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DRAFT TECHNICAL REPORT

DATA QUALITY OBJECTIVES (DQOS) FOR PM2.5

1.0 1.0 INTRODUCTIONINTRODUCTION

An important concern in any organization that is collecting and evaluating environmental data
must be the quality of the results.  A quality system [1] must be developed and documented to ensure
that the PM2.5 monitoring results:

• meet a well-defined need, use, or purpose;
• satisfy customers expectations;
• comply with applicable standards and specifications;
• comply with statutory (and other) requirements of society; and
• reflect consideration of cost and economics.

The development of a quality system for PM2.5 requires a coordinated effort between EPA and the
State and local monitoring community and tribal organizations.  Elements of the quality system include
planning, implementation, and assessment.  As part of the planning effort, EPA is responsible for
developing National Ambient Air Quality Standards (NAAQS), defining the quality of the data
necessary to make comparisons to the NAAQS, and identifying a minimum set of QC samples from
which to judge data quality.  The State and local organizations are responsible for using this information
to develop and implement a quality system that will meet the data quality requirements.  Then, it is the
responsibility of both EPA and the State and local organizations to assess the quality of the data and
take corrective action when appropriate.  This document describes the approach used in developing a
quality system for the PM2.5 monitoring program.  It is based on both the initial DQO development
done in 1997, prior to the network establishment, and an assessment of the major assumptions that
went into that development using 1999 and 2000 data from the network.  Following the planning,
implementation, and assessment theme, the discussion includes the:

1. development of data quality objectives (DQOs);
2. identification of the types and frequencies of QC samples, based upon the DQOs, to

evaluate and control measurement uncertainty;
3. data quality assessment (DQA) process used to compare measurement uncertainty to

the DQO; and
4. consequences of failing to meet the DQOs.
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Figure 1.Figure 1. Effect of positive bias onEffect of positive bias on
the annual averagethe annual average
estimate.estimate.
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Figure 2.Figure 2. Effect of negative bias onEffect of negative bias on
the annual averagethe annual average
estimateestimate

1.1 1.1 Data Quality ObjectivesData Quality Objectives

DQOs are qualitative and quantitative statements derived from the DQO Process that clarify
the monitoring objectives, define the appropriate type of data, and specify the tolerable levels of
measurement errors for the monitoring program [2].  By applying the DQO Process to the development
of a quality system for PM2.5, the EPA guards against committing resources to data collection efforts
that do not support a defensible air quality management program.  The DQO Process that follows
illustrates the steps taken to assess the quality of data needed for making comparisons to the PM2.5

NAAQS.  The focus of this document is the annual NAAQS based on the 3-year annual arithmetic
mean concentration.  Throughout this document, the term decision maker will be used.  This term
represents individuals that are the ultimate users of ambient air data and, therefore, may be responsible
for:  setting the NAAQS, developing a quality system, evaluating the data, or making comparisons to
the NAAQS to determine if a standard is or is not violated.  The DQOs will be based on the data
requirements of the decision maker(s).

In order to understand the DQO Process, a discussion on data uncertainty will follow,  which
will lead into the discussion of the PM2.5 DQO.

1.2 1.2 Data UncertaintyData Uncertainty

Decision makers need to feel confident that the data used to make environmental decisions are
of adequate quality.  The data used in these decisions are never error free and always contain some
level of uncertainty.  Because of these uncertainties or errors, there is a possibility that measurements
may yield annual averages above 15.0:g/m3 when the average is actually  below 15.0:g/m3 (false
positive error as illustrated in Figure 1) or below 15.0:g/m3 when actually the mean is above
15.0:g/m3 (false negative error as illustrated in Figure 2).  Therefore, decision makers need to
understand and set limits on the probabilities of these types of uncertainties in  these data.
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The DQO defines the acceptable level of data uncertainty.  The term “uncertainty” is used as a
generic term to describe the sum of all sources of error associated with a given portion of the
measurement system.  The estimate of the overall uncertainty that the decision makers are willing to
accept leads to the DQO.  Overall data uncertainty is the sum of total population uncertainty and
total measurement uncertainty.

