Technical Highlights of EPA’s 7th Conference on Air Quality Modeling

Workshop Guide
APTI Workshop T-029
DAY 2
This project has been funded wholly or in part by the United States Environmental Protection Agency (U.S. EPA) under Cooperative Assistance Agreement CT-825724 to North Carolina State University. The contents of this document do not necessarily reflect the views and policies of U.S. EPA, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

©2000 North Carolina State University

All rights reserved. State and local air pollution control agencies, U.S. EPA offices, and federal offices designated by EPA are authorized to make royalty-free copies of this document in connection with telecourses. Otherwise, no part of this publication may be reproduced or transmitted in any form or by any means electronic or mechanical, including photocopying, recording, or information storage and retrieval systems, for any purpose without the express written permission of North Carolina State University.

Printed on recycled paper in the United States of America.

(Revision: 8/00)
Fax Question Sheet

APTI Workshop T-029

Technical Highlights of EPA’s 7th Conference on
Air Quality Modeling DAY 2
August 2, 2000

Voice: (800) 742-9813 Fax: (800) 553-7656

Please write your question and direct it to the appropriate presenter if possible.

Question for: __

Question from: __

City/State: __________________________ Office Phone Number: (____) ____________

KeyPoint Services International, Inc. Trouble Line: (800) 231-8945
<table>
<thead>
<tr>
<th>SECTION</th>
<th>TOPIC</th>
</tr>
</thead>
</table>
| 1 | Introduction
Jim Dicke |
| 2 | Alternative Models
ADMS
David Carruthers, Ph.D.
CAMx
Ralph Morris
SCIPUFF
Ian Sykes |
| 10 MIN. | BREAK |
| 3 | Alternative Models
HYROAD Introduction
Edward Carr
HYROAD Intersection Model
Robert Ireson
UAM-V
Edward Carr |
| 4 | Summary
Joe Tikvart |
| 10 MIN. | BREAK |
| | Questions and Answers and Wrap up |
Technical Highlights of EPA’s 7th Conference on Air Quality Modeling

Presenters

Edward Carr
ICF Consulting
San Francisco, CA
edcarr@icfconsulting.com

Dr. David J. Carruthers
Cambridge Environmental Research Consultants, Cambridge, UK
David.Carruthers@cerc.co.uk

Alan J. Cimorelli
Regional Modeler, EPA Region III
Philadelphia, PA
cimorelli.al@epa.gov

Julie Ann Draper
Federal Aviation Administration
Washington, DC
julie.draper@faa.gov

Chuck Hakkarinen
EPRI
Palo Alto, CA
chakk@epri.com

Robert Ireson
ICF Consulting
San Francisco, CA
rireson@ix.netcom.com

John S. Irwin
Meteorologist, NOAA
Air Quality Modeling Group, EPA
irwin.john@epa.gov

Ralph E. Morris
ENVIRON International Corp.
Arlington, VA
rmorris@environ.org

Robert J. Paine
ENSR Corporation
Acton, MA
Bpaine@ensr.com

Warren D. Peters
Environmental Engineer
Air Quality Modeling Group, EPA
peters.warren@epa.gov

Joseph S. Scire
Vice President, Earth Tech, Inc.
Concord, MA
JSS@src.com

R. Ian Sykes
ARAP Group
Titan Corporation
isykes@titan.com

Theodore G. Thrasher
CSSI, Inc.
Washington, DC
tthrasher@cssiinc.com

Joe Tikvart
Leader, Air Quality Modeling Group, EPA
Research Triangle Park, NC
tikvart.joe@epa.gov

John Vimont
National Park Service
Denver, CO
jcv@aqd.nps.gov

Roger L. Wayson, Ph. D.
University of Central Florida and Visiting Scientist, DOT
wayson@mail.ucf.edu

Jeffrey C. Weil
CIRES, University of Colorado
Boulder, CO
weil@mmm.mmm.ucar.edu

Rob Wilson
Regional Modeler, EPA Region 10
ADMS
Atmospheric Dispersion Modelling System

Dr. David J Carruthers
Cambridge Environmental Research Consultants

ADMS

- Development commissioned in 1988 following a CERC report to regulatory authorities in the UK
- The CERC report highlighted the advantages of the use of surface/boundary layer scaling over Pasquill Gifford stability categories

ADMS

- Sponsors include UK’s Environment Agency, UK Health and Safety Executive, major power and chemical companies
ADMS

- Development by:
 - CERC
 (including Prof. Julian Hunt, Dr. David Carruthers, Dr. Christine McHugh, Dr. Rex Britter)
 - University of Surrey
 (Prof. Alan Robins)
 - UK Meteorological Office
 (Dr. David Thomson)

ADMS

- ADMS is the leading European Short Range Air Dispersion Model and is used extensively in the UK and across Europe
- ADMS has featured in all 6 European Workshops on Harmonisation of Dispersion Models (1991-present)

Key Features of ADMS

- Continuous or discrete releases
- Point, line, area, volume and jet sources
 - treatment depends on receptor location
Key Features of ADMS
- Skewed-Gaussian model using local boundary layer variables
- Meteorological preprocessor
- Integral plume rise model

