Characterizing Ambient Fine Particulate Matter Mass in St. Louis

Jay Turner
Department of Energy, Environmental and Chemical Engineering
Washington University in St. Louis

National Air Monitoring Conference
Las Vegas, NV
November 6-9, 2006
St. Louis – Midwest Supersite

- Four year campaign, core monitoring site in East St. Louis, IL
 - Two years of measurements with a subset of the initial monitoring platform (6/2003 – 3/2005)

- Data collection and analysis to support:
 - Development and evaluation of monitoring methods
 - Exposure and health effects studies
 - Source apportionment and SIP planning
SIP Planning Support Grant to WUSTL

1. Coordination
2. Organic Carbon Source Apportionment
3. Data Harmonization & Episodes Analysis
4. Urban / Rural Contrast & Intraurban Variability
5. Transport Regimes Analysis
6. Refinements to PM$_{2.5}$ Mass Apportionment
7. Soil / Road Dust Characterization

Many of these analyses designed to support (model validation) or complement (weight-of-evidence) chemical transport modeling

Subcontractors:
- University of Wisconsin (Schauer group)
- Sonoma Technology, Inc.
STL Fine PM Mass Apportionment Studies

<table>
<thead>
<tr>
<th>Site</th>
<th>Period</th>
<th>Method</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 sites in STL area (RAPS)</td>
<td>5/75-4/77</td>
<td>PMF2</td>
<td>Kim & Hopke (2005)</td>
</tr>
<tr>
<td>10 sites in STL area (RAPS)</td>
<td>7/76-8/76</td>
<td>CMB</td>
<td>Dzubay et al. (1980)</td>
</tr>
<tr>
<td>Carondelet (Six-Cities Study)</td>
<td>1979-1988</td>
<td>APCA</td>
<td>Laden et al. (2000)</td>
</tr>
<tr>
<td>Blair Street (STN)</td>
<td>4/01-4/02</td>
<td>CMB</td>
<td>Kenski & Koerber (2002)</td>
</tr>
<tr>
<td>Blair Street (STN)</td>
<td>4/01-4/02</td>
<td>PMF*</td>
<td>Coutant & Swinton (2002)</td>
</tr>
<tr>
<td>Blair Street (STN)</td>
<td>8/00-7/01</td>
<td>PMF*</td>
<td>Battelle (2003)</td>
</tr>
<tr>
<td>Blair Street (STN)</td>
<td>(insert)</td>
<td>EPA PMF</td>
<td>MDNR (internal) (2005)</td>
</tr>
<tr>
<td>Blair Street (STN)</td>
<td>1/00-1/04</td>
<td>PMF2</td>
<td>Lee & Hopke (2006)</td>
</tr>
<tr>
<td>Arnold (STN)</td>
<td>1/01-1/04</td>
<td>PMF2</td>
<td>Lee & Hopke (2006)</td>
</tr>
<tr>
<td>East St. Louis (STL-SS)</td>
<td>6/01-5/03</td>
<td>PMF2</td>
<td>Lee et al. (2006)</td>
</tr>
</tbody>
</table>

* Version of PMF to be determined
** Sensitivity studies and refinements to the apportionment of Lee, Hopke and Turner (2006)

Acknowledgement: Mike Davis (EPA Region VII) for draft synthesis of the contemporary STL PM$_{2.5}$ mass apportionment studies
East St. Louis Fine PM Mass Apportionment by Positive Matrix Factorization (PMF) (Lee et al. 2006)

Measured Species Contributions to PM$_{2.5}$

- SO$_4^{2-}$: 23%
- NH$_4^+$: 11%
- NO$_3^-$: 12%
- OM: 31%
- EC: 9%
- crustal: 3%
- other: 3%
- unaccounted: 8%

Factor Contributions to PM$_{2.5}$

- sulfuric 33%
- nitrate 15%
- gasoline 16%
- diesel 2%
- lead 1%
- copper 1%
- nitric 1%
- soil 4%
- steel 7%
- other 3%
Carbon in the Hopke Group Apportionments

East St. Louis

IMPROVE carbon fractions

Arnold Blair

NIOSH OC/EC
Reconciling the Hopke Group (Clarkson) Apportionments

Different data collection and analysis methods (especially carbon); consistent source apportionment methodology

(*) Soil: Arnold includes separate Ca-rich factor; Blair = soil + non-soil industrial
(**) Nonferrous Metals: Arnold includes steel processing
NR = factor not resolved
Sulfate factor... Is this gradient from sulfate ion concentration, or from other species present in the sulfate factor?