Total Population Uncertainty is defined as the natural spatial and temporal variability in the
population of the data being evaluated.  Population uncertainty can be controlled through the use of
statistical sampling design techniques, the proper placement of ambient air quality monitors, spatial
averaging (as allowed by the PM2.5 NAAQS), and maintaining sampling frequency and completeness
standards.  Since the population of concern for the PM2.5 NAAQS violation decision is a single
instrument (each instrument can effect the attainment/nonattainment decision), the population uncertainty
would be the uncertainty over the 3-year averaging period.  During the development of the NAAQS,
population uncertainty, due to temporal variability, was incorporated into the standard by stating that 3
complete years of data  determines compliance with the NAAQS, even though the expected value may
be different.  Therefore, temporal variability would be considered completely accounted for, as long as
every day sampling was implemented.  However, 1-in-6-day sampling and 1-in-3-day sampling, or any
deviation from every day sampling, have an impact on uncertainly  that must be understood, and, if
possible, quantified.

Total Measurement Uncertainty is the total error associated with the environmental data
operation.  The environmental data operation for PM2.5 represents various data collection activities or
phases including:  the initial weighing of the filters (and the conditions in which they are weighed), the
transportation of the filters, the calibration of the instrument and its maintenance, the handling and
placement of the filters, the proper operation of the instrument (sample collection), the removal,
handling and transportation of the filter, the storage and weighing of the sampled filter, and, finally, the
data reduction and reporting of the value.  At each phase of this process, errors can occur that, in most
cases, are additive.  The goal of a QA program is to control total measurement uncertainty to an
acceptable level through the use of various quality control and evaluation techniques.  In a resource
constrained environment, it is most important to be able to calculate/evaluate the total measurement
uncertainty and compare this to the DQO.  Various phases (field, laboratory) of the measurement
system can be evaluated, subject to the availability of resources.

Two data quality indicators are most important in determining total measurement uncertainty:

• Precision - a measure of mutual agreement among individual measurements of the same
property usually under prescribed similar conditions.  This is the random component of error. 
Precision is estimated by various statistical techniques using some derivation of the standard
deviation.  For the PM2.5  DQO, the coefficient of variation (CV) is used, which is the standard
deviation divided by the mean, multiplied by 100.
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• Bias - the systematic or persistent distortion of a measurement process that causes error in one
direction.  Bias will be determined by estimating the positive or negative deviation from the true
value as a percentage of the true value.

Accuracy has been a term frequently used to represent closeness to “truth” and includes a
combination of precision and bias error components.  For PM2.5, the term accuracy will be used when
measurement uncertainty cannot be separately associated with precision or bias.

2.0 2.0 THE PMTHE PM2.52.5 DQOS DQOS

The PM2.5 DQOs were developed to reduce the probability of decision errors by controlling
precision, bias, and sampling representativeness.  The development was based on a series of
assumptions and input criteria.  These key assumptions are discussed below.  The main assumptions
that are data driven were compared with 1999 and 2000 data from the PM2.5 mass network.  The key
inputs from decision makers have been reviewed by decision maker representatives.  The power curves
in Figure 9 and the error rates in Table 4 incorporate any modifications to the items below as indicated
by this review.  See Appendix A for additional assumptions and input criteria.

2.1 2.1 The DQO is Based on the Annual Arithmetic Mean NAAQSThe DQO is Based on the Annual Arithmetic Mean NAAQS

The PM2.5 standards are a 15 :g/m3 annual average and a 65 :g/m3 24-hour average.  The annual
standard is met when the 3-year average of annual arithmetic means is less than or equal to 15 :g/m3. 
Due to rounding, the 3-year average does not meet the NAAQS if it equals or exceeds 15.05 prior to
rounding.  The 24-hour average standard is met when the 3-year average 98th percentile of daily PM2.5

concentrations is less than or equal to 65 :g/m3.
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Figure 3. Figure 3. Annual arithmetic mean and 24-hourAnnual arithmetic mean and 24-hour
98th percentiles from AIRS data98th percentiles from AIRS data
(extracted on April 4, 2001)(extracted on April 4, 2001)

