Application of Extractive Cryogenic Preconcentration with FTIR Spectroscopy for Autonomous Measurements of Gaseous Air Toxics: Status and Preliminary Results

Patrick I. Buckley, David A. Bowdle, and Michael J. Newchurch
University of Alabama in Huntsville, Huntsville, Alabama
Randy Dillard
Jefferson County Department of Health, Birmingham, Alabama

Presented at:
National Ambient Air Monitoring Conference, Nashville, TN, 4 November 2009

Initiated under EPA Region IV Project “Community Assessment of Air Toxics in Birmingham, AL and Vicinity” Augmented by JCDH and Continued by NOAA NESDIS
ECIP-FTIR

Presentation Outline

• Project Motivation
• ECIP-FTIR Instrumentation and Operations
• System Integrations
• Preliminary Results
• Future Plans
• Both anthropogenic and natural sources emit volatile organic compounds (VOCs) into the urban atmosphere

• VOCs react with either nitrite radicals at night or hydroxyl radicals during the day to produce reactive organic peroxy molecules

• Increased peroxy molecules result in increased production of ozone (Atkinson, 2000)

• Improved quantification of VOC concentrations will improve predictions of all molecules involved
• The 1990 Clean Air Act Amendments (EPA, 1990) lists 188 VOCs as hazardous air pollutants (HAPs)
• These HAPs are known to have adverse affects on human health (respiratory, cancer, etc.)
• The EPA has placed emissions standards to reduce ambient concentrations of HAPs
ECIP-FTIR

Project Motivation – EPA Compendium Methods

- EPA currently has 17 methods (Compendia) for measuring organic air toxics
- Fundamental similarities
 - Collection of ambient samples in the field
 - Compound-specific sorbent material
 - Reactive sorbent or non-reactive adsorbent filter
 - Low-temperature condensation
 - Evacuated cylinder collection
 - Analysis of collected samples in centralized laboratories
 - Problem: Some volatile compounds degrade during storage causing significant analysis errors (Kelly and Holdren, 1995)
Objectives: Improvement of NATTS Gaseous Air Toxics Sensors

- **Improve Temporal Coverage:**
 - continuous operation, high duty cycle
- **Improve Temporal Resolution**
 - 6-hour required (diurnal coverage), 4-hour design, 1-2 hour goal*
- **Improve Data Latency**
 - Internet-accessible near-real-time data products
- **Improve Chemical Specificity**
 - one sample processor/analyzer for all IR-active trace gases
- **Improve User Interaction:**
 - mobile, autonomous, low-maintenance, no sample handling
 - maintenance, operation, and analysis by non-specialists
- **Reduce Life Cycle Costs:**
 - purchase cost ~ annual cost of one or two conventional sites
 - low annual operating costs
- **Maintain Data Quality:**
 - meet existing EPA MDL’s, random and systematic errors
 - onboard QA/QC, extensive validation against EPA standards
- **Maintain Method Traceability:**
 - EPA-approved physics & chemistry; innovative engineering

*15 minutes or less for transient high-concentration events, using parallel intercalibrated method
Onboard QA/QC options:

Parallel: continuous flow without preconcentration vs. batch cryotrap sample with preconcentration

Unspiked vs. spiked vs. direct shunt to gas cell

Replicate: cryotrap vs. cryotrap

For simplicity, schematic omits valves, desorption routes, and other flow options
Methyl Propyl Ketone
Chlorobenzene
Acetaldehyde
Benzene
Carbon Tetrachloride

Chloroform
Formaldehyde

Tetrachloroethylene
Trichloroethylene
Vinyl Chloride
1,1,1-Trichloroethane

Acrolein

Sive et al.
Miller et al.
Apel et al.
ECIP-FTIR

Instrumentation
Methodology - Quantification of Complex Mixtures

\[F_{amb} = F_{cell\text{tot}} + F_{trap1} + F_{trap2} + F_{trap\text{bypass}} - F_{dil} - F_{VOC} \]

Volumetric flowrate of ambient analyte at input to spike mixer

\[C^i_{amb} = \left\{ 1 - \frac{F_{VOC}}{F_{amb}} \right\} \left\{ \frac{V_{cell}}{F_{trap}\Delta t_{trap}} \right\} \cdot \left\{ \frac{1}{L_{cell}} \right\} \cdot \left\{ \frac{AU^i(\overline{v})}{k^i(\overline{v})} \right\}^{batch} - \left\{ \frac{F_{VOC}}{F_{amb}} \right\} C^i_{VOC} \]

