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Motivation

� As the US EPA considers changes in funding

for air and deposition monitoring, the Agency

might need to downsize existing monitoring

networks and �nd the most informative set

of monitoring sites to achieve similar

predictive capabilities of the complete

network.

� EPA also has some national monitoring

networks still under development for some

new pollutants. Since there is no much

experience or data with these new pollutants,

new methods of network design that take

advantage of selected covariates must be

employed.
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GOAL:

Help EPA to design monitoring networks with

good predictive capability.

In our current project the objectives are:

� To choose a subset of monitoring sites (in this

case from the SLAMS/NAMS network) with

good predictive capabilities.

� Determine measures of appropriateness of a

subset.

� Determine the size of a minimal optimal set.

� Joint analysis of multi-pollutants (e.g. ozone

and PM).

� Combine data from di�erent networks, or

di�erent sources (i.e. models-3 and ground

measurements).
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PROBLEM:

The complex spatial-temporal structure of air

pollution processes. The challenge of dealing with

a large number of pollutants, and data from

di�erent sources, i.e. monitoring data and

models-3 output.

SOLUTION:

Novel statistical approaches are proposed,

exploiting particularly the potential for Bayesian

hierarchical models both in handling spatial

variation, and for the joint analysis of a large

number of pollutant variables.
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Two strategies

Mathematical formulations of the network design

problem follow generally one of two broad

strategies, though there are several more ad hoc

approaches.

The two broad strategies may be characterized as:

� Maximum Entropy.

� Optimal Design Approach.
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Maximum Entropy

Suppose that EPA has the funds for n sites, we

distribute these sites in m desirable locations,

where m is bigger than n:

The problem: divide the m sites into n \gauged"

sites (instrumented sites) and m� n \ungauged"

sites.

One possible way to formulate that problem is to

choose the gauged sites so that predictions of the

whole �eld based on those sites will provide the

maximum possible information about the

ungauged sites.

We de�ne the information contained in a

variable X with density function f as

I(X) = Eflogf(X)g

The entropy is H(X) = �I(X), and explains the

uncertainty about X.
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Z is the vector of observations at all m sites. Z is

subdivided into a vector Z1 at the m� n

ungauged sites and Z2 at the n gauged sites.

Bernardo (1979), following earlier work by

Lindley (1955), proposed the following measure of

the information gained about Z1 as a result of

measuring Z2

I(Z1jZ2)� I(Z1)

this is called Shannon's information index.

In the Gaussian case the above formula simpli�es

to

�
1

2

X

i

log(1� �(i))2

where �(i)'s are the canonical correlations

between Z1, Z2.

� We choose Z1 to maximize:

I(Z1jZ2)� I(Z1)
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The previous approach might be ignoring the

information in the gauged stations themselves.

One can decompose the total entropy

H(Z1; Z2) = H(Z1jZ2) +H(Z2)

Another entropy criterion:

� Minimizing H(Z1jZ2), or equivalently to

maximizing H(Z2):

In the Gaussian case, this means to maximize

the covariance of the gauged sites.
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Issues in maximization and computation

� A complete solution to the maximization

problem involves searching over a

prohibitively large set.

� The data may be non-stationary so the

covariance should be estimated using a model

that allows for nonstationarity.

� The entropy method just depends on the

variance matrix between the sites assuming

Gaussian behavior
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Optimal Design approach

The major alternative theoretical approach to

entropy is based on the theory of optimal

experimental design.

The traditional formulation of optimal design

theory is for a linear regression problem in which

certain variables xi are chosen by the

experimenter and p covariates of interest are

known functions of xi, denoted f1(xi); : : : ; fp(xi).

The i'th data point is,

yi =

pX

i=1

fj(xi)�j + �i

where fj are known function of design points xi,

�1; : : : ; �p are unknown coeÆcients, and �i are

uncorrelated errors with mean 0 and common

variance �2:
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Typical optimality criteria include:

� D-optimality minimizes the volume of a

con�dence ellipsoid of �xed signi�cance level

for �.

� A-optimality minimizes the average variance

of the parameter estimates.

� E-optimality minimizes the variance of the

least well estimated contrast subject to a

normalizing condition on the contrast.

� G-optimality minimizes the variance of the

estimated response function.
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Limitations of optimal design approaches

D-optimality designs may be directly applicable in

a spatial context, but it does not hold when

realistic spatial models are considered. The

diÆculty is that classical optimality criteria tend

to produce designs which involve replications at a

relatively small number of design points.

Limitations of entropy approaches

Maximum entropy is the most sophisticated

formulation of optimal design problems. But are

some shortcomings in their actual

implementation.

� In general it is implemented by adding and

dropping stations one at a time, which may

not lead to the optimal subset.

� It is implemented without fully consideration

of the uncertainty about the spatial

covariance.

In our research we deal with these two issues

concerning entropy approaches.
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In our next presentation:

� We will present several eÆcient algorithms to

calculate the two entropy criteria.

� We will introduce a model to account for

spatial nonstationarity of air pollutants.

� We will propose a fully Bayesian approach to

take into account uncertainty about the

spatial covariance.

� We will discuss the importance of

metereological and geographical covariates

for network design.

� We will show results for the ozone data from

the SLAMS/NAMS network, and we will give

some recommendations to EPA in terms of

the number and locations of the sites that

could be eliminated.
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