Key Features of ADMS
- Building effects
- Complex terrain
- Coastline
- Wet and dry deposition
- Chemical transformation

Key Features of ADMS
- Radioactive decay & gamma dose
- Jets and directional releases
- Concentration fluctuations module
- Condensed plume visibility module
Regulatory Applications

- Multiple buoyant or passive industrial emissions
- Surface, near surface or elevated releases
- Urban or rural areas
- Short (seconds) to long (annual) term averaging times

Flat Terrain Validation
Summary Scores for ISC3, ADMS and AERMOD (Different model input parameters)

<table>
<thead>
<tr>
<th></th>
<th>ISC3</th>
<th>ADMS</th>
<th>AERMOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best</td>
<td>5</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Middle</td>
<td>2</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Worst</td>
<td>17</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ISC3</th>
<th>ADMS</th>
<th>AERMOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best</td>
<td>4</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Middle</td>
<td>10</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>Worst</td>
<td>10</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 1 from Hanna et al, 6th Workshop on Harmonisation, France Oct 1999
Table 2 from Hanna et al, AWMA Meeting, US, June 2000

Power Station Comparison

<table>
<thead>
<tr>
<th>Typical input data</th>
<th>Maximum values of Percentiles and Annual Mean Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack height (m)</td>
<td>ADMS</td>
</tr>
<tr>
<td>Stack diameter (m)</td>
<td>100</td>
</tr>
<tr>
<td>Exit velocity (m/s)</td>
<td>22</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>130</td>
</tr>
<tr>
<td>SO2 emission rate (g/s)</td>
<td>5000</td>
</tr>
</tbody>
</table>

Meteorological data:
1 year of hourly sequential data from Manchester, UK, 1995
Modelling Building Effects

Two plume model
Based on flow field

Building Validation - Wind Tunnel Experiment

large building small building

Building Validation - Results

Comparison of ADMS with wind tunnel results for the large building with 1, 4, 9 and 15 openings, increasing buoyancy flux (S, W and X)
Technical Highlights of EPA’s 7th Conference on Air Quality Modeling
ADMS Atmospheric Dispersion Modeling System

Dr. David J Carruthers

Complex Terrain Effects

Based on modelled flow field

Above: View of idealized hill

Right: Flow field at 80m above terrain and ground level concentration from an 80m stack

ADMS and AERMOD Comparison:

Terrain amplification factors

Left: ADMS Cmax
Right: AERMOD Cmax

Ratio of complex terrain to flat terrain as function of stack location
- Neutral conditions
- 50m stack
- Idealised hill

ADMS and AERMOD Comparison:

Complex terrain, Neutral flow

Wind tunnel, from Lawson et al

Ratio of complex terrain to flat terrain maximum concentrations as function of stack height and location

ADMS

AERMOD
Technical Highlights of EPA’s 7th Conference on Air Quality Modeling

Dr. David J Carruthers

ADMS Atmospheric Dispersion Modeling System

ADMS and AERMOD Comparison: Complex terrain, Stable flow

- Wind Speed (10m) = 0.76 m/s
- Monin-Obukhov length = 23 m

ADMS and AERMOD Comparison: Complex terrain results

- Maximum Concentration (ug/m3)
- Long Term Average Concentration (ug/m3)

ADMS-Urban

- Advanced air quality model for major cities and airports
- Includes algorithms for dispersion from roads and street canyons
- Used in major cities in Europe and beyond

London Annual average NO2 concentration, 2005
Summary

- ADMS includes in one model all the features of AERMOD (except input of observed boundary layer profiles), ISC-PRIME and CTDM PLUS – potential difficulties arising as to whether to use AERMOD or ISC-PRIME avoided (e.g., at site with buildings and tall stacks).

Summary

- Additionally ADMS includes concentration fluctuation, plume chemistry and condensed plume visibility algorithms.

Summary

- ADMS-Urban includes capabilities of CALINE, most features of EDMS and other features.
- The costs of ADMS are similar to commercially available versions of AERMOD and ISC.
Summary

- ADMS was first released in 1993 and has been used in many critical applications.
- There are over 500 licenses worldwide.

http://www.cerc.co.uk
Comprehensive Air-quality Model with extensions (CAMx)

Ralph E. Morris
ENVIRON International Corp.

CAMx Version 2.00

- 3-D Eulerian tropospheric photochemical transport model
 - treats emissions, chemistry, dispersion, removal of gaseous and aerosol air pollution
 - scales range from individual point sources (< 1 km) to regional (>1000 km)

CAMx Version 2.00

- Combines features required of “state-of-the-science” models
 - new coding of several industry-accepted algorithms
 - computationally and memory efficient
 - easy to use
CAMx Version 2.00

- Modular framework permits easy substitution of revised and/or alternate algorithms
- Publicly available (www.camx.com)

CAMx Version 2.00

- Technical Features:
- Grid nesting
 - Two-way horizontal and vertical nesting
 - Supports multiple levels
 - Variable meshing factors

