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Foreword

This technical report presents the results of work performed by ManTech Environmental
Technology, Inc., and RTI International under Contract 68-D-00-206 for the Human Exposure and
Atmospheric Sciences Division, National Exposure Research Laboratory, U.S. Environmental
Protection Agency, Research Triangle Park, NC. This technical report has been reviewed by
ManTech Environmental Technology, Inc., and RTI International and approved for publication.
Mention of trade names or commercial products does not constitute endorsement or recommendation
for use.
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1. Introduction

Under this work assignment (WA), field data from the national PM2.5 particulate monitoring
network was analyzed to further develop methodology presented in the earlier WA 76 (U.S. EPA,
2003). The ultimate goal of both studies is the development of methods for testing whether samplers
that are candidates for equivalent method status in the PM2.5 network perform acceptably in
comparison to current federal reference method (FRM) samplers. These tests are known as
equivalency tests, and candidate samplers that pass are designated federal equivalent method (FEM)
samplers. A focus of both studies is candidate samplers that can record measurements continuously
over time.

A main goal of WA 76 was to compare performance requirements set by existing FRM
equivalency tests with field standards required by the data quality objective (DQO) process (U.S.
EPA, 2002). This comparison had the goal of determining the extent to which these independently
developed standards were consistent. The conclusion of this comparison was that the two standards
were largely incompatible, and the resulting recommendation was that the equivalency standards
should largely be modified for compatibility with the standards required by the DQO methodology.
The DQO standards are that an FRM monitor sampling at a 1-in-6-day frequency should have
measurement error precision of no more than 0.1 and multiplicative bias between 0.9 and 1.1.

This WA evaluates the recommendations of WA 76 by applying the recommended
methodology to field sampler data. The field data sets are obtained from five sites representing
diverse geographic and climatic regions within the network and also varied continuous sampler
types. This WA also conducts some exploratory data analysis of the field sampler data to check if
the WA 76 methods are adequate or whether further modifications might yet be made.

Principal recommendations of this WA for future equivalency tests are as follows:
1. The basic conclusions of WA 76 should be retained, namely that the equivalency tests

be performed using the DQO measurement error model for both reference and candidate
samplers. For candidate samplers the DQO model allows estimation of both precision
and multiplicative bias, and these parameter estimates can be compared to bounds
obtained by DQO grey zone simulation.

2. Additive bias should be introduced to the DQO measurement error model to allow its
estimation in equivalency tests and incorporation into DQO simulations. 

3. Correlation of candidate and reference sampler readings should be used as a simple but
useful measure of model fit.

The last two of these recommendations concern elements of the current equivalency tests that the
exploratory data analysis suggests be retained.

This report is divided into eight sections. After the introductory material in section 1,
section 2 reviews the DQO and WA 76 measurement error models. Section 3 describes the field data
and conclusions that might be drawn from it, and section 4 gives a proposed measurement error
model. Section 5 deals with obtaining performance bounds for the model parameters, and section 6
describes approaches to estimating parameters. Application of the resulting methods to simulated
and field data is done in section 7. Section 8 provides a discussion.
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2. Review of DQO and WA 76 Model

The DQO model consists of both a population model for the generation of true PM2.5 daily
values and a measurement error model that adjusts these true values to provide simulated readings
of field monitors in the national network.

The DQO measurement error model is that for sampler j=1,…,J at site i=1,…,I at time
k=1,…,K the recorded measurement  is equal toijkY

ijk j ik ijkY Uβ ε=
where  is the true particulate concentration at a given site at a given time,  is a sampler-ikU jβ
specific multiplicative bias, and the are independent normal errors withijkε ( )ε σijk C jN~ , ,1 2 2

,C jσ
being the precision1 of sampler j. The DQO model thus allows both sampler-specific precisions and
biases since it is used to set performance bounds on individual samplers in the field. When they need
to be simulated, true daily values are simulated according to the DQO population model,ikU
described later in section 5.1.

In adapting the DQO model for use with equivalency tests, it was necessary to specify a
separate measurement error model for both the FRM samplers and the candidate samplers. The FRM
measurement error model has observed daily reading  equal to the product of the true daily*

ijkX
value and a normally distributed random error 

,* *
ijk ik ijkX U ε=

where  and the  are independent. That is, it assumes no multiplicative bias for* 2~ (1, )ijk RNε σ *
ijkε

reference samplers in the DQO test, an assumption that is based on historically observed
performance of FRM samplers under equivalency test conditions. The precision parameter  is2

Rσ
assumed common to all reference samplers.

For candidate samplers, the WA 76 measurement error model has observed daily reading
 equal to the product of a sampler-specific multiplicative bias, the true value, and a randomijkX

error

,ijk j ik ijkX Uβ ε=
where  and are independent. Multiplicative biases are allowed to be sampler-specific;2~ (1, )ijk CNε σ
however, the precision parameter is common to all candidate samplers.

This model can be fit using an analysis-of-variance-like weighted regression where variances
 and  are first estimated, and these estimates are then used as weights in the regression to2

Cσ 2
Rσ

estimate candidate sampler multiplicative biases ,..., . Since the goal of the equivalency test1β Jβ
is to evaluate overall properties of a type of candidate sampler, random effects ,...,  are1β Jβ
considered as a group in evaluating the overall candidate sampler multiplicative bias.
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The WA 76 report thus recommended an equivalency test where candidate samplers were
evaluated according to a DQO measurement error model. The report did not recommend the
retention of an additive bias (intercept) or correlation from the current equivalency tests. As will
now be seen, trends in the field data suggest that these parameters might still be useful in an
equivalency test.
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3. Review of Field Samples

Field data were provided from five sites that had both FRM and continuous monitors present.
These five sites—Bakersfield, Detroit, New York, Tampa, and Winston-Salem—were selected to
represent a broad spectrum of geographic regions, climatic regions, and continuous sampler types.
Field data for each site consisted of time series of a single or a collocated pair of FRM samplers and
of a single or a collocated pair of continuous samplers. Although some of these data should allow
a basic evaluation of a proposed equivalency testing method, the data sets themselves were not
collected as equivalency tests. For equivalency tests, fewer days (currently a minimum of 10) and
more replicates (currently three) of both FRM and candidate samplers would be collected.

Of the sites, the Bakersfield site had both paired FRM and continuous samplers, while New
York and Detroit had paired FRM and a single continuous. The Tampa site had a single FRM and
two varieties of paired continuous samplers. The Winston-Salem site had only a single FRM and
a single continuous. Thus, the Bakersfield site may be considered most representative of an
equivalency test, having replicate samplers of both FRM and continuous kind.

Some exploratory data analysis for each of these sites is now presented. For each site,
scatterplots of daily readings are given to illustrate association among the readings. Some time series
are provided for interpretation of temporal trends.

3.1 Bakersfield Field Data
The Bakersfield samples provide the only data set with both collocated reference and

candidate samplers. These replications of both kinds of samplers make this data set most similar to
current equivalency tests.

Time series plots2 of the Bakersfield readings are given in Figure 1. Trends illustrated by this
series are that the continuous MetOne BAM samplers tend to produce higher readings than the FRM
samplers, and that samplers of the same type tend to have more similar readings than those of
different types.