Concentration of \(i^{th} \) ambient analyte, using batch flow through cryogenic trap, thermally desorbed to gas cell
determined by Partial Least Squares chemometrics same FTIR & gas cell

\[C^i_{amb} = \left\{ \frac{1 - F_{VOC}/F_{amb}}{1 - F_{dil}/F_{cell\text{tot}}} \right\} \left\{ \frac{1}{L_{cell}} \right\} \cdot \left\{ \frac{AU^i(\overline{v})}{k^i(\overline{v})} \right\}^{cont} - \left\{ \frac{F_{VOC}}{F_{amb}} \right\} C^i_{VOC} \]

Concentration of \(i^{th} \) ambient analyte using continuous flow through gas cell

For simplicity, these formulae do not include cryotrap efficiency corrections for the \(i^{th} \) analyte
ECIP-FTIR

Current Status and Preliminary Data

• Assembly:
 – GenI laboratory-ready condition completed
 – Field retrofitting completed for autonomous operation in the laboratory

• Testing:
 – Testing completed for support devices and process software
 – Systems issues resolved: vibration, EMI/RFI, thermal, packaging
 – Testing and optimization in progress for cryogenic subsystem

• Measurements:
 – SNR vs integration time
 – Subsystem analysis
 – Cell purging time and purging efficiency; external H₂O & CO₂
 – Absorption spectra for calibration gas
 – Cryogenic preconcentration efficiency
Nominal SNR should increase with square root of number of scans
Experimental results indicate excellent stability over ~1 hour
ECIP-FTIR

Subsystem Performance

Cryocooler Efficiency

- Min Temp = -84.428408
- Min Temp = -93.467149
- Min Temp = -185.47102

Vacuum Efficiency

- Fill Pressure (mb) = 1003.3775
- Fill Time (min) = 0.9863333
- Evac Pressure (mb) = 98.839601
- Evac Time (min) = 2.0983333

Evacuate and Fill
ECIP-FTIR

Preliminary Spectra

- Good spectral resolution
- Good sensitivity
- Multi-compound quantification
City of Huntsville retrofitted building interior with air-conditioned room to accommodate ECIP-FTIR

Source: Google Earth

10 km radius

Measuring areal wind field over HSV transportation corridor

expected inlet for ECIP-FTIR sample when high-vols don’t

ECIP-FTIR

Future Work - HSV
Future Work - BHX
Future Work – Additional Applications

• Indoor Air Quality
 – Offices, Schools, Residences
 – Indoor-specific Emission Sources
 – Indoor / Outdoor Interaction
 – Indoor VOC concentrations Up to 5 times higher than outdoor (Solomon et al., 2008)

• Aircraft Cabins
• Rural v. Suburban v. Urban
• High-temporal resolution time series
• Interdisciplinary Studies
Future Work – Gen II Design Improvements

<table>
<thead>
<tr>
<th>Mechanical</th>
<th>Smaller, lighter, easier compartment access; Could mount in an SUV or small van</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td>Modular integrated DAQ and process control; wireless Ethernet</td>
</tr>
<tr>
<td></td>
<td>Modular integrated power distribution; lower power consumption</td>
</tr>
<tr>
<td>Environmental</td>
<td>Improved isolation from ambient interferents: vibration, EMI/RFI, thermal, and H₂O/CO₂</td>
</tr>
<tr>
<td>Optical</td>
<td>FTIR: smaller, lighter, field-ruggedized, splash-proof; Gas Cell: larger L/V, faster purge, automated mirror switching</td>
</tr>
<tr>
<td>Fluid</td>
<td>Expanded use of modular surface-mount plumbing; Improved QA/QC manifold; additional spike routing options</td>
</tr>
<tr>
<td>Traps</td>
<td>Improved thermal design; finer temporal resolution; Better handling of minor gases: H₂O, CO₂, and O₃</td>
</tr>
<tr>
<td>Cryocooler</td>
<td>Coldhead: remote umbilical, smaller, more cooling capacity; Power: computer-controlled conditioner / motor controller</td>
</tr>
<tr>
<td>Systems</td>
<td>Improved modularity, packaging, and integration; Incorporates many features of pre-production prototype</td>
</tr>
</tbody>
</table>
Questions / Comments?

Contact Information:
Email: buckley@nsstc.uah.edu