CAMx Version 2.00

- Plume-in-Grid (PiG) sub-model
- Multiple, fast and accurate chemical mechanisms
- Mass conservative and mass consistent transport scheme
CAMx Version 2.00

- Multiple map projections
 - curvi-linear latitude/longitude
 - Universal Transverse Mercator
 - Lambert Conformal (MM5)
 - Rotated Polar Stereographic (RAMS)

CAMx Version 2.00

- Ozone Source Apportionment (OSAT)
 - tracks source region/category contributions to receptor ozone concentrations
 - indicates if ozone formed in NOx or VOC-limited conditions
CAMx Version 2.00

- Ability to use historical air quality model databases developed for other models
 - OTAG, LMOS, COAST/Houston, Atlanta, Northeast Corridor

Key Technical Components

- Overview
 - solves continuity equation for each species
 - time splitting operation
 - each process solved individually for each grid, each time step
 - time step size maintains stable solution of transport on each grid

Key Technical Components

- multiple transport steps per master grid step required for
 - nested grids
 - multiple chemistry steps per transport step required
 - model developed to run on meteorological modeling grid
 - reduces error due to interpolation and averaging
 - multiple map projections available
Transport
- advection and diffusion solvers are mass conservative
- horizontal and vertical advection linked through the divergent compressible atmospheric continuity equation
 - mass consistency

Order of east-west and north-south advection alternates each master grid step

Three options available for horizontal advection solvers:
- Smolarkiewicz (1983): diffusion-corrective forward-upstream scheme
- Bott (1989): area-preserving flux-form solver
- Piecewise Parabolic Method (PPM)

Vertical transport and diffusion solved with an implicit scheme
Dry deposition rates are used as the surface boundary condition
Horizontal diffusion solved with an explicit scheme in two directions simultaneously
Key Technical Components

Pollutant Removal
- dry deposition velocities for each species determined using resistance approach (Wesely, 1989)
 - dependent upon: season, land cover, solar flux, near-surface stability, surface wetness, species solubility and diffusivity
 - for aerosols: size spectrum dictates sedimentation velocity

Key Technical Components

- wet scavenging based on Maul (1980) as implemented in CALPUFF (EPA, 1995)
 - exponential decay
 - decay rate dependent upon: rainfall rate, species solubility
 - species removed from entire grid column (all layers)

Key Technical Components

Photochemistry
- CBM-IV (Gery et al., 1989)
 - 3 variations available
- SAPRC97 (Carter, 1990)
 - chemically up-to-date
 - tested extensively against environmental chamber data
 - uses a different approach for VOC lumping
Technical Highlights of EPA’s 7th Conference on Air Quality Modeling
Comprehensive Air-quality Model with extensions (CAMx)

Key Technical Components

- all mechanisms are balanced for nitrogen conservation
- photolysis rates derived from TUV preprocessor
 - generates lookup table over: zenith angle, altitude, ozone column, albedo, turbidity
 - first two determined for each grid cell internally
 - last three provided by input files

Key Technical Components

- photolysis rates affected by clouds
 - UAM-V approach: rates scaled by fractional cloud coverage only
 - RADM approach: rates scaled by optical depth and cloud coverage

Key Technical Components

- Chemistry Solver
 - most “expensive” component of photochemical grid simulations
 - CAMx solver increases efficiency and flexibility
 - adaptive hybrid approach:
 - radicals (fastest reacting species) solved using implicit steady state approximation
Key Technical Components
- fast state species solved using second-order Runge-Kutta method
- slow state species solved explicitly
- “Adaptive” = number of fast state species changes according to the chemical regime

Key Technical Components
- Plume-in-Grid (PiG)
 - fine resolution needed for near-source chemistry/dispersion of large NOx plumes
 - tracks stream of plume segments (puffs) in a Lagrangian frame
 - each puff moved by winds in host cell
 - puff growth (dispersion) determined by diffusion coefficients in host cell

Key Technical Components
- GREASD PiG: faster, conceptually simpler
 - reduced NOx chemistry set
 - NO-NO, NOx/ozone equilibrium, HNO3 production
 - cross-sectional Gaussian pollutant distribution
Key Technical Components

- puffs leak mass according to growth rates and grid cell size
- puffs terminated due to age or sufficiently dilute NOx

Ozone Source Apportionment (OSAT)

- determines source area/category contributions to ozone anywhere in the domain
- uses tracers to track precursor emissions and ozone production/destruction
Key Technical Components

- also tracks contribution of initial and boundary conditions
- estimates whether ozone is produced under NO\textsubscript{x}- or VOC-limited conditions

Key Technical Components

- removes need to run model repeatedly to understand:
 - chemical regime
 - influences of various sources
- HOWEVER: cannot quantify ozone response to NO\textsubscript{x} or VOC controls

Key Technical Components

- CAMx Version 2.00 PM Treatment
 - Primary Particulate Matter (PM)
 - Secondary Organic Aerosols (SOA) treated using aerosol yield approach in photochemistry
 - Sulfate/Nitrate/Ammonia equilibrium aerosol thermodynamics using empirical UAM/LC approach
 - Empirical aqueous-phase (Sulfate)
Flexi-nesting
- Ability to add/delete nested-grids during a simulation
- Real time interpolation of fine-grid inputs from next coarser grid