The consistency of readings within sampler types is further illustrated by the pair-wise
scatterplots given in Figure 2. Paired readings within sampler types show relatively high correlation
as compared to correlations across sampler types. There appear to be relatively few outliers, with
the apparent exception of a couple of smaller FRM readings. 
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Figure 1. Time series of days with readings for all four samplers from the
Bakersfield data set.

Figure 2. Scatterplots of Bakersfield readings for collocated FRM and
collocated MetOne BAM samplers.
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That the correlation between sampler types is less than might be expected, given the
correlation within sampler types, is suggested by the correlation matrix of Table 1, where the across-
type correlation is notably smaller than within type. Note that the average of the across-sampler-type
correlations is 0.978, which exceeds the minimally required 0.97 of the current equivalency tests.
The correlation of the sample means of the candidate and equivalent samplers equals 0.981, also
exceeding the required amount.

Table 1. Sample Correlations among Bakersfield Samplers 

FRM1 FRM2 BAM1 BAM2
FRM1 1.000 0.993 0.978 0.980
FRM2 0.993 1.000 0.974 0.981
BAM1 0.978 0.974 1.000 0.994
BAM2 0.980 0.981 0.994 1.000

Computing the regression statistics of the current equivalency tests gives an intercept of 5.89
and a slope of 1.05. The slope satisfies the requirement that it lie between 0.95 and 1.05, but the
intercept exceeds the bounds of -1 and 1. Thus, these field data for the collocated BAM samplers
give estimates that do not satisfy current equivalency requirements.

Similarly, the methods of WA 76 can be used to evaluate the Bakersfield data as if they were
from an equivalency test. Table 2 gives precisions and biases for the Bakersfield data. Two
approaches are taken, with and without outliers. The analysis without outliers removes two
observations from the reference sampler data set: paired observations of (16.4, 8.5) and (1.0, 9.5).
There did not appear to be any outliers in the candidate data. With outliers removed, both reference
and candidate samplers have estimated precisions better than the DQO-required 0.1. The average
multiplicative bias of the two samplers is well above 1.1, so the candidate samplers would also fail
equivalency tests according to the DQO standards and WA 76 methods.

Table 2. Bakersfield Parameter Estimates for Candidate Samplers According to the WA 76 Model

Parameter Estimate with Outliers Estimate without Outliers
Reference precision 0.230 0.050
Candidate precision 0.077 0.077
Average candidate bias 1.350 1.350
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Figure 3. Scatterplots of Detroit readings for collocated FRM and an R&P TEOM running
at 50 °C.

3.2 Detroit Field Data
The field data from Detroit were obtained from collocated FRM samplers and a continuous

R&P TEOM operating at 50 °C. Scatterplots of the Detroit readings are given in Figure 3 and
suggest that the FRM samplers show relatively good within-sampler precision (estimated reference
sampler precision is 0.055); however, in comparison with the continuous TEOM sampler, the
scatterplots suggest a bivariate mixed distribution. This mixed distribution appears to have two
component distributions, each associated with seasonal effects as illustrated by Figure 4, which
gives a scatterplot of the TEOM versus the first FRM sampler with the points labeled according to
month of the year. Of the two component distributions of Figure 4, one appears to largely represent
warmer months, while the other the cooler ones. This mixed distribution might be expected to
decrease the correlation, and the average of the correlation coefficients of the two FRM-continuous
pairings is 0.82, which is well below the current equivalency requirement of 0.97.
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Figure 4. Scatterplot of Detroit TEOM readings vs. FRM readings with points labeled by
month.

3.3 New York Field Data
Like the Detroit site, the New York site had two FRM samplers and a single R&P TEOM

operating at 50 °C. Scatterplots of the New York readings are given in Figure 5, and as might be
expected, show a very similar pattern to Detroit. The FRM readings are very consistent among
themselves, but they again suggest a mixed distribution in comparison to the TEOM. The reference
sampler precision is estimated as 0.040, and the average correlation across sampler types is 0.945.
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Figure 5. Scatterplots of New York readings for collocated FRM and an R&P TEOM
running at 50 °C.

3.4 Tampa Field Data
The Tampa site had a single reference sampler and two types of paired continuous samplers:

paired DKK beta gauges and paired FH-62 Thermo-Andersen (TA) beta gauges. A time series plot
of the Tampa readings for all days without missing observations is given in Figure 6. The time series
shows that the DKK and TA samplers tend to have measurements larger than the FRM sampler, with
the DKK samplers typically having the largest readings. The within-sampler-type precision appears
to be good for the TA samplers but poor for the DKK samplers. These effects are reflected by their
estimated precisions, which are 0.061 for the TA samplers and 0.190 for the DKK samplers. 

Scatterplots for the Tampa readings are given in Figure 7. As expected from the time series,
a relatively high level of correlation is apparent among the TA samplers, with less correlation among
DKK samplers or across sampler types. The average of the sample correlation of the TA samplers
with the FRM sampler is 0.933, while that of the DKK samplers with the FRM sampler is 0.909.
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Figure 6. Time series of days with complete data for the Tampa site. Series are
federal reference method (FRM) samplers, DKK beta gauge samplers, and Thermo-
Andersen (TA) beta gauges.

Figure 7. Scatterplots of Tampa readings for the FRM, the Thermo-Andersen,
and the DKK beta gauges.
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Figure 8. Scatterplot of Winston-Salem FRM and R&P TEOM readings.

3.5 Winston-Salem Field Data
Data from the Winston-Salem site comprise readings from only a single time series of FRM

and a single time series of R&P TEOM operating at 50 °C and are presented in the scatterplot in
Figure 8. Unlike the more northerly Detroit and New York readings, there is little suggestion of a
mixed distribution in the paired observations (with the possible exception of three observations).
This might be due to the more moderate seasonal conditions at this site. The sample correlation of
the two samplers is 0.979.

3.6 Conclusions from Field Data
Current equivalency tests place constraints on the estimated correlation, regression intercept,

and slope. According to current equivalency methodology, the estimated intercept of the Bakersfield
readings exceeded its allowed bounds, while the other two statistics were within bounds.
Alternatively, according to the WA 76 methodology, the precisions are acceptable, while the
multiplicative biases are not. Thus, both the current equivalency methods and the suggested WA 76
methods would not consider the Bakersfield continuous samplers equivalent.

A summary of results from all equivalency tests as performed according to current methods
is given in Table 3. It can be seen from the table that all field samplers would fail current
equivalency tests for the observed statistics.
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Table 3. Field Data Estimated Parameter Values Based on Current Equivalency Methods

Site
Continuous

Sampler Type

Number of Reference Samplers/
Continuous Samplers/Days

Complete Observations α̂ β̂ ρ̂
Bakersfield BAM 2/2/52 5.89 1.05 0.981
Bakersfield1 BAM 2/2/50 5.55 1.06 0.982
Detroit TEOM 2/1/31 0.36 0.70 0.826
New York TEOM 2/1/111 1.86 0.92 0.945
Tampa DKK 1/2/30 2.64 1.54 0.905
Tampa TA 1/2/25 0.04 1.23 0.936

1After removal of two FRM sampler outliers as described in section 3.1.