(*) Soil: Arnold includes separate Ca-rich factor; Blair = soil + non-soil industrial
(**) Nonferrous Metals: Arnold includes steel processing
NR = factor not resolved
Nitrate factor... *Is this gradient from nitrate ion concentration, or from other species present in the nitrate factor?*

- Nitrate factor
- Sulfate
- Nitrate
- Mobile source
- Soil
- Steel production
- Nonferrous metals
- Biomass
- "Carbon-rich sulfate"

(*) Soil: Arnold includes separate Ca-rich factor; Blair = soil + non-soil industrial
(**) Nonferrous Metals: Arnold includes steel processing
NR = factor not resolved
Mobile source factor... gradient seems backwards; highest in suburbs and lowest in urban core.

(*) Soil: Arnold includes separate Ca-rich factor; Blair = soil + non-soil industrial
(**) Nonferrous Metals: Arnold includes steel processing
NR = factor not resolved
<table>
<thead>
<tr>
<th>Component</th>
<th>Arnold</th>
<th>East St. Louis</th>
<th>Blair Street</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfate</td>
<td>6.1</td>
<td>6.0</td>
<td>6.2</td>
</tr>
<tr>
<td>Nitrate</td>
<td>2.3</td>
<td>2.2</td>
<td>2.1</td>
</tr>
<tr>
<td>Mobile Source</td>
<td>4.0</td>
<td>4.1</td>
<td>4.2</td>
</tr>
<tr>
<td>Soil*</td>
<td>3.5</td>
<td>3.6</td>
<td>3.7</td>
</tr>
<tr>
<td>Steel Production</td>
<td>2.8</td>
<td>2.9</td>
<td>3.0</td>
</tr>
<tr>
<td>Nonferrous Metals*</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>Biomass</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>"Carbon-rich Sulfate"</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Soil/crustal factor... difficult to assess consistency due to admixing with other sources (see footnote)

(*) Soil: Arnold includes separate Ca-rich factor; Blair = soil + non-soil industrial
(**) Nonferrous Metals: Arnold includes steel processing
NR = factor not resolved
Steelmaking Factor

Steel production… relatively large at East St. Louis but small at Blair; not resolved at Arnold

(*) Soil: Arnold includes separate Ca-rich factor; Blair = soil + non-soil industrial
(**) Nonferrous Metals: Arnold includes steel processing
NR = factor not resolved
Nonferrous Metals Processing Factor

Nonferrous metals (zinc, lead, copper)... in aggregate similar contributions across all three sites

(*) Soil: Arnold includes separate Ca-rich factor; Blair = soil + non-soil industrial
(**) Nonferrous Metals: Arnold includes steel processing
NR = factor not resolved

PM$_{2.5}$ mass, µg/m3

- Sulfate
- Nitrate
- Mobile source
- Soil*
- Steel production
- Nonferrous metals**
- Biomass
- "Carbon-rich sulfate"
Biomass Burning Factor

Biomass burning... not resolved at Blair, not resolved in published East St. Louis apportionment but subsequent work by Hopke group suggests it can be resolved

(*) Soil: Arnold includes separate Ca-rich factor; Blair = soil + non-soil industrial
(**) Nonferrous Metals: Arnold includes steel processing
NR = factor not resolved
“Carbon-Rich Sulfate” Factor

Carbon-rich sulfate factor… 15-20% of mass at East St. Louis… what does it represent?

(*) Soil: Arnold includes separate Ca-rich factor; Blair = soil + non-soil industrial
(**) Nonferrous Metals: Arnold includes steel processing
NR = factor not resolved
PMF with Consistent Carbon Representation

- **East St. Louis**
- ** Arnold Blair**
- **East St. Louis**

IMPROVE carbon fractions

NIOSH OC/EC
(*) Soil: Arnold includes separate Ca-rich factor; Blair = soil + non-soil industrial
(**) Nonferrous Metals: Arnold includes steel processing
NR = factor not resolved
Apportionments with NIOSH OC/EC at all Sites

Intraurban gradients still exist! Regional plus local contributions and/or measurement artifacts?

