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Introduction

• Photochemistry is strongly influenced by clouds
– Attenuate or enhance irradiance of ultraviolet (UV) bands
– Depends on: cloud location/depth, water content, water phase

• Clouds are difficult to accurately simulate
– Widely varying spatial and temporal scales
– Often ill-suited for Eulerian models (esp at AQ model scales)

• Meteorological models can adequately characterize:
– Large-scale cloud patterns, well-resolved weather systems

• But rely on parameterizations for sub-grid processes
– Account for bulk characteristics
– Cloud impacts are uncertain and sources of poor performance
– Translate to large errors/uncertainties in photochemical models
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Introduction

• EPA applies CMAQ and CAMx on a large eastern U.S. 
domain
– Dolwick (2006) investigated role of clouds from MM5
– Even relatively thin clouds can have large effects on ozone
– These models differ greatly in their cloud impacts

CMAQ generates thicker clouds than CAMx
Occasionally large differences in ozone patterns

• EPA recently expanded their inter-model cloud comparison
– Evaluated cloud parameterizations
– Explained significant ozone differences on certain cloudy days

CAMx underestimates clouds attenuation
CMAQ probably overestimates cloud attenuation
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Introduction

• In 2009, EPA and ENVIRON developed some near-term 
recommendations
– Further tests with both models
– Develop improvements to the MM5CAMx interface processor to 

help reduce the cloud shortfall in CAMx
– Review additional methodologies to improve cloud 

characterization in off-line photochemical models
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EPA CMAQ/CAMx July 2005 Simulations

CAMx CMAQ

CAMx CMAQ
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EPA CMAQ/CAMx July 2005 Simulations

CAMx CMAQ
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Meteorology on July 14, 2005
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Modeled Cloud Optical Depth

CAMx CMAQ/MCIP



9Template

CMAQ Cloud Fraction vs. Satellite
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Evaluation Results

• Obs: heavy OVC/BKN cloud cover, some light rain
• CMAQ has more cloud photolysis attenuation

– Significant difference in cloud cover, same MM5 run
– Different cloud optical depth (COD)

But CAMx and CMAQ COD calculations are similar

– Different cloud cover fraction
CAMx: only grid-resolved clouds (i.e., MM5 resolved clouds)
CMAQ: grid-resolved clouds (MM5) and diagnosed sub-grid (MCIP)

• MM5 generated little resolved cloudiness, and too thin
• MM5 likely generated much more sub-grid cloudiness

– Impossible to verify (MM5 does not output sub-grid cloud info)
– We conclude lack of CAMx COD due to lack of clouds
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• RADM cloud adjustment to clear-sky photolysis rates 
(Chang et al, 1987):

• Below-cloud attenuation factor:

• Cloud transmission coefficient:

Comparison of CAMx/CMAQ Cloud Attenuation
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Comparison of CAMx/CMAQ Cloud Attenuation

• CAMx COD (RADM)

• CMAQ COD (Stephens, 1978)
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Analysis of COD Equations

Optical Depth as f(LWC)
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Analysis of COD Equations

Attenuation of Clear Sky J Values as a Function of COD
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CAMx Cloud Sensitivity Tests

• EPA/ENVIRON performed sensitivity tests increasing the 
COD:
– 1: arbitrarily increase COD by x10

Largest increases in COD, no change in cloud spatial pattern
Ozone results similar to CMAQ and observations

– 2: add sub-grid precipitating clouds to COD calculation
Some areas of higher COD, but little spatial increase in cloud patterns
Minimal areas of MM5 sub-grid precipitation
Minor ozone reductions

– 3: As in 2, but scale COD to match Stevens (1978) equation
Negligible change to COD pattern
Negligible change to ozone

• CAMx COD equation is not a factor
• CAMx needs more clouds
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Interim Cloud Improvement

• MM5CAMx interface program was further modified:
– 3-D cloud fields determined for several cloud types:

Resolved L from MM5 (as before)
Sub-grid “stratiform” Fcloud and L according to RHc profile (following 
MCIP)
Sub-grid convective Fcloud and L (following CMAQ)

– COD equation according to DelGenio et al. (1996) and 
Voulgarkakis et al. (2009):

• EPA tested this modification on their 2005 12-km CAMx
simulations
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Interim Cloud Improvement

Old

New
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Interim Cloud Improvement
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Interim Cloud Improvement

• Significantly more cloudiness (and COD) was added by 
including fractional cloud cover 

• Large reduction in Ohio Valley ozone
– Similar to the case with CODx10
– Similar to the observed and CMAQ fields 

• EPA ran CAMx for Jan/July 2005
– ENVIRON conducted in-depth MPE
– Daily maximum ozone
– 24-hour averaged sulfate (SO4)
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July Ozone Performance – Ohio Valley
 Frequency distribution of daily maximum ozone (O3) concentrations
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Frequency distribution of daily maximum ozone (O3) bias
Ohio Valley
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July Sulfate Performance – Ohio Valley
Frequency distribution of daily average sulfate (SO4) concentrations
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Summary of MPE Impacts