The differences between the DQO/WA 76 and current equivalency methods are summarized
in Table 4, which gives the quantities measured as well as the required ranges by each approach. The
only common parameter among them is the multiplicative bias.

Table 4. Comparison of Quantities Estimated between Current DQO and Equivalency Methods

Parameter DQO/WA 76 Requirement
Current

Equivalency Tests Requirement
Precision Yes #0.1 No —
Multiplicative bias (:g/m3) Yes $0.9 and #1.1 Yes $0.95 and #1.05
Additive bias (:g/m3) No — Yes $-1 and #1
Correlation of means No — Yes $0.97

After analysis of the field data, both the precision and the slope remain useful quantities to
measure, as they still minimally describe the multiplicative error model, and the observed data (at
least for FRM samplers) appeared to be consistent with this basic measurement error model.

Although the WA 76 report did not recommend the inclusion of an additive bias parameter,
the estimated non-zero intercept of the Bakersfield continuous samplers suggests that for some
samplers at some sites the addition of an intercept parameter might lead to a better fitting model.
Including an intercept does not fundamentally change the measurement error model, as the current
DQO model is simply the zero intercept special case. The intercept is not currently part of the DQO
methodology, however, and so adding it to the equivalency tests suggests perhaps introducing it into
the DQO methodology as well.

The field data also suggest that correlation can be a useful parameter to estimate in an
equivalency test. The Bakersfield readings suggested a somewhat lower across-sampler-type
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correlation than might be expected, based on the within-type correlations, and the readings from
Detroit and New York revealed a likely mixed distribution of measurement errors, where this mixed
distribution allowed low across-sampler-type correlations. Correlation thus might be retained in the
tests as a check on model adequacy, as is now described.

The field data analyzed here suggest that the correlation, and potentially the intercept, allow
an evaluation of DQO model adequacy within the equivalency tests. They test for model adequacy
both by generalizing the standard DQO model and by allowing for the detection of the influence of
additional, unmeasured variables on sampler performance. To illustrate, consider the WA 76
candidate sampler measurement error model in the presence of unmeasured variables , ,ikZ 1,...,i I=

 that are added to the candidate sampler readings, so at a given site on a given day1,...,k K=

.ijk ik ijk ikX U Zβ ε= +
These unmeasured variables might have any distribution (including mixed distributions such as seen
in Detroit and New York), but suppose that they have independent normal distributions

. The model then corresponds to  where  and2~ (5, /100)ik ikZ N U *
ijk ik ijk ikX U Zα β ε= + + 5α =

. Thus, a first effect of this variable is that its expectation can be absorbed into* 2~ (0, /100)ik ikZ N U
the intercept, and the intercept therefore does necessarily represent an inherent property of a
candidate sampler. 

A scatterplot of simulated measurements for two reference and two candidate samplers in
the presence of this unmeasured variable model is given in Figure 9. From this figure, it can be seen
that the correlation across sampler types is less than within types, an effect which is due to the
presence of the unmeasured variables. This is a similar situation to that in Bakersfield, where such
variables may have affected the correlation. 

The data analysis then leads to the recommendation that parameters for additive bias,
multiplicative bias, precision, and correlation be included in the equivalency tests. Precision and
multiplicative bias are the basic parameters of the sampler measurement error model, with the
additive bias allowing a somewhat more general model. In addition to correlation, additive bias can
also be used to assess the fit of the basic model, with lack of fit potentially due to the presence of
unmeasured variables or some other functional misspecification of the model.
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Figure 9. Scatterplots illustrating the effect of an unmeasured variable on the
correlation.
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4. Proposed Measurement Error Model

The model for reference sampler measurement error of sampler j at time k at site i has reference
sampler reading  given as*

ijkX
* *
ijk ik ijkX U ε=

where  is the true daily value and  is the multiplicative measurement error. The errors areikU *
ijkε

assumed independent and normally distributed  with mean equal to 1 and precision* 2~ (1, )ijk RNε σ
.Rσ

For the candidate samplers, the measurement error model is more general, with candidate
sampler reading  given asijkX

ijk ik ijkX Uα β ε= +
where  is an intercept allowing for additive bias,  is a slope allowing for multiplicative bias,α β
and the are independent errors that are normally distributed  with mean 1 andijkε 2~ (1, )ijk CNε σ
precision .Cσ
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215 10.238sin 1,...,1095
365k

j kπμ ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

5. Performance Bounds for Model Parameters 

Each equivalency test parameter must fall within some range of values that allows the
candidate sampler to exhibit equivalent performance. Current bounds based on DQO methodology
or equivalency tests have been given in Table 4. The parameters to be estimated and their bounds
differ for the two methods of the table, and the recommendation of WA 76 was that future bounds
be based on the DQO methodology.

That bounds be based on DQO methods is again recommended in this report, and the DQO
methodology can be extended to provide bounds for the intercept in addition to the current slope and
precision. This extension is described in section 5.1.

A bound for correlation can be obtained as a function of the bounds for precision and of
parameters of the PM2.5 population process, which generates true daily means (in the DQO
methodology this would be the sine curve combined with the daily variation). Methods to obtain
bounds for the correlation coefficient are given in section 5.2.

5.1 Bounds for the Precision, the Intercept, and the Slope
Current bounds for the precision and slope are determined by DQO grey-zone simulation.

This simulation is described in this section and is extended here to include an intercept. For specified
population mean, multiplicative bias, and precision, the current DQO simulations simulate many
realizations of sampler three-year means to estimate an error rate equal to the proportion of times
that the simulated three-year mean lies on the other side of 15.05 :g/m3 from the true simulation
mean.

Each simulation run proceeds as follows:

1. Generate 3 × 365 = 1095 days of mean particulate readings according to the DQO
sinusoidal population model of yearly mean 15.

2. Find the true daily particulate concentration for each day  as  where the kV k k kV eμ= ke
are independent lognormal errors of mean 1 and standard deviation 0.8. The three-year
realized population mean is then ./1095k

k
V V= ∑

3. Divide each year into four quarters and select 12 days at random from each quarter
according to a 1 in 6 sampling scheme whose first day is the first day of the quarter.
Only 12 days are selected per quarter to allow for 25% missing data. A total of n = 48
× 3 = 144 days is selected from the 1095 available with labels given as .1 144,...,s s

4. Convert the realized process of mean  into one with realized mean of interest V 0μ
(e.g., , ) by dividing through by  and multiplying by . The0 12.2μ = 0 18.8μ = V 0μ
adjusted true particulate concentrations for the DQO simulation days are then
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i is s
i
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Z

V
μ ε

=

/i
i

Z Z n= ∑

0

1,...is
iU i n

V
μ μ

= =
5. To allow for sampler measurement error, generate independent normally distributed

measurement errors  of mean 1 and precision (standard deviation) . Set theiε σ
observed reading equal to  where  is a sampler multiplicative bias. Thisi i iX Uβ ε= β
is the DQO measurement error model with multiplicative bias and multiplicative error.