The original PM2.5 DQOs were developed using some PM2.5 information (a total of 47 single-year
estimates of the annual average and the 24-hour 98th percentile) as well as available PM10 information. 
In order to review and revise these standards, two years of AIRS PM2.5 data (extracted on April 4,
2001) were investigated.  These data represent the first two years of the mass network.  Identifying
sites with 90 or more observations in the year 2000 (which represented the first full year of data
collection) yielded 757 measurements of annual averages and 24-hour 98th percentiles.  These points
are plotted in Figure 3.  Figure 3 does not display estimates derived according to the standard, as the
averages represent one-year averages as opposed to three-year averages, but it does indicate the
relative importance of the two standards.  Points to the right of the vertical line may be viewed as
exceeding the annual average standard.  Approximately 34 percent of the annual average measurements
exceeded the standard.  Only 14 measurements or about 2 percent exceeded the 65 :g/m3 24-hour
standard.
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Figure 4. Figure 4. Comparison of normalComparison of normal
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Figure 5. Figure 5. Comparison of normal andComparison of normal and
lognormal densitylognormal density
functions at higherfunctions at higher
measurement errorsmeasurement errors
(50 percent CV)(50 percent CV)

2.2 2.2 The Distribution of the Measurement ErrorThe Distribution of the Measurement Error

Error in environmental measurements is often assumed to be normal or lognormal.  Figures 4 and 5
attempt to illustrate what happens to the normal and lognormal distribution functions for the same
median concentration at two values for measurement error (CV’s of 10 percent and 50 percent).  In
the case of PM2.5, the measurement error is expected to be in the range of 5 to 10 percent of the mean,
as shown in Figure 4, where normal or lognormal errors produce close to identical results.  Therefore,
due to these comparable results and its simplicity in modeling, the normal distribution of error was
selected.

Additionally, measurement error is assumed to be independent from day to day.  It is also assumed
that the standard deviation of the measurement error is assumed to be proportional to the true
concentration being measured .  The first of these assumptions is quite reasonable to expect.  The
second may not be entirely true.  However, as long as the measurement error is less than the amount
implied by a 10 percent CV, the decision errors will be controlled at the desired levels.

2.3 2.3 Errors Can Occur When the Estimated 3-Year Average DiffersErrors Can Occur When the Estimated 3-Year Average Differs
from the Actual, or True, 3-Year Averagefrom the Actual, or True, 3-Year Average

Errors in the estimate are due to population uncertainty (sampling less frequently than every day)
and measurement uncertainty (bias and imprecision).  The false positive error occurs whenever the
estimated 3-year average exceeds 15.0:g/m3  and the actual 3-year average is less than 15.0:g/m3

(Figure 1).  The false negative  error occurs whenever the estimated 3-year average is less than
15.0:g/m3  and the actual 3-year average is greater than  15.0:g/m3 (Figure 2). 
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2.4 2.4 The Limits on Precision and Bias Are Based on the SmallestThe Limits on Precision and Bias Are Based on the Smallest
Number of Sample Values in a 3-Year PeriodNumber of Sample Values in a 3-Year Period

Since the requirements allow 1-in-6-day sampling and 75 percent data completeness each quarter,
the minimum number of values in a 3-year period is 144.  It can be demonstrated that obtaining more
data, either through more frequent sampling or the use of spatial averaging, will lower the rate of errors
at the same precision and bias acceptance levels.  It is assumed that any missing values are random and,
thus, unlikely to have significant impact on precision and bias levels.

2.5 2.5 The  Error Limits Were Set at 5 PercentThe  Error Limits Were Set at 5 Percent

For the two cases in Section 3, the decision maker will make the correct decision at least
95 percent of the time if precision and bias are maintained at the acceptable levels and the
completeness criteria are satisfied.  For cases that are less “challenging” (i.e., have annual average
values that are farther from 15.0:g/m3 or are made from less variable data), the decision maker will
make the errors less often.  Sampling more frequently will also reduce the probability of making an
error.  Finally, if precision and bias prove to be lower than the values used in the DQO development,
the decision maker can expect errors less than 5 percent of the time.

2.6 2.6 Measurement Imprecision Was Established at 10 PercentMeasurement Imprecision Was Established at 10 Percent
Coefficient of Variation (CV)Coefficient of Variation (CV)

The original DQO analysis reviewed available AIRS data and other PM2.5 studies to determine that
it was reasonable to allow measurement imprecision at 10 percent CV.  While measurement
imprecision has relatively little impact on the ability to avoid false positive and false negative errors, it is
an important factor in estimating bias.  CV’s greater than 10 percent make it difficult to detect and
correct bias problems.  The DQOs are developed assuming a worst case scenario with respect to the
bias, in that the bias is always assumed to be in the direction that would result in a decision error.