Decoupled Direct Method (DDM)
- Sensitivity coefficients provides information on the relationship of CAMx-estimated ozone (or other species) and sources of precursors (emissions, boundary conditions, and initial concentrations)

Information is useful for:
- Control Strategy Development
- Model performance evaluation
- Diagnostic analysis
CAMx Version 3 Attributes
Advanced PM Treatment

- **Aerosol**
 - Size Composition Distribution (fixed size grid)

- **Equilibrium**

- **Hybrid**

- **Dynamics**

- **ISORROPIA**
 - AERO-LC
 - SCAPE2
 - SEQUILIB2.1

- **Aerosol Module**
 - Bulk aqueous-phase chemistry
 - Size-resolved aqueous-phase chemistry
 - Cloud Microphysics/Chemistry Module

CAMx Version 3 Attributes
Advanced PM Treatment

- **Gas-Phase Chemistry**
 - 1) SAPRC97
 - 2) Enhanced CBM-IV (monoterpenes)

- **Size Section**
 - 1) Fixed Section
 - 2) Moving Section

- **Mass Transfer**
 - 1) Equilibrium
 - 2) Hybrid
 - 3) Dynamic

CAMx Version 3 Attributes
Advanced PM Treatment

- **Aerosol**
 - 1) LCAERO (parameterized RFM)

- **Thermo-dynamic**
 - 2) SCAPE2 (full science)
 - 3) ISORRPIA (significantly faster)

- **Aqueous-Phase Chemistry**
 - 1) Bulk
 - 2) Size Resolved
 - 3) Empirical (existing)

- **Secondary Organic Aerosol**
 - 1) SOAM2
 - 2) Aerosol Yields (existing)

- **Aerosol**
 - 1) AERONET
 - 2) Aerosol Yields (existing)
CAMx Version 3 Attributes

Advanced PM Treatment

Coagulation:
1) CMU algorithm

Nucleation:
1) CMU algorithm

Dry Deposition:
1) Wesley gaseous (existing)
2) AERO particle dry deposition

Wet Deposition:
1) Rainout and washout as part of aqueous-phase module
2) Existing gaseous wet deposition interface with aqueous-phase module

CAMx Postprocessing and Analysis Tools

- **CAMxtrct**
 - Extracts and reformats CAMx output for multiple grids (Fortran)

- **SURFER (by Golden Software)**
 - Visualization (PC based)

- **MAPS (by Alpine Geophysics)**
 - Model evaluation and visualization (Fortran/NCAR graphics)

- **PAVE (by MCNC)**
 - Visualization (Unix/LINUX)
CAMx Postprocessing and Analysis Tools

- VIS5D
 - Visualization (various)
- CAMxDESK (by EnviroModeling)
 - Visualization and analysis software (PC based)

Contribution to 1-Hour Ozone > 124ppb in the Lake Michigan Region for the July, 1995 Episode Composite using Base Case EPA1A (bar 1) and SIP Call SIP2A (bar 2). EPA1A Conc = 141ppb; SIP2A Conc = 133ppb; n = 1515

Contribution to 8-Hour Ozone > 84ppb in the Lake Michigan Region for the July, 1995 Episode Composite using Base Case EPA1A (bar 1) and SIP Call SIP2A (bar 2). EPA1A Conc = 105ppb; SIP2A Conc = 99ppb; n = 5383
Contributions to 8-Hour Ozone > 84 ppb by Source Type for the July, 1995 Episode for 2007 Episode Composite Base Case

CAMxDESK Overlay of Ozone and Winds

CAMxDESK Overlay of Surface Temperature and Urban Land use
Second-order Closure Integrated Puff (SCIPUFF)

R. Ian Sykes
ARAP Group
Titan Corporation

Overview
- Modeling Approach
- Graphical User Interface
- Input/Output
- Model Evaluation Studies

Lagrangian Puff Model
- Concentration field - collection of overlapping puffs with Gaussian distributions
- Concentration given by sum over all puffs
- Solve ODE's for puff moments
Lagrangian Puff Attributes

- Arbitrary range of scales without numerical grid and associated diffusion errors
- Arbitrary time-dependent, spatially inhomogeneous conditions
- Multiple sources with arbitrary time-dependence

Concentration Field

\[c(x) = \sum_{a} c^{(a)}(x) = \sum_{a} Q^{(a)} G^{(a)}(x) \]

where

\[G^{(a)} = \frac{1}{V} \exp \left[-\frac{1}{2} (\sigma_{ij}^{(a)})^{-1} (x_j - \bar{x}^{(a)})(x_j - \bar{x}^{(a)}) \right] \]

- \(Q^{(a)} = \) total mass of puff (zeroth moment)
- \(\bar{x}^{(a)} = \) puff centroid (first moment)
- \(\sigma^{(a)} = \) spatial spread (second moment)
- \(V = \) puff volume = \((2\pi)^{\frac{3}{2}} |\sigma^{(a)}|^{\frac{3}{2}} \)