6. Compute the observed three-year mean  as the sample mean of the .X iX
Simulations are run repeatedly  times to generate many three-year sample meansN

, after which the error rate for a true mean of  with sampler multiplicative bias (1) ( ),..., NX X 0μ β
and precision  is estimated as the proportion of times that simulation sample means are generatedσ
on the other side of 15.05 from .0μ

The goal here is to simulate the grey-zone for multiple values of , , , and  where 0μ β σ α α
is an additive bias for the measurement error model, that is, . The approach takeni i iX Uα β ε= +
is to note that in the simulations the observed daily readings  are equal toiX

0

0

i is s i
i

i

e
X

V
Z

βμ μ ε
α

α βμ

= +

= +

where

is the random amount, which only depends on the parameter . Distributions ofσ

can be simulated for each , and their 5th and 95th percentiles, and , estimated. Theσ .05Z .95Z
estimated percentiles of the distribution of , , and  are then obtained asX .05X 95X

 and0
.05 .05= X Zα βμ+

.0
.95 .95= X Zα βμ+

Running 100,000 simulations of the  process for a range of values of  gives the resultsZ σ
presented in Table 5. As expected, the average of the  is very close to 1, with standard deviationZ
increasing moderately as the precision increases. The estimated  is approximately equal to 0.89.05Z
over the range of  used, while the estimated  is approximately 1.12.σ .95Z
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Table 5. Sample Means, Standard Deviations, and 5th and 95th Percentiles for
One Million Simulations of  at Varying Sampler PrecisionsZ

Precision
( )σ

Sample Mean of
Z

Sample Standard
Deviation of Z

Estimated

.05Z Estimated .95Z

0.05 1.000 0.070 0.890 1.119
0.06 1.000 0.070 0.890 1.119
0.07 1.000 0.070 0.890 1.119
0.08 1.000 0.070 0.890 1.119
0.09 1.000 0.070 0.890 1.120
0.10 1.000 0.070 0.889 1.120
0.11 1.000 0.071 0.889 1.120
0.12 1.000 0.071 0.889 1.121
0.13 1.000 0.071 0.888 1.121
0.14 1.000 0.071 0.888 1.122
0.15 1.000 0.072 0.887 1.122
0.20 1.000 0.073 0.885 1.125

Thus, it appears that the percentiles can be approximated as
0

.05 = 0.89X α βμ+
and

0
.95 = 1.12X α βμ+

over all  of interest. For example, using the current DQO lower bound , ,σ 0 12.2μ = 0α =
, then1.1β =

,.95 = 1.12(1.1)(12.2) 15.03X =
and if using the current DQO upper bound , , , then0 18.8μ = 0α = 0.9β =

..05 = 0.89(0.9)(18.8) 15.06X =
The results given in Table 5 suggest that precision is not very important as far as three-year

average attainment decisions are concerned. Its bounds might be set for reasons other than DQO
attainment. Currently the bound is 0.10, although it could rise to 0.15 or even 0.20 with little effect
on the grey zone.

Given that precision might largely be ignored, the results of Table 5 also suggest allowable
ranges for  and  when considered jointly. For a fixed grey-zone boundary and fixed percentileα β
value (15.05), we can solve for  in terms of  (or vice versa), for example,α β

0
.05= -0.89 15.05 0.89 18.8 15.05 16.73Xα βμ β β= − = −

.0
.95= -1.12 15.05 1.12 12.2 15.05 13.66Xα βμ β β= − = −
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Figure 10. Allowable multiplicative and additive biases according to the DQO model. The
upper line is for a true mean of 12.2, and values below it are acceptable. The lower line is for
a true mean of 18.8 and values above it are acceptable. The dashed region contains
acceptable values under current equivalency tests. 

The two lines thus described by current grey-zone bounds are plotted in Figure 10. The region
between them gives all allowable values of  and  such that the DQO requirements are met.α β
Two notable special cases are if , then , and if , then .0α = 0.9 1.1β≤ ≤ 1β = 1.7 1.4α− ≤ ≤

5.2 Bounds for the Correlation Coefficient
Correlation is recommended for inclusion in the equivalency tests for evaluation of model

fit. However, it is more difficult to assess than the other parameters since its value depends not only
on measurement error variances (  and ) but also on moments of the population process,2

Rσ 2
Cσ

which generates the true daily means. To demonstrate this, recall that for measured values of
reference samplers

,* *
ijk ik ijkX U ε=

while for candidates

.ijk ik ijkX Uα β ε= +
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Dropping indices for clarity (and since is now drawn randomly according to the sampling schemeU
and population process), consider a pair of reference and candidate measurements  collected*,X X
on the same day at the same site, with true value and errors , respectively. The covarianceU * ,ε ε
of paired reference and candidate measurements is then 

and the variance of the reference measurements equals

and similarly the variance of the candidate measurements equals

so that the correlation of reference and candidate measurements equals

where  is the population coefficient of variation, the ratio of the population standard deviationUτ
to the population mean

 .
U

U
U

στ
μ

=

Thus, the correlation only depends on ,  and population process parameter , and does not2
Cσ 2

Rσ Uτ
depend on either or .α β
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Figure 11. Left plot is of 100 independent normal N(50,400) variates adjusted for measurement
error. Right plot is 100 independent normal N(50,400) variates truncated within [45,55] and then
adjusted for measurement error.

It can also be shown that if is the mean of  reference samplers on a given day and *X *J X
is the mean of  candidate samplers on the same day, then the correlation of the sample means isJ

To illustrate the effect of the population distribution on the correlation, consider the two plots of
Figure 11. In the left plot, 100 independent normal random variates are drawn from a distribution
of mean 50 and standard deviation 20. These true daily values are then adjusted for measurement
error precision of candidate samplers of 0.10 and reference samplers of 0.05. In the right plot, the
same process is repeated except that only realizations within the interval [45,55] are accepted for
measurement error adjustment. The right plot might represent results if a non-representative sample
of yearly days were selected for an equivalency test. 

Calculating the sample correlation in each case gives 0.96 for the left plot, and 0.34 for the
right plot. Thus, the sampling scheme selected for daily values can significantly affect the value of
the correlation coefficient. The true mean and variance for the untruncated population are 50 and
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400, while for the truncated population they are 50 and 8.23. Assuming reference sampler precision
of 0.05 and candidate sampler precision of 0.10, the theoretical values of the correlation for each
population are therefore 0.96 and 0.38, respectively, based on population values for  ofUτ

 and .400 / 50 0.4= 8.23 / 50 0.057=

Theoretical correlations for various combinations of the population precision-mean ratio Uτ
and the candidate precision  are provided in Table 6. From the table, it can be seen that providedCσ

 is about 0.5 or greater the correlation should be 0.97 or greater for candidate sampler precisionUτ
of 0.10 or less. Correlation increases rapidly as the precision becomes large relative to the mean.

Table 6. Correlations for Single Reference vs. Candidate Samplers for Various  and .Uτ Cσ
Reference sampler precision is set equal to 0.05. 

