Monitoring by Citizens and Its Impact on the Air Quality Community and AIRNow

Timothy S. Dye and Paul T. Roberts
Sonoma Technology, Inc.
Petaluma, CA

Presented at
2009 National Ambient Air Monitoring Conference
November 2-5, 2009
Nashville, TN
What Is “Monitoring by Citizens”?

- Citizen science
- Measurements made by
 - Citizens
 - Non-government organizations
 - Fixed locations or moving platforms
- Examples
 - Bucket Brigade (toxics monitoring)
 - Citizen Weather Observer Pgm.
- Technology is key
 - Monitor cost and size
 - Internet telemetry and reporting
Purpose of Presentation

• Inform about recent trends in AQ monitoring
• Begin discussion about
 – Understanding citizen monitoring
 – Evaluating implications of citizen monitoring
 – Determining agency interests/concerns
 – Creating a community of
 • Public agencies
 • Citizens and NGOs
 • Private sector companies
 – Establishing a Citizen Environmental Monitoring Corps?
Impact of Citizen Monitoring on the Weather Community (1 of 2)
Impact of Citizen Monitoring on the Weather Community (2 of 2)

Source: NOAA MADIS
Example – Carbon Monoxide (Lake Havasu City) (1 of 3)

• Group
 – Lake Havasu City
 – Sonoma Technology, Inc.

• Measurement
 – CO (fixed land sites)
 – CO (mobile – boat)

• Instrument
 – AreaRAE CO monitor
Example – Carbon Monoxide
(Lake Havasu City) (2 of 3)

= Nearest CO monitor = Study region
Example – Carbon Monoxide (Lake Havasu City) (3 of 3)
Example – EBAM (1 of 2)

- **Groups**
 - U.S. EPA
 - California Air Resources Board
 - U.S. Forest Service

- **Measurements**
 - PM$_{2.5}$ or PM$_{10}$
 - Temp., relativity humidity, winds

- **Instruments**
 - EBAM
 - Satellite/cell modem
Example – EBAM (2 of 2)

July 9, 2008
11 a.m. PST

Hourly PM$_{2.5}$ concentrations in µg/m3

Source: AIRNow-Tech
Example – Black Carbon (1 of 2)

- **Group**: Magee Scientific
- **Measurement**: Black Carbon (BC)
 - BC is about 5% of total $\text{PM}_{2.5}$
 - Sources: combustion, especially diesel vehicles
- **Instrument**
 - Aethalometer$^\text{TM}$
 - Optical absorption method (filter strips)

Source: Tim Morphy, Magee Scientific
Example – Black Carbon (2 of 2)
Example – Carbon Monoxide (San Francisco) (1 of 2)

• Group: Intel Research
• Measurements
 – CO, O₃, NO₂
 – Temp. and relative humidity
 – Location and light
• Instrument
 – Cell phone size
 – Solid state sensors
• Testing on street sweepers in San Francisco

Source: Allison Woodruff, Intel Research
Example – Carbon Monoxide
(San Francisco) (2 of 2)

Source: Allison Woodruff, Intel Research
Example – CO$_2$ and VOCs (1 of 2)

- **Groups:** Aclima
 - U.C. Berkeley

- **Measurements**
 - CO$_2$ and VOCs
 - Temp. and relative humidity
 - Location, sound, and light

- **Instrument**
 - Real-time feedback (LEDs)
 - Solid state sensors
 - Internet
 - Community
Example – CO₂ and VOCs (2 of 2)

Source: Aclima and Greg Niemeyer at U.C. Berkeley

www.blackcloud.org

16
Issues to Consider (1 of 2)

Data quality – function of application
- Directional response
- Response on short time scales
- Long term repeatability

Representativeness
- Spatial scales
- Temporal scales
- Mobile – sampling different environments
- Indoors vs. outdoors
Issues to Consider (2 of 2)

• Ownership
 – Distribution
 – Attribution

• Advocacy

• Increased coordination
 – EPA staff
 – State/local staff
Citizen Environmental Monitoring Corps

• Empower citizens to make air quality measurements
• Educate and certify
 – Air Quality 101
 – Monitoring principles
 – Quality assurance
• Integrate with AIRNow
• Reach out to state/local air quality agencies
Discussion

• What are your thoughts?
• What are your concerns?
• Do you know of citizen monitoring efforts?

Tim@SonomaTech.com
(707) 665-9900