Puff Moment Equations

\[\frac{d}{dt} \bar{x}^{(a)} = u(x, t) \]

\[\frac{d}{dt} \sigma^{(a)} = -\frac{Q^{(a)}}{\sigma^{(a)}} - \bar{x}^{(a)} + \frac{\sigma^{(a)} \sigma^{(a)}}{\sigma^{(a)}} \]

\[+ \sigma^{(a)} \sigma^{(a)} \]

\[+ \sigma^{(a)} \sigma^{(a)} \]

\[+ \sigma^{(a)} \sigma^{(a)} \]
Technical Highlights of EPA’s 7th Conference on Air Quality Modeling

Second-order Closure Integrated Puff (SCIPUFF)

Turbulence Closure

\[
\frac{d}{dt} \langle x_i' \vec{u}_j c \rangle^{(\alpha)} = Q^{(\alpha)} \vec{u}_i' \vec{u}_j - \frac{\Lambda q}{\Lambda} \langle x_i' \vec{u}_j c \rangle^{(\alpha)}
\]

where \(q^2 = \vec{u}_i' \vec{u}_j \) and \(\Lambda \) is the turbulence length scale.

Turbulent Dispersion

- Closure model gives direct relationship between turbulence quantities and diffusion rates
- Provides single diffusion model framework for a wide range of atmospheric scales

Model Efficiency

- Puff splitting allows accurate treatment of wind shear
- Puff merging minimizes number of puffs
- Efficient adaptive time-step algorithm
- “Static” puffs for steady-state section of plume
Concentration Fluctuations

- Turbulent dispersion implies a random concentration field
- 2nd-order closure model gives both fluctuation variance, c'^2, and \bar{c}
- The probability distribution of c is then modeled by the clipped normal distribution

Fackrell & Robins (1982)

Plume Rise

- Associate dynamic vertical momentum and temperature perturbation integrals with each puff
- Add evolution equations for puff dynamics based on conservation of momentum and temperature
Momentum Rise

Buoyant Rise

Wind Shear

- Use complete (six-moment) Gaussian specification so that shear distortions can be accurately calculated
Model Input
- Source Data
 - Pollutant physical and chemical properties
 - Release type

Model Input
- Meteorological Data
 - Fixed winds
 - Observational Input (surface and/or profile)
 - Time-dependent 3-dimensional gridded

Model Input
- Terrain for mass consistent wind field
- Turbulence Data
 - Planetary boundary layer
 - Large scale variability
Model Input

- Boundary layer turbulence
 - Profiles based on wind speed, roughness, and surface heat flux calculation

GUI Input

Model Output

- Sampler file
 - Time history at receptor locations
- GUI plots
 - Horizontal slices
 - Vertical slices
 - Integrated surface deposition and dose
 - Probability
GUI Output

Surface Dosage
GAS1 at 27-Oct-94 10 00Z (3.75 days)

Model Evaluation Studies
- PGT curves
- Instantaneous dispersion data
- Lab dispersion and fluctuation data
- Continental-scale ANATEX field experiment
- EPRI PMV&D tall-stack emissions
- CONFLUX (short range, fluctuations)
- Dugway field tests
- Model Data Archive
- ETEX
ETEX

Model Availability

Available for downloading from the Titan website:
www.titan.com/systems/prod.htm
The Hybrid Roadway Intersection Model: HYROAD

Edward Carr and Robert Ireson
ICF Consulting

Contact Information
Crawford Jencks, P.E.
Program Officer, NCHRP
202-334-2379 / cjencks@nas.edu

Edward L. Carr, CCM
Project Manager, ICF Consulting
415-507-7186 / ecarr@icfconsulting.com

Robert G. Ireson, Ph.D.
Principal Investigator
415-925-1440 / rireson@ix.netcom.com

Overview
- Background
- Scientific basis and model formulation
- Model application - resource needs
Overview

- Model sensitivity and performance
- Proposed applications
- Project status and next steps

Background

- SIP, conformity, and EIS
 "Hot-Spot" analysis for carbon monoxide (CO)
- Sponsorship: NCHRP, FHWA

Background

- Four phase study:
 - Site monitoring and evaluation - Data Collection & Analysis (1993-1997)
 - Development GUI & user guide (2000-2001)
Primary Objectives of Research

- Assemble a comprehensive national database
 - Model testing and evaluation

Primary Objectives of Research

- Developed an improved fully integrated roadway intersection model
 - Dispersion
 - Emissions
 - Traffic

Approach to Model Development

- Analysis of field program data to characterize dynamic processes
 - Assess those elements most important and incorporate into model framework
- Develop model based on understanding of key processes
Scientific Basis and Model Formulation

• Intersection model components
• Limitations of existing models
• Field study design and findings
• HYROAD formulation

Intersection Dynamics

• Traffic
 • Queuing
 • Acceleration, deceleration, and cruise
 • Non-steady state

• Emissions and dispersion
 • Modal effects (e.g., power enrichment)
 • Buoyancy and vehicle wake turbulence
 • Short transport distances
Intersection Model Components