PM$_{2.5}$ mass, µg/m3

(*) Soil: Arnold includes separate Ca-rich factor; Blair = soil + non-soil industrial

(**) Nonferrous Metals: Arnold includes steel processing

NR = factor not resolved

(*) Soil: Arnold includes separate Ca-rich factor; Blair = soil + non-soil industrial

(**) Nonferrous Metals: Arnold includes steel processing

NR = factor not resolved
Interpretation of Carbon-Rich Sulfate Factor

- Factor profile predominantly carbon, some sulfate
 - Relatively high EC/OC ratio suggests unaged carbon and thus likely local sources
 - However, modeled apportionments using different representations for carbon suggests the factor represents regional sources
- Reconcile East St. Louis TC apportionment with urban/rural contrast, August-November 2001 measurements (Park Hills)
Monitoring Locations: 8/17/01 – 11/20/01

East St. Louis (IL) is approximately 3 km east of the City of St. Louis (MO) central business district. Park Hills (MO) is a predominantly rural site ~100 km south/southwest of the St. Louis urban core.
Sulfate at the Urban and Rural Sites

PM-2.5 sulfate, µg/m³

- Park Hills
- East St. Louis
Urban/Rural Analysis Objective
- Examining the Total Carbon Attribution -

Measured Regional TC (Park Hills)
Urban/Rural Analysis Objective
- Examining the Total Carbon Attribution -

Modeled Urban TC (PMF using ESL data)

Measured Regional TC (Park Hills)
Urban/Rural Analysis Objective
- Examining the Total Carbon Attribution -

Modeled Urban TC (PMF using ESL data)

Measured Regional TC (Park Hills)

? =

Measured Urban TC (East St. Louis)
PMF-Modeled Urban Excess for Carbon

- PMF model does indeed capture the STL “urban excess” for carbon.
Daily Total Carbon Reconstruction

- Negative ESL concentrations indicate that Park Hills + modeled urban TC overestimated the measured ESL TC
Dramatic increase is in the gasoline factor contribution during this period.
PMF-Modeled Urban Excess for Carbon

- Agreement is better for the 11-factor solution (wood smoke factor)
Comparing Blair (City of St. Louis – urban) to Bonne Terre (rural), there is an OC urban excess at Blair on virtually every sampling day May - September only, 2003 & 2004

May - September only, 2003 & 2004

\[
\frac{OC(Blair)}{OC(Bonne Terre)} = 1.9
\]

\[
\frac{TCM(Blair)}{TCM(Bonne Terre)} = 2.0
\]

Assuming urban plumes do not impact the rural site, then nearly 100% urban excess for the summer months!
Fine Particulate Matter Carbon in St. Louis

• From the carbon attribution in the PMF mass apportionment modeling (East St. Louis)...
• From the average of daily differences between observed urban and rural carbon burdens (Arnold, Blair)
 – Annual average, at East St. Louis and Arnold*:
 • Regionally transported carbon: ~50%
 • Locally emitted/generated carbon: ~50%
 – Summertime average, at Blair Street*:
 • Regionally transported carbon: ~50%
 • Locally emitted/generated carbon: ~50%
 (currently working on annual average)
 – *Results for Arnold and Blair Street sensitive to how the data is conditioned (urban excess could be as low as 35-40%)
• What are the sources of the locally emitted/generated carbon?
 – Fine PM mass apportionment not designed to answer this question
 – Need more-sophisticated approaches…
Towards more specificity in representing carbon

- OC/EC
- Thermal carbon fractions
- Speciated organics
Primary OC Apportionment by CMB (Schauer Group, U. Wisconsin)

- East St. Louis, 1-in-6 day data with organic speciation by extraction-GCMS, June 2001 – May 2003
- CMB apportionment assumes we know all of the primary OC sources and have representative source profiles!

- PMF resolved eight factors including one mobile source factor, also two point source factors and secondary organic aerosol (SOA) not in CMB
Summary

• St. Louis – Midwest Supersite program has collected a wealth of data for fine particle physical and chemical properties
• Together with the state/local routine monitoring data, there is substantial information to support in PM$_{2.5}$ SIP planning for the St. Louis area
• Ultimate goal is a defensible control strategy
 – Currently analyzing the observational data to provide technical support towards that effort
• East St. Louis Fine PM Mass Apportionment
 – Use of allied data (in this case, paired urban/rural data) provided significant insights into the original apportionment