Other assumptions made concerning precision and bias include the assumption that they will be
constant throughout the 3-year period.  Similarly, it is assumed that precision and bias are checked
sufficiently often to detect significant deviations from the DQOs.

2.7 2.7 Assumptions About the Underlying Variability of the Day-to-Assumptions About the Underlying Variability of the Day-to-
Day PM ConcentrationsDay PM Concentrations

For the original DQOs, PM10 data from AIRS were reviewed to find a reasonable statistical model
for PM2.5.  These analyses led to choosing a sinusoidal model for the long-term seasonal pattern.  The
review of the 1999 and 2000 PM2.5 network data indicates that this is a reasonable choice for the cases
with the largest amount of natural variation.
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  Table 1: Table 1: Distribution of ratios ofDistribution of ratios of
highest to lowest monthlyhighest to lowest monthly
or bimonthly mean at aor bimonthly mean at a
sitesite

Monthly Bimonthly
# of sites 289 292

Mean 2.07 1.76

Minimum 1.24 1.11

P
e
rc

e
n

ti
le

90.0 2.60 2.12
91.0 2.65 2.36
92.0 2.79 2.38
93.0 2.87 2.49
94.0 3.01 2.57
95.0 3.70 3.17
96.0 4.41 3.36
97.0 4.61 3.90
98.0 5.25 4.03
99.0 6.05 4.69

Maximum 6.54 4.89

  Table 2: Table 2: Distribution of CVsDistribution of CVs
about monthly andabout monthly and
bimonthly meansbimonthly means

Monthly
Bimonthl

y
# of Estimates 3,398 1,752

Mean 49.6 50.7

Minimum 16.1 22.9

P
e
rc

e
n

ti
le

10.0 34.6 37.6
25.0 40.4 42.8
50.0 48.1 49.4
75.0 56.3 56.9
90.0 66.6 64.7
95.0 73.7 70.5
96.0 75.4 72.3
97.0 78.2 75.9
98.0 83.8 79.1
99.0 93.5 89.8

Specifically, the original DQOs were based on assuming a mean sinusoidal seasonal pattern for the
PM2.5 concentrations such that the:

• ratio between the high and the low points of the curve was 5.63;
• random population variation about the mean seasonal curve has a normal distribution with a

standard deviation that is proportional to the seasonal mean;
• random population variation about the mean seasonal curve has a CV of at most 50 percent;

and
• natural day-to-day variation about the sine curve is statistically independent.

Each of these assumptions were meant to reflect a worst case scenario with respect to the assumption’s
influence on the decision error rates.

A subset of the 1999 and 2000 network data was extracted from AIRS on April 4, 2001 to
investigate the original DQO assumptions.  The data were limited to sites with an annual mean between
10 and 20 micrograms per cubic meter.  This was done mainly to represent the range that is most
important to the DQOs.  Also, the relative variability (CV) that can be measured could easily be biased
by sites with the more extreme means.  Next, completeness criteria were applied to ensure
representativeness of the results.  (See below.)  Tables 1 and 2 show the distribution of two of the key
characteristics in the DQO development, the ratio of highest to lowest mean values and the CV about
those means.
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To estimate the ratio of the high and the low means throughout the year and to estimate the
variability about those means, monthly and bimonthly averages were considered.  Technically, the DQO
parameters of interest are daily means and the CV’s about those means.  These cannot be directly
estimated without multiple measurements for each day of the year taken over many years.  However,
since the assumed sinusoidal behavior does not change much over the period of 1 to 2 months, the data
were aggregated to monthly and bimonthly levels.  Hence, the ratio of the highest to lowest points on
the sine curve is approximated by the ratio of the highest monthly (bimonthly) mean to the lowest. 
Similarly, for each site and month (or consecutive 2-month period) a CV could be calculated for the
period.