Uτ Cσ
0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.20

0.01 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01
0.02 0.14 0.12 0.10 0.09 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.04
0.04 0.39 0.35 0.31 0.28 0.25 0.23 0.21 0.20 0.18 0.17 0.16 0.12
0.10 0.80 0.77 0.73 0.70 0.66 0.63 0.60 0.57 0.54 0.52 0.49 0.40
0.20 0.94 0.93 0.91 0.90 0.88 0.86 0.85 0.83 0.81 0.79 0.77 0.68
0.25 0.96 0.95 0.94 0.93 0.92 0.91 0.89 0.88 0.86 0.85 0.83 0.76
0.33 0.98 0.97 0.96 0.96 0.95 0.94 0.93 0.92 0.91 0.90 0.89 0.83
0.50 0.99 0.98 0.98 0.98 0.97 0.97 0.97 0.96 0.95 0.95 0.94 0.91
1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.96
2.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.97

Table 7 provides correlations calculated in the same way as Table 6 except that they are
based on averages of three reference samplers versus three candidate samplers. Similar trends are
apparent as in Table 6, although the correlations are somewhat higher due to the decrease in the
variance of the sample means.

Table 7. Correlations for Sample Means of Three Reference vs. Three Candidate Samplers for Various
 and . Reference sampler precision is set equal to 0.05.Uτ Cσ

Uτ Cσ
0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.20

0.01 0.11 0.09 0.08 0.07 0.06 0.06 0.05 0.05 0.04 0.04 0.04 0.03
0.02 0.32 0.28 0.25 0.23 0.20 0.19 0.17 0.16 0.15 0.14 0.13 0.10
0.04 0.66 0.61 0.57 0.53 0.49 0.46 0.43 0.41 0.38 0.36 0.34 0.27
0.10 0.92 0.91 0.89 0.87 0.85 0.83 0.81 0.79 0.77 0.75 0.72 0.63
0.25 0.99 0.98 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94 0.94 0.90
0.33 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.96 0.96 0.94
0.50 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.97
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99
2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99
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The results of this section show that the correlation between reference and candidate
samplers expected if the measurement error models are true depends on both the moments of the
population process that generates the true daily values and the precisions of each type of sampler.
Methods to estimate the correlation expected if the model were true and also the sample correlation
are given later in section 6.3.
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6. Parameter Estimation

Methods to estimate the parameters of interest in an equivalency test are now provided. Note
that, due to resource limitations in completion of this work, it has not been possible to investigate
statistical issues relating to sampling error, such as interval estimation or hypothesis tests. 

6.1 Maximum Likelihood Estimation
The measurement error model of section 4 can be fit numerically according to the maximum

likelihood approach. Once the model has been specified, the natural logarithm of the corresponding
likelihood function can be maximized numerically to obtain maximum likelihood estimates for the
parameters of interest.

For the model considered here the likelihood is a product of (IJK)2 normal densities based
on the assumptions that the  are independent and normally distributed , and the*

ijkX 2 2( , )ik ik RN U U σ
are independent and normally distributed as .ijkX 2 2 2( , )ik ik RN U Uα β β σ+

The challenge in using likelihood methods for this problem is that the number of parameters
to be estimated is not only the four of , , , and , but also the IK parameters for each ofα β Cσ Rσ
the true daily PM2.5 values . The dimension of the parameter space over which maximizationikU
must be done can therefore be very large, increasing with both days and sites. These additional
parameters are known statistically as nuisance parameters and can either be numerically integrated
out of the likelihood or maximized in addition to the parameters of interest. The approach taken here
will be to maximize the full model, and, remarkably, the optimization procedures used converge for
all data sets considered here, up to 111 days of observations (a 115-dimensional space). In
comparison, a standard equivalency test should have between 30 and 45 days of observations.

Starting values for the maximization are taken as the day means for the reference samplers,
an intercept  of zero, a slope  of 1, reference precision  of 0.05, and candidate precision 0α̂ 0β̂ 0ˆ Rσ 0ˆCσ
of 0.10. Code for performing the maximization in the R computing language is provided in
Appendix A.

6.2 Other Estimators
In addition to maximum likelihood estimation of model parameters, the precisions of both

reference and candidate samplers can be estimated using simple estimators. These estimators are
useful in that they guard against situations where the model is misspecified, possibly with additional
sources of error present such as unmeasured variables (as described in section 3.6). They do this by
relying only on the candidate or reference data, depending on which precision is being measured.
This is more important for candidate samplers than for reference samplers, as the reference sampler
model is well supported by historical data and so the likelihood estimate (particularly if restricted
to reference data alone) should be reasonable. 
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In general, the model considered here is of an additive intercept with multiplicative error:

ijk ik ijkX Uα β ε= +
where the  are independent errors that might be assumed to be normally distributedijkε

 with mean 1 and precision . The goal is to develop a simple estimator for ,2~ (1, )ijk CNε σ Cσ Cσ
which is difficult here since applying a log transform does not in this case make the model additive
due to the additive intercept. 

The approach taken here will be to note that it is expected that the squares of both precisions
will be well less than 1, i.e.,  and , and for random2 20.05 .0025 1Rσ ≤ = < 2 20.2 .04 1Cσ ≤ = <
variable  with  and  small, the Taylor expansion of function  around ε [ ] 1E ε = 2[ ]Var ε σ= ( )h ε [ ]E ε
is approximately

( ) ( [ ]) '( [ ])( [ ])h h E h E Eε ε ε ε ε≈ + −
where  is the first derivative of , assuming it exists. If , then the'h h ( ) log( )ijk ik ijkh Uε α β ε= +
expansion can be written

and so 

This result has two consequences:

1. For reference samplers,  and so 0α ≡

.2[ ( )]ik ijkVar h ε σ≈
 Thus, the sample variance of the log-transformed reference sampler measurements

at a given site on a given day is a closely approximating estimator of . That is,2
Rσ

2 21
R k

k
S

IK
σ = ∑%

 where  is the sample variance of the log reference sampler measurements2
kS

 at site i at time k. The precision estimator is then .*log( )ijkX 2
R Rσ σ=% %
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2. For candidate samplers, in general and so0α ≠

 is also nonzero. However, as  gets large,ikU

 becomes small and so the approximation is closer for days with larger average
readings. So an estimator might be

where is the sample variance of the log candidate sampler measurements  at site i at2
kS log( )ijkX

time k restricted to days with larger reference sampler readings, perhaps over 20. The candidate
sampler precision is then estimated as

.

An alternative approach might use substitution of  and  from the likelihood estimation,α β
although that is not studied here. Note that, provided  is not too far from zero, the estimatorα
should be reasonably good and some idea as to what value  takes can be obtained from theα
likelihood estimation. 

6.3 Correlation and Its Estimation
In addition to estimating parameters of the measurement error model, we are also interested

in estimating the correlation between candidate and reference samplers and comparing the estimated
value to a correlation expected if the model were true. As described previously, the estimated
correlation coefficient can provide a measure of model fit. 

The correlation between reference and candidate samplers can be estimated with data from
an equivalency test; however, it is difficult to interpret without knowing what value might be
expected were the model correct. This expected value can, however, be estimated if a consistent
estimator of , the coefficient of variation at site i, can be obtained. It turns out that the reference,U iτ
sampler data allow such an estimator.

