DEVELOPMENTS IN REAL TIME, TRACE AIR TOXIC MONITORING: Jet REMPI

Air Toxics Monitoring Data Analysis Workshop
September 27-28, 2005

Brian K. Gullett, Ph.D.
U.S. EPA/Office of Research & Development
Jet Resonance Enhanced MultiPhoton Ionization

Ionization continuum

Electronic excited states

Electronic ground state

One-color two-photon REMPI

Two-color two-photon REMPI

Ion Reflector

Ion Beam Steering Plates

Pulsed Gas Inlet (out of plane)

(Supersonic Jet Expansion)

Tunable Optical Parametric Oscillator (OPO)

Nd:YAG Laser

Time-of-Flight Mass Spectrometer

Microchannel plate Detector
Jet Resonance Enhanced MultiPhoton Ionization

- Measures a broad array of aromatics, including halogenated organics and PAHs
- Real time to near-real-time
- Sensitive (ppt to ppb)
 - Concentration to ppq
- Selective (can distinguish isotopomers)
- Source or ambient monitor

Jet REMPI system in EPA’s RTP laboratories
High Selectivity: Mass and Wavelength

Test of an aromatic mix (100 ppb each)
High Selectivity: Dioxin Isomer-specific

2,7 dichlorodibenzodioxin 2,8 dichlorodibenzodioxin

TOF mass resolution (0.25 amu)

Laser tuning resolution (0.005 nm)

Ion Signal [a.u.]

Wavelength [nm]

2,7-DCDD 2,8-DCDD
Very High Sensitivity: Benzene and dibenzo-p-dioxin

Derived detection limit for benzene of 2.5 ppt

Moderate S/N = 1 at 2.5 ppt

Averaged noise level over 100 laser shots (10 s.)

Observed detection limit for dibenzodioxin of 14 ppt

Observed detection limit for dibenzodioxin of 14 ppt

Linear fit with $R^2 = 0.99964$

Derived detection limit for benzene of 2.5 ppt

Derived detection limit for benzene of 2.5 ppt

Observed detection limit for dibenzodioxin of 14 ppt

Observed detection limit for dibenzodioxin of 14 ppt

S/N = 1 at 2.5 ppt

Averaged noise level over 100 laser shots (10 s.)

Linear fit with $R^2 = 0.99964$
Applications of Jet REMPI: Air Toxics from DoD Diesel Generator Exhaust

Methylated PAHs during start-ups
Applications of Jet REMPI: Air Toxics from DoD Diesel Generator Exhaust

Jet REMPI compares well with conventional GC MS, on-line GC, and AP42 Emission Factors
Applications of Jet REMPI: Air Toxics from USAF Jet Compressor

Turbine Engine Compressor, USAF type A/M32A-95, JP8. Compressor furnishes pneumatic power for ground support of aircraft systems.

Turbine engine emits more (aromatic) pollutants at low load than at high load.
Applications of Jet REMPI: Air Toxics from a Waste Combustor.
Focus on Chlorinated Dioxins/Furans.

Dec., 2004 Testing
(results pending analysis)
Applications of Jet REMPI: Air Toxics from a Waste Combustor. Focus on Chlorinated Dioxins/Furans.

Method: correlation of indicator or precursor compounds with more trace concentration dioxins
Verification Test Design:

- Boiler cofiring #2 oil and 1,2 dichlorobenzene
- Four EMSs operated simultaneously.
- Collect reference samples using Method 23.
- Range of sampling periods, 4 to 16 h.
- Range of dioxin concentrations.
- Performance parameters evaluated:
 - Accuracy vs. Method 23
 - Ease of use, reliability, maintenance, etc.

Dioxin EMS Technologies

- Automated, long term sampling systems with laboratory analysis
 - AMESA (Becker-Messtechnik, GmbH)
 - Dioxin Monitoring System (MonitoringSystems, GmbH)
- Real and near-real-time analysis with laser ionization and mass spectrometric detection
 - RIMMPA-TOFMS (IDX Technologies, Inc.)
 - JET-REMPI (EPA/SRI International)
Jet REMPI Summary

- Real-time to near-real-time measurement
 - start-ups, load changes, temporal air toxic changes, process monitor/feedback
- Source or ambient monitor
- Highly sensitive
 - ppt to ppb in real time, ppq with concentra.
- Measures broad array of aromatics
- Highly selective
 - isotopomer-specific
- 4 field demonstrations to date
 - Including waste combustor, ETV test of dioxin monitors
DEVELOPMENTS IN REAL TIME, TRACE AIR TOXIC MONITORING:

Jet REMPI

For more information contact:
Brian K. Gullett, Ph.D.
U.S. EPA/ORD
gullett.brian@epa.gov