- Roadway and Traffic Inputs
- Emission Factors
- Meteorological Inputs

Traffic Module ➔ Emission Module ➔ Dispersion Module ➔ Outputs

The need for integration

Limitations of Existing Models

- CAL3QHC simplifications
 - Two emission states -- idle or cruise
 - Steady state meteorology (PG sigma-y and sigma-z)
 - Queuing based on quality of progression

- CALINE4 approaches
 - Empirical emission adjustment for acceleration
 - Roadway turbulence and buoyancy
 - Use of sigma-theta in place of sigma-y
Field Study Elements - Continuous (15 minute average)

- Traffic approach volume and signal timing
- Meteorology
 - 3 m and 10 m wind speed and direction
 - Temperature, RH, sigma-theta, stability

Field Study Elements - Continuous (15 minute average)

- CO and CO₂ at 16+ locations
- Sonic anemometers (2- and 3-axis)

Field Study Layout
Field Study Elements -- Short-term Studies

- Floating car runs
 - Time-distance data (1 second resolution)
- Coldstart survey (distance from trip origin)

Field Study Elements -- Short-term Studies

- Tracer study (SF6)
 - Light wind periods
 - 15-minute averages at multiple receptors

Field Study Findings -- Flows and Turbulence

- Induced flows of 3+ m/s at roadside
- Induced flows and enhanced turbulence observable at >25 m from roadside
Field Study Findings -- Flows and Turbulence

- Observed vertical dispersion rate exceeds both PG and CALINE3/CAL3QHC
- SF6 tracer observed >100 m 'upwind' of release point due to induced flows

Field Study Findings -- Traffic and Emissions

- Speed/acceleration distributions do not resemble any emission test cycles
- Power enrichment occurs on depart legs

Field Study Findings -- Traffic and Emissions

- Constant g/gal emission rates observed at all locations for high concentration periods
- Enrichment does NOT appreciably contribute to high concentrations
Technical Highlights of EPA’s 7th Conference on Air Quality Modeling
The Hybrid Roadway Intersection Model: HYROAD

Robert Ireson, Edward Carr

Emissions (g/gal) Show Enrichment on Acceleration

High CO Events Show Little Enrichment

HYROAD Formulation

Roadway and Traffic Inputs

Emission Factors

Meteorological Inputs

Traffic Module

Emission Module

Dispersion Module

Outputs

Microsimulation

Hybrid steady-state and puff

Speed-distribution-based, Modal-ready
Traffic Module - Micro-simulation

- Based on TRAF-NETSIM - simulation of vehicle movements at 1 second resolution
- Explicit treatment of traffic patterns
 - Turn lanes, signal phases, queuing
 - Coordination of upstream signals

Traffic Module - Micro-simulation

- Output: Speed/acceleration distribution by 10 m roadway segment and signal phase

Denver Speed-Acceleration Profile
HYROAD Speed-Acceleration Profile (LOS C Test Case)

Emission Module

- Objective: make the best possible use of cycle-based emission factors
- Core rates from MOBILE5 for the speeds of the speed correction cycles

Emission Module

- Multivariate regression weights speed correction cycles to match non-idle speed distribution from NETSIM
Emission Module
- Total emissions calculated from weighted average g/mi rate plus excess idle (idle time not explained by weighted cycles)
- Speed/acceleration distributions used to calculate fuel consumption by 10 m roadway segment and signal phase

Emission Module
- Fuel consumption used as a surrogate to spatially and temporally allocate emissions

HYROAD Speed Distribution

Excess Idle Time Added
Traffic Module
Emissions Module
Induced Turbulence and Flow Fields

- Based on ROADWAY (Eskridge, 1987)
- Turbulence and induced flow calculated for each 10 m roadway segment using traffic volume and speed

Induced Turbulence and Flow Fields

- Output for each signal phase: Gridded wind speed and eddy diffusivity for a 2.5 x 2.5 km grid of 10 m cells
Wind Field with Induced Flows

Dispersion Module

- Gaussian model (moderate wind)
 - Uses CALINE4 mixing zone, sigma-z, sigma-theta
- Puff model
 - 1 puff per second per 10 m roadway segment
 - Puff transport with gridded winds by phase

- Puff growth based on local stability from gridded eddy diffusivity
- Domain wind and stability used after 1 cycle
Model Formulation - Conclusions

HYROAD integrates accepted modeling approaches to treat important processes affecting intersection CO concentrations

- Induced flows and turbulence
- High spatial and temporal variability of emissions

Model Formulation - Conclusions

Modular design allows updating (e.g., for modal emissions)

Model Application - Resource Needs

Standard inputs

- Intersection geometry (lanes, medians, etc.)
- Traffic (volume, turns, signal cycles, speeds, coordination)
Technical Highlights of EPA’s 7th Conference on Air Quality Modeling
The Hybrid Roadway Intersection Model: HYROAD

Robert Ireson, Edward Carr

Model Application - Resource Needs

- Meteorology (wind speed, direction, stability, temperature, optional sigma-theta)
- Emission factors by temperature (constant cold-start), or hour-specific

Model Application - Resource Needs

- Input preparation time
 - Geometry and NETSIM: 8 hours
 - Emissions and Dispersion: 12 hours