Using the approach in section 5.2, it can be shown that for collocated reference samplers j,
jN

* * 2
, ' '[ , ] 'i jj ijk ij k UCov X X j jσ= ≠

and so the sample covariance among reference samplers is an estimate of the population process
variance. Since the population process mean  at site i can be estimated as the sample mean of,U iμ



TR-CAN-04-02

30

2
,

,
,

* *
,

*

ˆ
ˆ

ˆ

2 ˆ ( , )
( 1)

1

U i
U i

U i

i mn imk ink
m n m

ijk
jk

Cov x x
J J

x
JK

σ
τ

μ

≠

=

−
=

∑∑

∑

( ) ( )
1

2 2 2
,0 ,02 2

0, , ,*
ˆ ˆ ˆ1 1 1 1R C

i U i U iJ J
σ σ

ρ τ τ
−

− −
⎡ ⎤⎛ ⎞⎛ ⎞

= + + + +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

the reference sampler values at that site, the population coefficient of variation at site i can therefore
be estimated as 

where  is the sample covariance between reference samplers m and n at site i.* *
,

ˆ [ , ]i mn imk inkCov x x
Thus, the population coefficient of variation at a given site is estimated as the square root of the
average of sample covariances among all pairings of reference samplers at the site divided by the
sample mean of the reference sampler readings at that site. Using this estimated coefficient of
variation, a target correlation  for the means of reference and candidate samplers at the site is0,ˆ iρ
then estimated as 

where  and  are the number of reference and candidate samplers at the site. In estimating this*J J
target correlation, values for  and  can be obtained either as sample estimates or as the,0Rσ ,0Cσ
largest allowable values, for example, and . If sample estimates are used, it0.05Rσ = ,0 0.10Cσ =
is recommended that variance estimates based on Taylor approximations, and not on maximum
likelihood, be used, since the Taylor approximation estimates are not affected by the types of
unmeasured variables described earlier.

To illustrate the method, suppose that 10 days of observations were available for two
collocated reference samplers and a candidate sampler for the first, non-truncated population of
Figure 11. For this simulated sample given in Table 8, the sample mean among paired reference
samplers is 33.5. The sample covariance among reference samplers is 433.4, and the estimated Uτ
is therefore 0.62. The target correlation is then found to be 0.980, assuming precisions of 0.05 for
reference and 0.10 for candidate samplers. The sample correlation of the mean of the reference
measurements versus the candidate measurements is 0.977. 
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Table 8. Sample Data for Correlation Analysis

Day FRM1 FRM2 Candidate
1 50.6 52.2 53.5
2 14.6 15.3 16.4
3 41.8 42.3 48.9
4 46.3 41.2 45.5
5 38.4 34.6 33.7
6 31.2 29.4 29.6
7 08.5 07.0 07.3
8 68.1 77.0 64.0
9 03.8 03.7 03.8
10 34.2 28.8 38.3
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Figure 12. Simulated sampler readings vs. true daily values for reference
samplers (circles) and candidate samplers (triangles).

7. Illustration Using Simulated and Field Data Sets

This section applies the methods of this report to evaluate the performance of reference and
candidate samplers for both simulated and field data sets. 

7.1 Model Fit Using Simulated Data
A simulated data set was generated according to the design of the proposed equivalency

tests. For a single site, three reference and three candidate samplers had measurements simulated
for 30 days. These measurements were simulated according to the measurement error model of
section 4, with sampler parameter values set as , , , and . True1α = 0.95β = 0.05Rσ = 0.10Cσ =
daily values (the ) were generated independently from a normal distribution of mean 50 and1kU
standard deviation of 25, with any negative values discarded until a total of 30 true daily values were
obtained. Figure 12 plots the simulated values for reference and candidate samplers against the true
daily values.
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Figure 13. Estimated daily values vs.  true daily values. A line of slope 1 through
the origin is included for reference.

Fitting the model using the likelihood method gives maximum likelihood estimates of
, , , and . Figure 13 plots the estimated daily valuesˆ 0.598α = ˆ 0.955β = ˆ 0.052Rσ = ˆ 0.097Cσ =

against the true daily values. This plot shows estimated mean daily values lying close to a 45-degree
line through the origin, as expected.

For comparison, the model was also fit using only the reference sampler data. In this case,
the reference sampler precision is estimated as , close to its estimate under the full modelˆ 0.049Rσ =
using both reference and candidate sampler data.

Using the Taylor approximation estimators  and  of section 6.3, estimates areRσ% Cσ%
 and  over all days, or  if restricting to days with reference0.059Rσ =% 0.095Cσ =% 0.097Cσ =%

means greater than 20. Note that, although these estimates are close to the true values, the likelihood
estimates would be preferred in this case as the measurement error model is known to hold exactly
for the simulated data.
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For correlation, the population coefficient of variation for the 30 observed days is 0.41τ =
and the estimated population coefficient of variation (using only the reference sampler
measurements) is . The target correlation of sample means can then be estimated as either ˆ 0.40τ = 0ˆ 0.985ρ =
(using the largest allowable  and ),  using the estimated2

,0 0.05Rσ = 2
,0 0.10Cσ = 0ˆ 0.986ρ =

precisions from the likelihood model, or  using the estimated precisions based on Taylor0ˆ 0.985ρ =
approximation. The sample correlation of the day means of the reference sampler measurements
versus the day means of the candidate sampler measurements is .ˆ 0.988ρ =

7.2 Model Fit Using Field Data
To evaluate the method’s performance with real data, the estimators described here were

applied to the field data of Bakersfield, Detroit, New York, and Tampa. The resulting estimates are
given in Table 9.

The likelihood method was applied to obtain estimates of , , , and . It was alsoα β Cσ Rσ
applied to the reference sampler data to obtain an estimate of  based only on that data. Doing soRσ
provides some insight into the effect of the assumed model structure on the estimate when candidate
sampler data are included.

Taylor approximation estimates are obtained for  and , with two sets of estimatesCσ Rσ
obtained for : the first based on the full candidate sampler data, as would be appropriate if it wasCσ
thought reasonable to assume that  (perhaps supported by a hypothesis test or confidence0α =
interval), and the second after truncating the candidate data above a somewhat arbitrary threshold.
This second estimate reduces the effect of a non-zero  on the estimate.α

Average sample correlations of reference and candidate samplers are obtained and compared
to expected values as computed using reference sampler data. These expected values are computed
after first estimating  and then obtaining values for  and . Values for precision areUτ Cσ Rσ
specified either as fixed target values (  and ) or as Taylor approximation0.05Rσ = 0.10Cσ =
estimates  and , which are preferred over the maximum likelihood estimates as they areRσ% Cσ%
more robust to model misspecification.

