s. The wind velocity 
functionals Vp depend on two variables, wind velocity components Vx and Vy. It is tricky to display this 
dependence. In the accompanying plots, the dependence is shown by variable dot size, so that the area of 
the black dot indicates the value of Vp for the coordinates Vx and Vy of the dot. 

Flux of PM2.5 explained by individual factors 
It is useful to know how each factor explains the movement of PM2.5 aerosol. In that way, one may learn 
about relationships between sources and affected regions. Inspection of the parametric wind velocity 
factors  V1(VX,VY) to Vp(VX,VY) may sometimes be misleading: a high value in the wind factor table may 
be of little significance if the wind vector corresponding to the large value only occurs infrequently. A 
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better picture is obtained by considering the flux density of PM2.5. The flux density vector φ is defined as 
the product of concentration and velocity. The flux density contribution vector φijp of factor p to data point 
xij is φijp=(rijpVijX, rijpVijY). By averaging the components of φijp with respect to time and location one 
obtains the average (overall) flux density vector of factor p. By only averaging with respect to time, one 
obtains the flux density map of each factor p. The flux density vectors in the pth map show the spatial 
details of the movement of that fraction of PM2.5 that corresponds to factor p. The dimension of the flux 
density vector is µg/m3 · m/s. The dimension may also be written as µg m-2 s-1. This dimension suggests 
that average flux density indicates the average mass that traverses one square meter in one second, when 
the surface is vertical and perpendicular to the average flux direction. In this definition, averaging is over 
the period of measurements. 

The flux of PM2.5 from a specific region is a measure of the net amount of PM2.5 that is transported from 
the region (net amount is the difference of amounts that are transported out and in). In principle, the flux is 
obtained by integrating the flux density through a closed surface that encloses the region. The flux density 
is well known near the surface because both PM2.5 concentration and wind velocity are known. If wind 
velocity is known throughout the mixing layer, then flux transported by the mixing layer can be calculated 
because it may be assumed that PM2.5 concentration is constant throughout the layer. A quantitative 
estimate is thus obtained for the PM2.5 emission from the enclosed region.  

Instability of the multilinear model 
Experience has shown that various multilinear models exhibit a tendency to instability in the following 
sense. With error-free data, the model works beautifully. If more and more error is introduced in the data, 
the factors tend to assume unphysical shapes, such as random-looking oscillations between large and small 
values. This phenomenon appears to be similar to such instability that is observed when performing 
regression or least squares fitting when the basis vectors are almost collinear. The well-known solution is 
called regularization or ridge regression. Additional terms are introduced in the least squares expression 
so that these terms tend to damp the meaningless oscillations while introducing as little bias as possible.  

Instability was observed with the PM2.5 multilinear model. As an example, the shapes of temperature or 
humidity factors could contain two strong maxima and two deep minima. Smoothing equations were hence 
introduced in the model. These equations specify that the first differences and/or the second differences of 
all parametric factors should be equal to zero. The sigma values for these equations were adjusted so that 
the smoothing equations for one parametric factor matrix typically contributed 100 units to the value of Q. 
In this way, almost all parametric factors assumed plausible shapes. At the same time, the main Q value Qm 
of the fit increased but this increase was not alarmingly high, on the order of 1000 units. This increase is 
less than the increase of Q if one factor is omitted from the model. – Introduction of smoothing equations 
brings a certain aspect of arbitrariness in the model. This same arbitrariness has been the subject of much 
debate when considering ridge regression. However, it is well known that useful results are obtained if this 
arbitrariness is accepted. 

Analyzing the uncertainty of the computed results 

Importance of individual factors 
It is natural to ask about the importance of different factors for achieving a good explanation of the 
measured data. High concentrations alone do not necessarily mean that a factor is important: it could 
happen that the model contains two almost similar high-concentration “twin” factors. Then neither one is 
important because the other one may be able to explain the contents of both factors. However, if one of the 
twin factors is removed, then in the reduced model the remaining one would be important if the other 
factors would be too different so that they could not approximate the original load of the two twin factors. 
In general one would expect a factor to be important if it is different than the others, it is not extremely 
weak, and there are no free rotations that might influence the factor. 
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The importance of individual factors has been explored by observing how well the other factors are able to 
compensate when one factor is artificially made weaker. The increase of Q  (dQ) was used as the measure 
of the uniqueness or importance of each factor in the following way. One factor p in turn was decreased by 
multiplying its factor elements gip by a chosen factor α<1. All factor elements belonging to factor p were 
“frozen” so that they were regarded as constants, not variables, in the fitting process.  The remaining 
factors were fitted in order to achieve the best possible fit, given the distortion in the chosen factor p. In 
this fitting, all aspects of all factors (except for factor p) were adjustable. Different values of α seem to give 
consistent results. The value α = 0.8 may be chosen as representative. The two most important factors 
(with α = 0.8) were F9 (dQ = 460) and F10 (dQ = 327). For the least important factors, the value of dQ was 
dramatically smaller. For all the factors F11, F12, F13, F14, and F15, dQ was between 30 and 48. For the 
remaining factors, dQ was between 104 and 232. 