Model Application - Resource Needs

- Run time
 (500 MHz Pentium, 128 Mb)
 - Netsim: 30 sec / simulation hour
 - Dispersion: 4 min / simulation hour
 - Optimization possibilities
HYROAD Sensitivity and Performance

- Sensitivity analyses
 - Nominal intersection with grid of receptors in NW quadrant
 - Modeling with both Gaussian and puff models
 - Results for wind speed, wind direction, and stability

Concentration Patterns -- Puff v. CALINE4

HYROAD Sensitivity and Performance

- Performance evaluation data sets
 - Intensive data sets for three intersections
 - 528 hours with 15 minute data (6000 available)
 - 10 or more receptor locations
HYROAD Sensitivity and Performance

- 8 SLAMS/NAMS sites
 - 1728 hours (75,000 available)
 - Uncertain background concentrations

HYROAD Sensitivity and Performance

- Performance evaluation approach
 - Concurrent evaluation of HYROAD (Gaussian and puff) with CAL3QHC without regulatory constraints (D, 1 m/s)

HYROAD Sensitivity and Performance

- Scatterplots, stratified by receptor, wind speed, and wind direction
- Standard statistics
 - All data
 - Max 25 paired
 - Max 25 unpaired
Predicted vs. Observed [CO]

Quantile-Quantile Plot

Preliminary Performance Results

- HYROAD produces more accurate robust high concentration than CAL3QHC
- Performance differences observed between receptor locations
- HYROAD appears to provide improved treatment of problematic worst-case conditions
Preliminary Performance Results

- Performance evaluation for other intersections is under way
- Screening methodology using HYROAD will be developed and evaluated

Proposed Applications

- Refined CO Applications
 - SIPs
 - Conformity
 - EIS/EIR
- Particulate matter “hot-spots” assessment
- Air toxic risk assessment

Project Status

- Current Status
 - Select transition from puff to line-segment
 - Complete model performance evaluation
 - Completed Tucson
 - Virginia & Denver plus 8 SLAMS/NAMS sites
Project Status

- Present Evaluation and Recommendations to NCHRP panel

Next Steps

- Develop Graphical User Interface
 - Facilitate communication between modules
 - Ease burden for user in developing inputs
- Update Draft User Guide
 - Reflect changes

Next Steps

- Schedule for Completion
 - Complete Evaluation (August 2000)
 - Develop GUI and Beta Testing (Fall 2000)
The Variable Grid Urban Airshed Model (UAM-V, UAM-VPM)

Edward Carr

Overview of the Variable-Grid Urban Airshed Model (UAM-V)

- Simulates the physical and chemical processes governing the formation and transport of ozone in the troposphere
 - three-dimensional, Eulerian (grid-based) model

Overview of the Variable-Grid Urban Airshed Model (UAM-V)

- requires specification of meteorological, emissions, land-use, and other geographic inputs
- output includes hourly concentrations of ozone and precursor pollutants for each grid cell within a (three-dimensional) modeling domain
Overview of UAM-V

- Core model, supporting software, user’s manuals, and example modeling database available from SAI at no charge
- www.uamv.saintl.com

Overview of UAM-V

- Version 1.24 – OTAG version
 - Updated isoprene chemistry (1996)
- Version 1.30 – Latest version
 - Toxics chemistry, process analysis

UAM-V Modeling System Features

- Carbon-Bond-IV chemical mechanism with enhanced isoprene and toxics chemistry
- Two-way interactive nested-grid capabilities
- Plume-in-grid (P-i-G) treatment
UAM-V Modeling System Features

- Accepts output from a variety of dynamic meteorological models (e.g. MM5)
- Contains “process analysis” capabilities

Treatment of Processes in UAM-V

- Advective pollutant transport
 - Smolarkiewicz scheme
- Turbulent diffusion
 - Dispersion proportional to concentration gradient – K Theory

Treatment of Processes in UAM-V

- Surface removal
 - Uptake of pollutants by various surface features - land use
- Chemistry
 - Carbon Bond IV chemical mechanism with updated isoprene chemistry and toxics mechanism
UAM-V Modeling System

- Core model and input processing software
- Emissions Preprocessing System (EPS2.5) to prepare ozone and particulate emission inventories
- UAM-V Postprocessing System (UPS)

UAM-V Modeling System

- Process analysis modeling system software
- Model Output Visualization and Input Evaluation Software (MOVIES) – Color animations

UAM-V Input File Requirements

- Meteorological input files
 - wind
 - temperature
 - water-vapor concentration
 - pressure
The Variable Grid Urban Airshed Model

UAM-V Input
File Requirements

- vertical diffusivity
 (effective mixing height)
- cloud cover
- rainfall rate

UAM-V Input
File Requirements

- Emissions input files
 - low-level anthropogenic emissions
 - point sources
 - area sources
 - motor-vehicles
 - elevated point source emissions
 - biogenic emission estimates