• Good overall ozone bias, except July 13-18:
– Mean bias jumps to 20 ppb, peak bias 107 ppb on July 16
– New run greatly improved model performance

20-40 ppb bias improvement

• Cloud changes negligible in January across domain
– Likely lack of sub-grid convection during this season

• Good overall sulfate bias throughout July
– New run performed equally well
– Greatest change on July 15, when tropical clouds lingered

CAMx over predicted highest sulfate by 20 μg/m3
New run reduced peak bias by 8 μg/m3

• Sulfate differences in January were subtle
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Improving Cloud Impacts on Photolysis

• Errors in cloud predictions and simplicities in 
parameterized cloud attenuation both adversely impact 
ozone predictions

• Lack of sub-grid cloud data available to off-line air 
quality models exacerbates inconsistencies between the 
modeling systems

• We reviewed three techniques:
– Supplementary cloud outputs from meteorological models
– Use of satellite data to adjust clear-sky photolysis
– Use of simplified on-line radiative transfer models within air 

quality models
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Additional Output from Met Models

• MM5 and WRF output 3-D resolved cloud/precip water
– Easily transferred to the air quality models
– Support photolysis rate adjustments, aqueous chemistry, wet 

deposition

• Significantly more cloud/precip can be generated by sub-
grid cumulus schemes
– Relative contribution increases with coarser resolution
– But no detailed cloud information is saved
– Only gridded precipitation rates are accumulated
– AQ models must re-diagnose cloud properties 
– Leads to inconsistencies between met and AQ models
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Additional Output from Met Models

• We recommend that sub-grid cloud algorithms output 
additional data, for example:
– Cloud base and top
– Cloud fractional horizontal coverage
– Cloud liquid and ice water profile
– Precipitation liquid, snow, graupel water profile
– Ambient air entrainment/detrainment fluxes
– Vertical convective/mixing rates

• Met-AQ interface programs would need to be updated to 
utilize this information
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In-line Radiation Models

• RADM cloud photolysis attenuation parameterization is 
crude and inaccurate
– Esp. at larger zenith angles

• Introduction of simpler fast RTMs into AQMs
– McHenry & Coats (2003): SIM into MAQSIP-RT

Report significant forecast ozone improvements

– More recently:
Fast-J into CMAQ
Fast-TUV into WRF-CHEM

– Account for sub-grid cloudiness, fractional cover, stacked and 
staggered cloud patterns, above/within/below cloud impacts
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Satellite Adjustments

• McNider et al. (1998) used satellite-derived broadband 
cloud transmittance to correct photolysis rates within RADM
– Over predictions of simulated clouds significantly reduced 

photolysis relative to the satellite-derived cloud data

• Pour-Biazar et al. (2007) used satellite-derived cloud 
data to correct photolysis rates within CMAQ
– MM5 poorly predicted clouds location, timing, coverage
– Improved cloud photolysis impacts using hi-res GOES data 

Focus on improving cloud patterns, not RADM parameterization

– Tested in CMAQ for Houston August 2000 TexAQS
– Improved intensity, location, timing of ozone patterns

• This only improves impacts on photochemistry
– No effect on mixing/transport, aqueous chemistry, wet dep
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Discussion

• Use of satellite-derived cloud information and in-line RTMs 
are both innovative and promising

• Important limitations:
– Satellite techniques cannot modify, shift, add, or remove all 

cloud-related processes within air quality models
Photolysis improved at the expense of exacerbated inconsistencies in 
cloud representation

– In-line RTMs are simplified for efficiency
Clear-sky calculations are not as accurate as the input lookup tables 
generated by the full-spectrum offline RTMs
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Discussion

• EPA has released “beta” versions of CMAQ v4.7 that 
include:
– Satellite cloud adjustment (with UAH)

New techniques for GOES data assimilation in MM5 and WRF, and for 
use in CMAQ
Satellite adjustment scheme only applies to the standard clear-sky 
photolysis rate lookup table option

– In-line photolysis model techniques (Fast-J)
Input cloud fields
CMAQ aerosols for extinction and scattering
Grid specific surface albedo
Modeled meteorological and chemical profiles
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Discussion

• ENVIRON’s current work with the TCEQ
– Modifying Grell cumulus scheme (WRF v3.2) to output sub-grid 

cloud water profiles and cloud fraction
Supplying WRF/Grell-generated sub-grid cloud data to CAMx
Keeping “interim” modifications for non-Grell applications

– Adding an in-line (simplified) version of the TUV RTM
Start with accurate full TUV clear-sky photolysis lookup table
Run TUV in-line to get profiles of clear/cloud flux ratios
Apply clear/cloud ratios to clear-sky lookup values
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