Confidence intervals 
A script has been written for the Multilinear Engine for the purpose of determining confidence intervals of 
functionals of factor elements. In the present case, the functionals were chosen to be contributions by 
individual factors to three consecutive observations at one chosen site at a time. The script forces a 
functional to deviate from its best-fit value and determines how far the functional may go before the Q 
value of the fit grows past a chosen limit. In simulation studies (Paatero, unpublished), it was found that 
the increase of Q by 4 units gives a reasonable confidence (95%, say) for the intervals. The increase of 4 
was chosen for this work. However, no confidence should be quoted because the statistical properties of 
errors are not known in this real-world study. 

Mathematically, the confidence intervals (l,u) are computed in the following way. Denote all factor 
elements (elements of G and F and the parametric factor elements) collectively as the vector f. Let C(f) be 
the functional whose lowest and highest possible values l and u are to be determined. (Often, C(f) simply 
consists of a single element of f). Denote the best-fit value of Q by Qopt. Then the limits are obtained as 
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If a higher confidence is desired, then a larger allowed increment value can be used instead of the value 4 
chosen in this work. 

The sites for confidence studies were chosen such that one or two factors were strong while other factors 
only made small contributions. The contributions of the two strongest factors were estimated. From each of 
the following three areas, three locations were selected: in North Carolina (factors F3, F5), near 
Philadelphia, PA (F8, F11), and near Chicago (F9, F12). The contributions over one summer period (days 
65, 66, and 67) and one winter period (days 116, 117, and 118) were estimated.  

When the full data set was used, the following results were obtained: for the stronger factors, the half-
width of the confidence interval was typically 20% to 25% of the best-fit value, symmetrically above and 
below the best-fit value. For weaker factors, the width could be 30% or more. When the sum of the 
contributions of the two main factors was estimated, the interval was not wider than for one of the 
individual factors. When the smoothing was decreased for the time series factors, the best-fit results 
changed, typically within their confidence bands. Simultaneously, the confidence bands became slightly 
narrower. 

When 45% of data points were rejected (see below), the results changed as follows. The best-fit values 
changed, often going outside their full-data confidence intervals. The confidence intervals increased 
markedly. The width of the lower half of the interval was typically 60% of the best-fit value. In 25% of all 
cases, the lower limit extended to zero. The width of the upper half of confidence intervals was typically 
70% to 120% of the best-fit value. — Inspection of data values and random omissions reveals that 
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typically two of the three target days had been omitted for the investigated sites. This offers partial 
explanation for the significant loss of accuracy. In fact, one may be surprised that even this level of 
performance was possible. 

Modifying the data matrix by omitting selected elements from the 
matrix 
Collecting all the information in the PM2.5 matrix is expensive. It is reasonable to ask if essentially the 
same results could be obtained by measuring fewer data points (either at fewer locations, or in fewer days, 
or both). This question was addressed so that various configurations of data values were omitted from the 
data matrix of year 2000 (122 days by 304 locations).  

Eberly and Cox (to be published, 2002) studied the omission problem with the 2-way PMF model. They 
generated “bootstrapped” copies of the matrix X by randomly picking 122 rows from X so that each 
instance of picking a single row is independent from the other choices. Then, on the average, 37% of all 
rows do not get picked at all, while some rows enter the new matrix twice or three times (Poisson 
distribution with parameter µ=1). They found out that the bootstrapped copies of X could be successfully 
analyzed into 7 or 10 factors so that the shapes of spatial factors did not change in an essential way. 

In the present work, in different cases, typically 40 to 50 % of all data values were omitted, as if these 
values never existed. The following sequence of less and less severe omissions was tried. 

Omit all data of every second day (50% omission) 
Omit randomly chosen 68% of all urban data points (the number of omitted points is 50% of all data 

points) 
Omit randomly chosen urban points (number = 45% of all points) with a biased probability: the 

probability of omission depends on the number of neighbors that there are within a prespecified 
limit distance of 0.72 degrees. If the closest neighbor is farther away, the location is 
unconditionally accepted. 

Omit randomly chosen urban points (number = 45% of all points) with a doubly biased probability: the 
probability of omission increases for crowded points, as above, but decreases for points that 
represent the median of several sites. 

In the first case, the multilinear analysis into 12+5 factors clearly failed: the parametric factors oscillated 
wildly between large and small values, the spatial factors lost much of their shape. Several of the spatial 
factors lost their identity entirely. The same amount of smoothing was applied as in the original full-data 
runs. 