For the monthly averages, a site’s data were used when there were at least 11 months, each with at
least 10 valid measurements.  For the bimonthly averages, a site was considered if there were at least
19 valid measurements in each of the six two-month intervals.  A site’s ratio was then the ratio of the
maximum monthly mean (or bimonthly mean) to its minimum monthly mean (or bimonthly mean).  The
distribution of these ratios is included in Table 1.  For each site and month or bimonthly period, a CV
was also estimated.  Table 2 contains the distribution of CVs about the means.  The DQOs need to
guard against the most variable cases, so the highest portion of the distribution is most important to this
work.  However, since the original DQOs were based on a CV of 50 percent, Table 2 indicates that
some of the middle portion of the distribution of CVs is important as well.

These analyses show that the ratio of maximum to minimum used in the original DQOs was slightly
higher than would be necessary as an estimate of the worst case scenario for the seasonal variability. 
From the distribution shown in Table 2, it was concluded that the estimate for the upper bound on the
CV used in the original analyses was too low.  A ratio of 5.3 and CV of 80 percent were chosen to
represent the worst case for use in the DQOs and the case studies below (compared to 5.63 and 50
percent, respectively, in the original DQOs). 

Figures 6 and 7 show an example of the PM2.5 data extracted from AIRS for a fixed site.  The
mean of the data from this site for the time period shown (January 1999 through November 2000) is
16.3 :g/m3.  A sine curve with a mean of 16.3 and a ratio of 5.3 between the highest and lowest points
on the curve would be given by

16.3 + 11.125 sin(2 B D / 365 + phase shift)   .

The curve shown in Figures 6 and 7 is

16.3 + 11.125 sin(2 B D / 365 + 1.9)    ,

where D is the number of days into the 3 year cycle.  The phase shift 1.9 was chosen to minimize the
square error between the sine curve and the data values.  Figure 7 has the same data and curve plotted
against the number of days into the year rather than the number since January 1, 1999.
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Figure 6. Figure 6. PMPM2.52.5  concentrations showing a sinusoidal seasonal concentrations showing a sinusoidal seasonal
pattern along with the DQO sine curve that ispattern along with the DQO sine curve that is
associated with these dataassociated with these data
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Figure 7. Figure 7. The data example and curve plotted against the numberThe data example and curve plotted against the number
of days into the yearof days into the year



1 For modeling purposes, the phase shift is not important since complete years will be used. 
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The figures show several key points that the DQO model is designed to simulate.  First, the data
exhibits seasonal variation.  For this particular site, the ratio of the highest monthly mean to the lowest is
5.2.  The periods with the highest means have much more variability.  The variability “about” the sine
curve is not symmetric; the deviations above the curve extend further away from the curve than the
deviations below the curve.  In fact, if the sign of the deviations from the curve were reversed there
would be many negative values.  There is also a considerable amount of day-to-day variation.  After
accounting for the sinusoidal seasonal variation and subtracting out a measurement error CV of 10
percent, the remaining variation is just over 80 percent.

Sinusoidal simulation models were also considered as starting points for developing DQOs.  The
following model mimics the situation in Figure 7 except for the phase shift1.

CD = concentration on Day D = [16.3 + 11.125 sin(2 B D / 365) ]* *D ,

D = 1,2,... is the number of days into the 3-year cycle ,

where *D is a random factor that is log-normally distributed with mean one and standard deviation equal
to 80 percent.  Figure 8 illustrates this function together with simulated PM2.5 levels for three years. 
(Compare with the real data in Figures 6 and 7.)  The long-term average concentration is 16.3 :g/m3. 
A station having PM2.5 levels following this model would virtually always be in a true state of non-
attainment, based on the average of three years’ data with no measurement system error.

In revising the DQOs, instead of assuming a normal distribution about the sinusoidal curve, a
lognormal distribution was utilized.  The lognormal distribution does not produce negative values and is
skewed.  (See Figure 2.)  The original DQOs were based on a normal distribution about the sine curve
with a CV of 50 percent.  This produced very few negative values that were ignored.  However, using
a normal distribution with a CV set at 80 percent would have resulted in negative numbers more than
ten percent of the time.  Hence, the lognormal distribution was chosen to more realistically simulate the
natural variation about the sine curve.
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Figure 8. Figure 8. Simulated PMSimulated PM 2.52.5  data for every third day with a long- data for every third day with a long-
term mean of 16.3 term mean of 16.3 ::g/mg/m 33  and a population CV of 80 and a population CV of 80
percentpercent

3.0 3.0 THE MODELING PROCESSTHE MODELING PROCESS

The relationship of the DQO assumptions and input criteria to the decision error rates was
established by Monte Carlo simulation of both the true 3-year annual mean concentrations and the 3-
year mean sample mean concentration.  A true 3-year mean concentration establishes the correct
attainment/nonattainment decision.  The sample mean determines the decision.  

