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Outline

• Model development
• 1-D testing and evalution

Large Eddy Simulation (LES)
GABLS Experiment (CASES99) 

• MM5 testing and evaluation
• Preliminary CMAQ testing
• WRF implementation



Purpose

• Develop a simple PBL model that:
Produces realistic profiles in CBL
Accurate PBL heights
Appropriate for all stability conditions w/ 
minimal discontinuities
For both meteorology and chemistry 
models
Computationally efficient 



Background
• Local flux-gradient proportionality (i.e. Eddy diffusion) 

is not appropriate for Convective Boundary Layers
Upward heat flux penetrates to ~80% of h while potential 
temperature gradients are very small through most of the PBL
Eddies in CBL are larger that vertical grid spacing (local 
closure is not appropriate)

• Two common alternative approaches:
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Pleim and Chang 1992

1. Gradient adjustment term: 

Deardorff 1966,Troen and Mahrt 1986, 
Holstlag and Boville 1993, Noh et al. 2003
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Asymmetric Convective 
Model (ACM)

• Original ACM
Simple Transilient model 
Rapid upward transport by convectively buoyant 
plumes 
Gradual downward transport by compensatory 
subsidence
Part of the PX-LSM in MM5

• ACM2
Added eddy diffusion to ACM
Allows local mixing at all levels
More realistic (continuous) profiles in lower layers
Smooth transition from stable to unstable



ACM ACM2



Model equations
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Where Ci is mass mixing ratio at center of Layer i
Ki+1/2 is eddy diffusivity at top of layer i [m2s-1]
Mu is upward convective mixing rate [s-1]
Mdi is downward mixing rate from layer i to layer i-1 [s-1]

h is top of PBL
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Non-local Mixing rates
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Convective mixing rate derived by conservation of buoyancy flux:

Buoyancy flux at top of first layer defined by eddy diffusion:

Thus, Convective mixing rate is a function of Kz but not 
a function of potential temperature gradient:

( ) ( )hzzhzzukK s
L
zz s

1.0,min;/1
)(

2* =−=
φ

Where:



Partitioning local and non-local
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Mixing rate, defined by Kz, is partitioned into local and
non-local components

The Question is: How to define fconv?  
Clearly it should increase with increasing instability, 
but what is its upper limit for free convection? 
and what should be its stability function?

First a sensitivity study for convective conditions
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Non-local partitioning

• These tests suggest that the upper 
limit of fconv should be about 50%

• An expression for fconv can be derived 
from gradient adjustment models (e.g. 
Holstlag and Boville 1993) at top of 
surface layer:
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Non-local fraction (fconv) as 
function of stability
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LES experiment low heat flux 
(Q* = 0.05 K m s-1), weak cap



LES experiment low heat flux 
(Q* = 0.05 K m s-1), strong cap



LES experiment high heat flux 
(Q* = 0.24 K m s-1), strong cap



Comparison of
ACM2, ACM1
and EDDYNL
(based on 
HB93) for
05WC case
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The second GABLS model 
intercomparison

• Multi-day Intercomparison of 23 PBL 
models for CASES99 field study

Given initial profiles
Tg time series 
Constant geostrophic wind
Large scale subsidence
2.5% of potential evaporation
P, zo



GABLS T-2m Intercomparison



GABLS 
Experiment –
Simulation of 
CASES99
October 22-24, 1999
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GABLS Profile intercomparison



CASES99 profiles
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MM5 Evaluations
• Domain: 202 x 208 x 34 @ 12 km res
• Physics:

ACM2 
PX LSM
KF2
Reisner 2
RRTM w/ Dudhia SW

• Data Assimilation:
Winds at all levels, T and qv above PBL
Indirect soil moisture nudging

• July 13 – August 18, 2004



Model performance statistics for the 12 km 
MM5-ACM2 simulations over the period of 

July 13 – August 18, 2004

T qv ws wd

Data count 398848 398848 398848 398848
Correlation 0.934 0.915 0.612 ---

MAE 1.42 K 1.14 g/kg 1.026 m/s 31.8 deg

MB 0.369 K 0.109 g/kg -0.211 m/s 10.2 deg

Index of Ag 0.931 0.911 0.606 ---



2 m Temperature
Averaged over all 
NWS/FAA sites 
7/15 – 8/18 2004

Mean Absolute Error
Mean Bias
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10 m Wind speed
Averaged over all 
NWS/FAA sites 
7/15 – 8/18 2004

Mean Absolute Error
Mean Bias
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Wind speed bias segregated by Landuse
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Concord, NH

PBL Height from Radar wind
Profilers (from Jim Wilczak)

Pittsburgh, PA
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CMAQ

• Configuration:
Domain: 199 x 205 x 34 @ 12 km res
V4.5 CB4 AE3
ACM2 vs Eddy

• Preliminary evaluation
Ground level statistics (AMET)
Ozonesondes from ICARTT 2004



Hourly Ozone comparisons



Maximum 1-hr Ozone comparisons



Hourly CO comparison



Sulfate comparison



EC Comparison
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Ozonesonde at Beltsville
July 19, 16 Z
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Pellston, MI July 25, 18Z
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Beltsville July 26, 17Z
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Conclusions
• ACM2 is a combination of local and non-local 

closure techniques
Similar capabilities to eddy diffusion w/ counter-
gradient adjustment but more readily applicable to 
any quantity (e.g chemistry)
ACM2 produces more realistic superadiabatic surface 
layer than ACM1

• LES and 1-D tests show accurate simulation of 
vertical profiles and PBL heights

• MM5 tests show good ground level performance 
and accurate PBL heights



More Conclusions

• CMAQ testing shows comparable ground level 
performance as the current eddy diffusion 
model

• Vertical profiles show larger differences from 
eddy diffusion with shallower and more well 
mixed CBL

• Ozonesonde comparisons often show good 
agreement for θ and qv but not as often for O3

• Given the meteorological verification and 
comparable CMAQ ground level statistics, 
ACM2 should be used in both meteorology 
and chemistry modeling



MM5v3.6 Profiles over southern OK on August 5 18Z
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