In the last case, the analysis can well be called successful. Small changes could be seen in the spatial 
factors. However, it is not a priori clear whether these are changes to the better or to the worse. The reason 
is that the original data, containing crowded or clustered regions, does not represent a uniform or balanced 
geographical sampling. Omitting crowded points has a useful de-clustering effect that improves on the 
original distribution of points. -- Analysis of residuals has revealed that locations (grid cells) representing 
averages or medians of several sites have smaller residuals than locations that only represent a single site. 
The smaller residuals are (partly) caused by averaging out random error in the data from a multi-site grid 
cell. Hence less information is lost when omitting a location that corresponds to a single site in comparison 
to its close neighbor that is the average of several sites.  

The second case is a partial failure. The parametric factors are still unrealistic. However, the definition of 
some of the spatial factors is clearly better than in the first case. The difference between the first two cases 
demonstrates that optimization of the network is not a trivial task. It is not just the number of observations 
that counts, it is also how they are placed in the space-time configuration. Schemes that discard all values 
of certain days seem to be the worst ones. On the other hand, fully random omissions are not necessarily 
the best ones. It will also be necessary to consider schemes where some locations (“A stations”) operate 
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more often while other locations  (“B stations”) only perform measurements on every second or every third 
time the A stations do. 

The third case comes close to the last one. It represents a result that could perhaps be used in practice. The 
significant difference between the second and third cases underlines the fact that concentrations at close-
lying locations are strongly correlated. Example: Assume that the measurement c(S,D) at site S on day D 
has already been included in the data set. If site S' is close to S, then the concentration c(S',D) at S' on day 
D is strongly correlated with c(S,D). The value c(S',D) does not contain much of useful information 
because it may be predicted based on c(S,D). Hence more information is gained by including c(S'',D), 
measured at a more remote location S'', than by including c(S',D). 

Discussion 

The uncertainty principle 
In quantum mechanics, the Heisenberg uncertainty principle is well known. The principle says that if 
information about one aspect of the state of a particle is sharpened then less information may be gained 
about other aspect(s) of the state. The same principle can be discerned in the current statistical results. 
Certain factors have a sharp spatial definition, e.g. the “New York” factor. In contrast, the other properties 
of the New York factor are undefined: there is no preference of any wind directions, etc. Some other 
factors have clear distinction between summer/winter days but unsharp spatial definition, and so on. 

In contrast to quantum physics, the amount of statistical information can be increased. If more information 
is available, then the results can become more sharp for more than one aspect of the PM2.5 distribution. 
Having more information will allow that more factors are used in the analysis and each factor will describe 
a more sharply defined subclass of all PM2.5. With any given amount of information, there will be a 
maximal number of factors that can be meaningfully determined. Attempts to use more factors will 
produce meaningless unphysical or noisy shapes for the different aspects of the factors. 

Omitting data points 
The present analysis is based on one year of information, on 122 days of data. (Although there is data from 
year 1999, that data was not included in the present study because of the large number of missing values.) 
It was seen that a successful analysis into 12+5 factors is possible if all days are available. However, 
deleting half of the days did not allow the multilinear analysis into 12+5 factors. A basic 2-way analysis 
into 7 or 10 factors was still possible if 37% of all days were omitted.  

It is concluded that the situation will improve as soon as two years of data are available. From the full two-
year data set of size 244x304, more factors can be determined, allowing a more detailed analysis of the 
PM2.5 distribution. The extent of this improvement cannot be predicted, however. Alternatively, the 
present performance level can be maintained even with higher omission percentages. Thus it is not 
meaningful to try to quantify how much information could be gained from the present one-year data set by 
different omission strategies, because of two reasons: (1) the situation that one year only is available is 
soon over and then it does not make sense to use one year only, (2) it is not clear how representative the 
year 2000 happens to be in the long run. Quantitative assessments are not reliable if based on a single year. 

Fitting especially high values 
Factor analytic techniques are basically geared for analyzing the typical or average behavior. Thus it is 
necessary to check the fitting of highest concentrations. This is also necessary because the US legislation 
focuses on the highest concentrations, not on the average ones. 

The following table illustrates how PM2.5 values above 50, 60, and 70 µg m-3 are fitted (recall that the 
allowed limit is 65 µg m-3). The rows marked “Alarm OK” indicate the numbers of successfully identified 
high-concentration cases where both the data value and the corresponding fitted value exceed the limit L 
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specified on the top line. The other rows indicate numbers of failed cases. “Alarm failed” means cases 
where the data value exceeded the limit while the fitted value did not, i.e. no alarm was sounded. “False 
alarm” indicates cases where the fitted value exceeded the limit without reason, i.e. when the data value 
did not exceed the limit. In a successful fit, the numbers of failures should be small in comparison to the 
numbers of successes. 