Each of the items listed in Section 2 impacts the output of this process.  The two key outputs are
power curves and the associated gray zone.  The power curves relate the true 3-year means to the
probability of a measured annual mean being above 15.0:g/m3.  The gray zone is the range of 3-year
annual means about the standard where the decision error rate is unavoidably higher than the 5 percent
limit set in Section 2.5. 
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3.1 3.1 Gray Zone Boundary CasesGray Zone Boundary Cases

The following two examples illustrate the process used to investigate the effects on decision error
rates of various values of precision, bias, and sampling frequency.  They show the extremes where the 5
percent error rate is met.  As mentioned above, less “challenging” cases, such as cases with means that
are further from the NAAQS standard, will have lower error rates.

Case 1:  Suppose a site has a true three-year mean of 12.2 Case 1:  Suppose a site has a true three-year mean of 12.2 ::g/mg/m 33 ..

The correct measurement is an annual mean below 15.0:g/m3. The probability of the false positive
error for sampling every sixth day depends on the measurement system bias and precision.  (See
Table 4.)  As stated in Section 2.6, the data in Table 4 show that precision alone has little impact on
error,  but is an important factor for determining the bias, which is an important factor in error rates. 
Figure 9 illustrates the power curves associated with 75 percent complete 1-in-6-day sampling, a
population CV of 80 percent (about the sine curves), a measurement CV of 10 percent, and biases of
+/- 10 percent.  The actual mean obtained from sampling would likely differ from 12.2 because of
sampling error (not sampling every day), measurement error, and measurement bias.  However, the
probability that these factors would combine to yield a mean of at least 15.05 :g/m3 is only 5 percent.

Case 2:  Suppose a site has a true three-year mean of 18.8 Case 2:  Suppose a site has a true three-year mean of 18.8 ::g/mg/m 33 .

The correct measurement is an annual mean above 15.0:g/m3.  The probability of the false negative
error for sampling every sixth day depends on the measurement system bias and precision.  (See
Table 4.)  As stated in Section 2.6, the data in Table 4 show that precision alone has little impact on
decision error, but is an important factor for determining the bias, which is an important factor in
decision error.  Figure 9 illustrates the power curves associated for 75 percent complete 1-in-6-day
sampling, a population CV of 80 percent (about the sine curves), a measurement CV of 10 percent,
and biases of +/- 10 percent.  The actual mean obtained from sampling would likely differ from 18.8
because of sampling error (not sampling every day), measurement error, and measurement bias. 
However, the probability that these factors would combine to yield a mean of less than 15.05 :g/m3 is
only 5 percent.

Combinations of precision and bias that yield error probabilities around 5 percent were considered
acceptable.  After reviewing Cases 1 and 2, and based upon the acceptable decision error of 5
percent, the DQOs for acceptable precision (10 percent CV) and bias (+ 10 percent) were chosen.
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Table 3. Table 3. Summary of Case 1 and 2 parametersSummary of Case 1 and 2 parameters

3-Year3-Year
MeanMean

CorrectCorrect
DecisionDecision Incorrect DecisionIncorrect Decision TolerableTolerable

Error RateError Rate

Case 1 12.2 ug/m3 Attainment F(+) =
nonattainment 5 %

Case 2 18.8 ug/m3 Nonattainment F(-) = attainment 5 %

3.2 3.2 ModelingModeling

The probability estimates in Table 4 and the power curves in Figure 9 are developed by
modeling 3-year sets of data similar to that shown in Figure 8, except all 3*365 days are generated. 
For a given long-term expected mean between 10 and 20, many sets of data representing a true 3-year
set of data are generated.  Each set of random data determines a true 3-year mean that is rounded to
the nearest tenth and is either in attainment (at most 15.0) or out of attainment (over 15.0).  Then
associated with each these data sets, a random set of 144 days is selected such that 12 days are
selected from each quarter from a 1-in-6-day sampling scheme.  To these values, normally distributed
random measurement error and both a positive and negative bias are added.  The random measurement
error has a mean of 0 and a standard deviation that depends on the magnitude of the particulars day’s
true value (10 percent for the power curves).  This generates a set of sampled data values and a sample
mean.  Finally, the power curve is generated by repeating this process for a range of long-term
expected means.  Power is calculated as the percent of the time that sample means from a fixed true 3-
year mean are over 15.05.