Not all statistics could be estimated for all sites since there are fewer replicate samplers than
would be expected in an equivalency test. Sites with only one reference sampler do not allow
estimation of  or computation of the Taylor variance  or of the maximum likelihood estimate Uτ Rσ% ˆ Rσ
based only on the reference data. Sites with only one candidate sampler do not allow computation
of the Taylor estimator , and consequently no estimate of a target correlation  based onCσ% 0ρ̂
estimated precisions. Current plans for equivalency tests call for three replicate candidate and
reference samplers at each site, so all statistics could be computed for the resulting data set, if
needed.
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Table 9. Field Data Estimated Parameter Values after Likelihood Fit and Correlation Analysis

Site

Continuous
Sampler

Type

Number of 
Reference
Samplers/

Continuous
Samplers/ 

Days Complete
Observations Rσ%

ˆ Rσ
FRM
Data

ˆ Rσ
Full
Data

Cσ%
Candidate

Data2

Cσ%
Reduced

Candidate
Data2 ˆCσ α̂ β̂ τ̂ ρ̂

0ρ̂
Est4

0ρ̂
Fixed5

Bakersfield BAM 2/2/52 0.245 0.104 0.123 0.082 0.035
(22)3

0.115 3.03 1.17 0.709 0.981 0.971 0.993

Bakersfield1 BAM 2/2/50 0.051 0.036 0.037 0.080 0.035
(22)3

0.165 4.09 1.13 0.693 0.982 0.998 0.993

Detroit TEOM 2/1/31 0.056 0.040 0.045 NA NA 0.367 1.09 0.71 0.574 0.826 NA 0.991

New York TEOM 2/1/111 0.041 0.030 0.030 NA NA 0.181 0.93 1.03 0.676 0.945 NA 0.993

Tampa DKK 1/2/30 NA NA 0.002 0.181 0.102
(7)3

0.242 1.97 1.72 NA 0.905 NA NA

Tampa TA 1/2/25 NA NA 0.002 0.061 0.059
(6)3

0.193 3.07 1.00 NA 0.936 NA NA

1. After removal of two FRM sampler outliers as described in section 3.1. 
2. Candidate data are all candidate observations. Reduced candidate data are those whose daily reference means exceeds a prespecified threshold.
3. Value in parentheses is number of reference days of mean greater than the threshold. The threshold was set at 20 in Bakersfield and 15 in Tampa.
4. Estimated precisions are based on Taylor approximation estimators  and  (reduced candidate data). Rσ% Cσ%
5. Fixed precisions assume  and .0.05Rσ = 0.10Cσ =
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The Bakersfield data set was fit twice, once for all days with complete data (both reference
and continuous samplers) and once for a reduced data set that had two apparent FRM outliers
removed. Removal of the outliers had the effect of strongly reducing the estimated reference method
precision and increasing the target correlation based on estimated precisions. The data thus illustrate
the importance of carefully checking for the presence of outliers.

Regarding the estimates of reference sampler precision by both Taylor approximation and
maximum likelihood, the estimates are largely consistent with exception of the Bakersfield data with
outliers present and the Tampa TA data. The Tampa TA data provide a maximum likelihood
estimate of  based on only a single reference sampler and the full data set. This mightˆ 0.002Rσ =
be a special case where the likelihood favors making the reference samplers extremely precise
relative to the candidate data whose variation is more directly measured. For the remaining sites,
Taylor and likelihood estimates are similar, with the likelihood being somewhat smaller.

The candidate sampler precision estimates were uniformly larger than those for reference
samplers at each site. Furthermore, likelihood estimates tended to be larger than Taylor estimates.
That the likelihood estimates are larger might be due to model misspecification, as the model
requires that all variation present in the data be absorbed into its parameter estimates. This is good
if the model is believed (as it is in the DQO methodology); however, for departures from the model
(due, for example, to outside sources of variation such as seasonality), the Taylor estimates may
provide a more accurate representation of the precision of candidate measurements at a given site
on a given day. The improved precision is due to the Taylor estimates being based solely on the
candidate data.

However, Taylor estimates based on the full candidate data were typically larger than those
based on the reduced data. This is the opposite of what was expected given the Taylor expansion of
section 6.2 (leaving smaller values in should lead to smaller variance estimates). Further analysis
(not shown) reveals larger variances of daily log observations for days of small reference sampler
means. This suggests an even more general reference and candidate sampler measurement error
model than the one given here, namely, one that has both an additive and multiplicative error.
Allowing for such a model might be seen as a topic for future work. Regardless, based on this
observed effect, we are currently left without a good estimator for candidate precision for use with
the correlation tests. The likelihood estimator may be too large due to model misspecification, and
the Taylor estimate makes too few model assumptions. Based on the limited field data, it would
seem that the full Taylor estimator might be preferred for use with correlation; however, lacking
solid justification for its use will suggest using fixed precision values.

Estimates of slope and intercept at all sites reveal that most have candidate slope-intercept
combinations that lie outside of ranges given in section 5.1. An exception would be the New York
data set.

Sample correlation estimates between day means of reference and candidate samplers were
found to lie between 0.826 and 0.981, while population coefficient of variations were estimated
between 0.574 and 0.709. The estimated target correlations were all over 0.99 if fixed sampler and
reference precisions were used. Excluding outliers from the Bakersfield data and using Taylor
precision estimates gave a target correlation of 0.998. Both Detroit and New York show correlations
well below their targets, while Bakersfield is somewhat close. 
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8. Discussion 

This report has analyzed field data for sites with both continuous and reference samplers to
evaluate and suggest modifications to the DQO/WA 76 methodology for equivalency testing. The
recommendation of the report is that additive bias, multiplicative bias, precision, and correlation
each be included in the testing methods. Two steps in developing tests have been given:
(1) estimators have been provided for each of these parameters, and (2) methods have been given
to determine what ranges the parameters they estimate should fall in to consider a candidate sampler
equivalent. 

The completion of these two steps allows the development of equivalency tests similar in
approach to those currently used. The current tests have an experimental design (three samplers of
each kind, minimum of 10 days, etc.) and statistics that are computed based on the observed data
for comparison to prespecified values. If these statistics fall within allowable bounds, then the
sampler is equivalent. In a similar fashion, this report recommends statistics for use in a test and
provides methods to determine what values the statistics should take for large samples. Under
current proposed methods, these values are directly compared to sample statistics to perform the test.

Although not part of the current equivalency methods, some additional steps could be
followed to statistically complete the methodology. These would be either to simulate or find test
distributions for hypotheses of interest or to obtain interval estimates for parameters considered here.
Interval estimates would be compared to allowable ranges of values to check if overlap existed.
Given hypothesis tests or interval estimators, sample sizes for adequately powerful tests might be
obtained. 

Four parameters are recommended for equivalency testing: candidate sampler precision,
candidate sampler additive bias (intercept), candidate sampler multiplicative bias (slope), and
correlation of reference sampler and candidate sampler day means. It is recommended that the first
three of these be estimated according to maximum likelihood and the correlation be estimated as it
is currently.

Maximum likelihood methods offer the advantage that they more closely model the assumed
error structure in the data. As described in WA 76, the implied model for the current equivalency
tests least-squares fit is simple linear regression, which assumes that predictors are measured
without error—an assumption that does not hold for these data since there is error in the reference
measurements. Having error in the predictors for a regression leads to biased parameter estimators
with the slope being “attenuated” to be flatter than it should be and the intercept estimate biased
accordingly. This may be problematic for the estimate of the intercept, since it is estimated as a
value along the regression line lying outside the range of the data. It is also required to lie within a
relatively tight range, as seen in section 5.1. The other assumption of simple linear regression, which
does not hold here, is that the errors are of constant variance along the length of the regression curve.
The main effect of this difference is that various tests and interval estimates based on simple linear
regression assumptions are not appropriate.
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Likelihood methods also allow for future extensions to the methods to obtain interval
estimates and hypothesis tests. This can be done according to well-established theory.

The primary disadvantage of likelihood methods is that they are somewhat more complicated
to implement and require greater sophistication on the part of the modeler. Code is provided in the
appendix that should allow their estimates to be obtained, and this should be evaluated for ease of
use. 