Limit 
L=50 

Limit 
L=60 

Limit 
L=70 

Method of 
analysis 

Outcome 

Number of cases 

Alarm OK 23 5 2 

Alarm failed 29 9 6 

Use parametric 
factors, use all 
data,  
12+5 factors False alarm 6 0 0 

Alarm OK 18 1 1 

Alarm failed 34 13 7 

Use parametric 
factors, use 55% 
of data,  
12+5 factors False alarm 42 17 5 

Alarm OK 4 2 1 

Alarm failed 63 15 8 

The basic 2-way 
PMF, use all 
data, 
7 factors False alarm 0 0 0 

This table shows that the highest values are not especially well fitted. There are 5+9=14 data values above 
60. When all data are used, then 5 of the 14 get a fit above 60. With 55% of data fitted, only one of the 14 
get a fit >60. What is worse, with 55% of data there are 17 false alarms above 60. Similar results are seen 
for the other levels 50 and 70. 

The third method, the basic 2-way PMF model, was computed with a more complete data set, hence the 
numbers of cases are slightly larger. It is seen that practically speaking, this model does not predict any of 
the large values. Of the 67 data values above 50, the model fits 4 so that the fitted value is above 50. This 
is especially significant as 9 of those 67 data values even exceed 70. 

Including additional or supporting information 

Limiting the spatial extent of individual factors. 
The spatial shape of most factors consists of a clearly limited high-concentration region or  “blob” plus low 
(non-zero) concentration values scattered all around the domain. The wide-spread noise-like stray 
concentrations have nothing to do with the physical or meteorological reasons that have created the blob. It 
is believed that random fluctuations in the data are the cause of noise-like spatial coefficients. Thus the 
result will be more informative if the noise coefficients are eliminated. For this reason, the final results 
were computed in the following way. The spatial factor maps were inspected and the clear blobs were 
determined. Latitude-longitude limits in the form of rectangular “boxes” were specified around the blobs, 
allowing ample margins between the box and the blob. No spatial coefficients were allowed to be non-zero 
outside the boxes. For each factor, the box was specified individually. There are a few factors that have a 
wide spatial distribution without any clearly defined blob. For those factors, no spatial constraints or 
especially mild constraints were specified. 

The spatial constraints caused that the spatial stray components also decreased inside the box, so that the 
distinction of the blob and the surrounding domain became even more clear. This supports the 
understanding that the stray components were originally caused by a time-space rotation which was 
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“undone” by specifying the limiting boxes. The increase of Q, caused by the spatial limits, is small (less 
than 2000 units). Also, no unnatural details are seen. On the other hand, a parsimonious solution 
(containing as few fitted values as possible) is generally preferable. Thus it is suggested that the latitude-
longitude-limited solution is preferable to the original solution that was computed without spatial limits. 

The question of spatial constraining is connected with the question of analyzing as large domains as 
possible. In order to avoid edge effects, it would be useful to analyze large domains within a single model. 
A large domain means that a large number of factors is needed in order to represent the different conditions 
in different parts of the domain. If each factor is allowed to carry stray components all around the domain, 
then the proportion of noise-like terms will increase in comparison to the structured part of the model, 
eventually weakening the structure of the model and preventing the analysis of large domains. It is 
believed that with increasing domain size, the spatial constraining will become a must so that no successful 
detailed analysis is possible without spatial constraining of stray components. 

Smoothing the G (time) factors 
As already discussed, there is collinearity between time and the parametric variables. For this reason, some 
variation of PM2.5 concentration may be explained either by the parametric factors or by variation of G 
values. It is more useful to have the parametric factors explain the variation of PM2.5, because then it may 
be possible to understand the underlying chemical or physical processes. For this reason, strong smoothing 
was applied to the columns of G. This smoothing attempts to enforce a day-to-day smooth behavior of the 
columns of G. Although this smoothing appears to have some useful effect, its effect was not as strong as 
anticipated. The time factors, and also the corresponding location-averaged contributions, still show strong 
variation whose origins are not clear. The usefulness of the smoothing is questionable. Confidence interval 
studies indicate that more narrow intervals are obtained if there is less smoothing of columns of G. 

What should be improved? 
When the sum-of-squares expression (2.3) was defined, it was assumed that the individual errors are 
independent. However, it is well known that this assumption is not true. It would be good to improve the 
model so that correlation of data errors is taken into account. Unfortunately such a change is in conflict 
with the present structure of the program ME-2: the program is based on the assumption that Q consists of 
a sum of squares of quantities, without cross terms. It is not clear if the program can modified so that cross 
terms, i.e. interactions of individual error values, could be included in the model. 

Inspection of flux maps reveals that at certain locations, the flux pointers point in conflicting directions. 
This may be caused by non-representative wind data that is influenced by local conditions. Conflicting 
wind vectors mean that the model cannot use wind factors as well as should be possible. Some form of 
preprocessing of wind data will be needed. 
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