The power curves show the probability or percent of the time that a measurement of an annual
mean is above 15.0:g/m3 under different conditions.  Power curves are the standard statistical tool for
comparing the effects of various input parameters on decision errors.  The curves shown in Figure 9
and the error rates in Table 4 are based on the assumptions and input criteria discussed in Section 2.  In
particular, the key assumptions are a long-term sinusoidal daily mean with ratio of 5.3 between the high
and low points of the curve, a lognormal variation about the sine curve with a CV of 80 percent, 75
percent complete 1-in-6-day sampling, normal measurement error with a 10 percent standard
deviation, and bias of +/- 10 percent.
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Figure 9. Power curves for 75 percent complete 1-in-6-day sampling with 10
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Table 4. Table 4. Maximum error ratesMaximum error rates

Absolute Bias
*

Measurement
CV

Error rate at 12.2
mg/m3

Error rate at 18.8
mg/m3

5 0 1% 1%
5 10 1% 1%
5 80 8% 8%
5 100 10% 12%

10 0 5% 5%
10 10 5% 5%
10 80 15% 17%
10 100 18% 21%
15 0 15% 21%
15 10 15% 21%
15 80 26% 31%
15 100 28% 34%

         * The bias is taken in the direction that causes the most error.
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The Data Quality Objectives Process sets concrete goals to produce sufficient, high quality data
for decision makers and data user needs.  The process needs to continue throughout the data collection
cycle.  Assumptions made in the process need to be checked and, if necessary, updated as the data are
collected.  For PM2.5 monitoring program, the combination of at most a 10 percent measurement CV
and at most an absolute bias of 10 percent have been chosen to ensure that at most 5 percent decision
errors will occur outside the range of 12.2 to 18.8 :g/m3 for a 1-in-6-day sampling scheme.  The key
assumptions that went into the original choice of 10 percent measurement CV and 10 percent absolute
bias have been checked against the 1999 and 2000 data from the network  The basic structure of the
assumptions has been left intact, but some of the particular parameters have been modified to more
realistically model the network data.
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APPENDIX A: APPENDIX A: ASSUMPTIONS AND INPUT CRITERIA FOR THEASSUMPTIONS AND INPUT CRITERIA FOR THE
DQOS FOR AMBIENT AIR MONITORING OFDQOS FOR AMBIENT AIR MONITORING OF
PMPM2.52.5

The DQO process clarifies the monitoring objectives of a network to ensure that the data
collected is of the appropriate type, quantity, and quality to meet program goals.  The process
necessarily makes various assumptions about the nature of the data to be collected in order to
quantitatively bridge the decision goals with the required quantity and quality of monitoring data.  A key
part of the DQA process is then to assess these assumptions, once monitoring data are available. 
AIRS PM2.5data from 1999 and 2000 were used to review the assumptions made in developing DQOs
for the PM2.5 NAAQS compliance.  The NAAQS PM2.5 standards are met if:

1. The 3-year average of the annual arithmetic means of the daily PM2.5 concentrations is
less than or equal to 15 micrograms per cubic meter; and

2. The 3-year average 98th percentile of the daily PM2.5 concentrations is less than or
equal to 65 micrograms per cubic meter.

Both the original DQO process and an outline for the DQA are documented.  EPA developed
a model Quality Assurance Project Plan QAPP for states to follow.  This included a general DQO
development that was intended to be used nationwide to provide for uniform data quality.  Section 7 of
the Model QAPP documents the DQOs and Section 24 outlines an assessment plan for checking some
of the assumptions made in the DQO development.  Included in this outline is a list of seven
assumptions and input criteria statements used in the DQO development.  They are enumerated in the
Model QAPP as:

1. The DQO is based on the annual arithmetic mean NAAQS.
2. Normal distribution of measurement error.
3. Decision error can occur when the estimated 3-year average differs from the actual, or

true, 3-year average.
4. The limits on the precision and bias are based on the smallest number of required

sample values in a 3-year period.
5. The decision error limits were set at 5 percent.
6. Measurement imprecision was established at 10 percent coefficient of variation (CV).
7. Achievement of bias and precision limits.