Each of the four tested parameters is now discussed in turn, with general recommendations
for their incorporation into the equivalency test design.

The additive bias or intercept parameter was introduced into the measurement error model
due to evidence of a non-zero intercept in the Bakersfield data. It is tested in current equivalency
tests using the simple linear regression approach. As was shown in section 3.6, it can represent either
a property of the sampler or a property of the particular site, so equivalency tests at multiple sites
should be required to determine if estimated intercepts are site-specific or not. The recommended
approach to its estimation is the maximum likelihood approach. Like the slope, the precision of its
estimate improves with daily measurements that are well dispersed.

The multiplicative bias or slope parameter currently exists in both current equivalency
methods and the DQO methods. Like the intercept, it can be estimated using the maximum
likelihood approach. Also like the intercept, the estimate benefits from having reference and sample
measurements that are well dispersed.

The precision parameter describes the variation in sampler measurement error. It can be
estimated according to either maximum likelihood or Taylor approximation, with the likelihood
approach being preferred. Neither of the estimators is entirely satisfactory, however, as the assumed
model has been shown to not hold exactly (section 7.2), with errors being not strictly multiplicative.
With that said, the resulting estimates should be close enough and make similar assumptions to
current methods used to estimate precision with field data. Furthermore, precision is the least
important of the parameters as far as DQO equivalency is concerned, and for moderate values it has
little effect on the grey zone (section 5.1). As the Bakersfield data illustrated, its estimation is
sensitive to outliers, so care must be taken to identify and remove those from the final data.

The recommendation here is to estimate the correlation following the current approach—that
is, as the correlation of reference and candidate day means. This report has shown how its target
value for a given sample can be estimated (section 5.2), and this target depends on the reference and
candidate sampler precisions as well as the coefficient of variation of the underlying population
PM2.5 process. In estimating the target value, there is a choice of whether to substitute fixed worst-
case precisions or to use the precision sample estimates. Both approaches were evaluated using the
field data, where for the estimated population coefficient of variations, all led to target correlations
of .99 or more (discarding outliers). The estimated target might then be adjusted in an ad hoc manner
(say, by subtracting 0.01 or 0.02) to allow for some sampling error. Further study could provide
more rigorous methods.



TR-CAN-04-02

41

9. References

U.S. EPA. 2002. DQO Companion, Version 1.0 Users’s Guide. EPA Work Assignment 5-07.

U.S. EPA. 2003. Data Quality Objectives for PM Continuous Methods, TR-4423-03-08. Research
Triangle Park, NC: ManTech Environmental Technology, Inc.



TR-CAN-04-02

43

Appendix A: R Code for Maximum Likelihood Estimation

This appendix provides the software code needed to estimate the general measurement error
parameters , , , and  using the method of maximum likelihood.α β Cσ Rσ

The code is in the R language, a high-quality, freely available data analysis package based
on the S language. The software can be found at www.r-project.org for most major operating
systems. The commercially available S-Plus is also based on S, and the code given here should run
in S-Plus with only minor modification, if any. The code is run by starting the R program and then
by cutting and pasting code (after relevant modifications) into the R command window.

### Load field data
filepath <- "M:\\WA97\\Data\\"   # MS-Windows directory
filename <- "Bakersfield-2002.csv" # Filename
       # File is a comma delimited text file,

# with separate columns of data for each sampler,
# variable labels are at top of each column
# in this sample code, the six variables have
# labels: bkF1,bkF2,bkF3,bkC4,bkC5,bkC6

dat <- read.table(paste(filepath,filename,sep=""),sep=",",header=T)
J <- 3    # Number of samplers of each type
K <- 30   # Number of days measurement
# restrict to only days of complete data
x <- dat$bkF1+dat$bkF2+dat$bkF3+dat$bkC4+dat$bkC5+dat$bkC6
x <- !is.na(x)
dat <- dat[x,]
xref <- rep(0,J*K)
xcnd <- rep(0,J*K)
for(i in 1:K){
  xref[(i-1)*J+1] <- dat$bkF1[i]
  xref[(i-1)*J+2] <- dat$bkF2[i]
  xref[(i-1)*J+3] <- dat$bkF3[i]
  xcnd[(i-1)*J+1] <- dat$bkC4[i]
  xcnd[(i-1)*J+2] <- dat$bkC5[i]
  xcnd[(i-1)*J+3] <- dat$bkC6[i]
}
u0 <- (dat$bkF1+dat$bkF2+dat$bkF3)/3

## Code for estimation using just reference sampler data
sdr0 <- .05
initp <- c(sdr0,u0)
# index to allow matching each day with correct mean
uidx <- rep((1+1):(K+1),rep(J,K)) 
f <- function(p){
  rmeans <- p[uidx]
  return(-J*K*log(p[1])-sum(log(rmeans)
     )-.5*sum(((xref-rmeans)/(p[1]*rmeans))^2))
}
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# First value returned is estimated reference precision
# Remaining values are day means
optim(initp,f,control=list(fnscale=-1,maxit=100000))

## Estimation both reference and candidate samplers
a0 <- 0
b0 <- 1
sc0 <- .1
sr0 <- .05

initp <- c(sr0,sc0,a0,b0,u0)
uidx <- rep((1+4):(K+4),rep(J,K))

f <- function(p){
  rmeans <- p[uidx]
  return(-J*K*log(p[1])-sum(log(rmeans))-.5*sum(((xref-rmeans)/(p[1]*rmeans))^2)
         -J*K*log(p[2])-sum(log(rmeans))-J*K*log(p[4])
         -.5*sum(((xcnd-(p[3]+p[4]*rmeans))/(p[2]*p[4]*rmeans))^2))
}

# First value returned is estimated reference precision
# Second value is estimated candidate precision
# Third value is additive bias (intercept)
# Fourth value is multiplicative bias (slope)
# Remaining values are estimated day means
optim(initp,f,control=list(fnscale=-1,maxit=100000))
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Appendix B: Precision and Variance

In this report, precision is used synonymously with standard deviation for the multiplicative
model. This usage has developed through their equivalence for models considered by the DQO
methodology and for models of WA 76. With the addition of an additive bias (intercept) to the
model, the relationship is no longer exact, although the usage has been retained for consistency.
These relationships are described in more detail below.

For measurements  of mean , variance , the population coefficient of1,..., nX X μ 2σ
variation (precision) is defined as 

which is often estimated as 

where  is the sample standard deviation and  is the sample mean. Note that the CV is unitlessS X
since  and  have the same units.μ σ

For daily measurements  of daily true value  (realization of population1,..., nX X U
process), we assume measurement error model

1. , ork kX Uε=
2. k kX Uα β ε= +

In the case of 1, the population mean (for that day) is  and the variance is , so theU 2 2U σ
coefficient of variation is

and so the CV, which is unitless, happens to equal , which has units.σ
In the case of 2, the population mean is  and the variance is , so theUα β+ 2 2U σ

coefficient of variation is
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which equals  if . Therefore, when the intercept is non-zero, the standard deviation doesσ 0α =
not exactly equal the coefficient of variation (although if  then the CV might not be what one0α ≠
would want to measure, since it then depends on  leading to a different CV for each possible trueU
daily value. In such a situation,  is probably more useful).σ