Further examination of the DQOs shows that there are some additional assumptions that should
be verified.  (Or verify that there is negligible impact from making an incorrect assumption.)  These are
enumerated with some comments below.
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1. The DQO is based on the annual arithmetic mean NAAQS.

The review of the 1999 and 2000 data shows that annual arithmetic mean is the more
stringent requirement for the network.  However, since the main calculations in the
DQO development are done via Monte Carlo simulation, it is not necessary to make
this assumption.  Using Monte Carlo simulation, DQOs for the 98th percentile could be
included as well.  This was not done because, compared to the annual mean, the quality
of the estimate of the 98th percentile will be much more dependent on the distributional
assumptions made in the simulations.

2. Normal distribution of measurement error.

The statement and the suggested check in the Model QAPP is concerned only with the
distributional nature of the measurement error.  There is an additional implied
assumption that is directly tied to this assumption, namely:

The measurement error standard deviation is assumed to be
proportional to the true concentration..

3. Error can occur when the estimated 3-year average differs from the actual, or true, 3-
year average.

This is a fundamental assumption of the process.  The assumption is that the methods
described for calculating the error rate are realistic.

4. The limits on the precision and bias are based on the smallest number of required
sample values in a 3-year period.  In particular, it is assumed that 75 percent of
1-in-6-day sampling is both sufficient and attainable.

It is also assumed that the missing values are completely at random.  It is, of course,
assumed that the missing values are independent of the daily value.  However, the
missing data could be random, but clustered because the completeness requirement is
applied quarterly, any clustering is unlikely to have a significant impact.

5. The decision error limits were set at 5 percent.

This is an input criteria needed to carry out the calculations being made.  It is not
necessary that both the false positive error rate and the false negative error rate be the
same, but this was the case that was chosen by decision makers.
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6. Measurement imprecision was established at 10 percent coefficient of variation (CV).

This input criteria statement has the implied assumption is that a 10 percent CV is
attainable.  (And, as noted above, it makes sense to measure the precision in terms of a
percent of the mean.)

7. Achievement of bias and precision limits.

As with Assumption 6, the DQO was developed assuming that an absolute bias of 10
percent was achievable.  There is also the underlying assumption that the bias should be
measured as a percent of the mean rather than as an absolute bias.  The DQOs are
developed assuming a worst case scenario with respect to the bias.  (The bias is always
assumed to be in the direction that would result in a decision error.)

8. There is a mean seasonal pattern to the PM concentrations that can be adequately
described by a sinusoidal curve such that the ratio of the high to the low in this pattern is
5.3 (this is assumed as a worst case).

The original value of 5.63 was reduced to 5.3 based on the review of the 1999 and
2000 data.  (See Section 2.7 and Table 1 in the main text.)

9. The random population variation about the mean seasonal curve is log-normal with a
standard deviation that is proportional to the seasonal mean.

The original DQO development assumed normally distributed variation.  This was
changed to lognormal to more realistically model the data in the Monte Carlo
simulations.

10. The random population variation about the mean seasonal curve has a CV of at most
80 percent.

This was increased from 50 percent based on the review of the 1999 and 2000 data. 
(See Section 2.7 and Table 2 in the main text.)

11. The precision and bias will be constant throughout the 3-year period (or at least
consistently within their respective limits).

12. The precision and bias are checked sufficiently often to detect significant deviations
from the DQOs.
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13. The day-to-day values (of the truth) are assumed to be independent.

The review of the network data found that this is NOT true across the network. 
However, it is nearly true; the minimum correlation between daily values is about 0.3. 
To model the worst case for the decision maker, values close to 0 (=uncorrelated)
should be used.  Incorporating a small amount of correlation into the DQO modeling
has very little effect on 1-in-6-day sampling.  The effect would be more pronounced on
a DQO based on 1-in-3-day sampling or daily sampling.

14. The measurement error is assumed to be independent from day-to-day.

This is much the same as saying that the bias is consistent.  In particular, it is assumed
that the sampler will not be high for a couple of months, then low for a while, and
average out to some acceptable bias.