UAM-V Input
File Requirements

- Air quality related input files
 - initial conditions
 - boundary conditions
- Chemistry input files
 - chemical reaction rates
 - photolysis rates
UAM-V Input
File Requirements
- Geographic/other input files
 - land-use
 - albedo, turbidity, and ozone column

UAM-V Process
Analysis Capabilities
- UAM-V process analysis provides detailed information on the physical and chemical simulation processes
- Process-level information includes
 - photochemical production/consumption

UAM-V Process
Analysis Capabilities
- horizontal advection/diffusion
- vertical advection
- vertical diffusion
- deposition
- emissions (for precursor pollutants)
Simulated Process Contributions to Ozone

Simulated — and observed ozone concentration

UAM-V Users/Applications

- Over 60 registered users worldwide (Version 1.30), unknown number of unregistered users
 - U.S. EPA, state/local agencies, and industry
 - Environment Canada
UAM-V Users/Applications

- European research and regulatory agencies
- European and Japanese auto-makers; European oil companies

UAM-V Users/Applications

- Registered users
 - Research and regulatory groups in Central and South America, Australia, New Zealand, and several Asian countries including
 - China
 - Taiwan
 - South Korea
 - Philippines
 - India
 - Thailand (AIT)

UAM-V Users/Applications

- Some completed applications
 - Numerous U.S. regions/cities
 - OTAG, Atlanta, Houston, Baton Rouge, Chicago
 - Vancouver, B.C.
 - U.K.
 - Paris
 - Milan
 - Mexico City
 - Athens
Current Applications

- Gulf Coast Ozone Study (GCOS) – Assessment of ozone formation and transport processes affecting 1- and 8-hour ozone along the U.S. Gulf Coast

- Arkansas-Tennessee-Mississippi Ozone Study (ATMOS) – Assessment of potential 8-hour ozone issues for Memphis, Nashville, Knoxville, Tupelo, Chattanooga, and Little Rock

- Mexico City - Demonstration for a new area/preliminary emissions sensitivity analysis
Overview of the UAM-VPM

- UAM-V photochemical model (CB-2000)
- Particulate matter (PM) stand-alone box model employing hybrid modal-sectional approach to PM representation
- Gas-phase chemical mechanism generator for the UAM-V

Structure of the UAM-VPM

- Features of PM dynamics that can be well characterized by known algorithms are hard coded
- Features which are not well known are user inputs or dynamically selected
- Allows for the best research grade algorithms to be used in a regulatory and planning platform
PM Processes in UAM-VPM

1) Modal discretization (new)

2) Nucleation
 (Fitzgerald, Hoppel, Gelbard, 1998)

3) Coagulation
 (Jacobson, 1994, 1999)

4) Condensation
 (Jacobson, 1997, 1999)

5) Dissolution (Jacobson, 1997, 1999)

6) Reversible chemistry (various)

7) Sectional remodalization (new)
Example

UAM-VPM Species

<table>
<thead>
<tr>
<th>Chemical Formula</th>
<th>Chemical Name</th>
<th>Chemical Formula</th>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$O(aq)</td>
<td>water</td>
<td>Na$^+$</td>
<td>sodium ion</td>
</tr>
<tr>
<td>H$_2$SO$_4$(aq)</td>
<td>sulfuric acid</td>
<td>Cl$^-$</td>
<td>chloride ion</td>
</tr>
<tr>
<td>HNO$_3$(aq)</td>
<td>nitric acid</td>
<td>Na$_2$SO$_4$(s)</td>
<td>sodium sulfate</td>
</tr>
<tr>
<td>NH$_3$(aq)</td>
<td>ammonia</td>
<td>NaHSO$_3$(s)</td>
<td>sodium bisulfate</td>
</tr>
<tr>
<td>HCl(aq)</td>
<td>hydrochloric acid</td>
<td>NaCl(s)</td>
<td>sodium chloride</td>
</tr>
<tr>
<td>H$^+$</td>
<td>hydrogen ion</td>
<td>NaNO$_3$(s)</td>
<td>sodium nitrate</td>
</tr>
<tr>
<td>OH$^-$</td>
<td>hydroxy ion</td>
<td>(NH$_4$)$_2$SO$_4$(s)</td>
<td>ammonium sulfate</td>
</tr>
<tr>
<td>NH$_4^+$</td>
<td>ammonium ion</td>
<td>NH$_4$Cl(s)</td>
<td>ammonium chloride</td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>nitrate ion</td>
<td>NH$_4$HSO$_4$(s)</td>
<td>ammonium bisulfate</td>
</tr>
<tr>
<td>HSO$_4^-$</td>
<td>bisulfate</td>
<td>NH$_4$NO$_3$(s)</td>
<td>ammonium nitrate</td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>sulfate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Status of UAM-VPM: Plans for 2000 and beyond

- Rigorous testing of box model
- Testing of full modeling system
- Complete initial application to Vancouver for a 10-day 1993 episode
- Initiate application to Alberta
7th Conference on Air Quality Modeling: Prepared Comments on the Second Day - June 29

Joseph A. Tikvart

AMS Committee Perspective
J. Weil

AWMA Committee Perspective
R. Paine

Prognostic Meteorological Model Panel
R. Schulze

STAPPA/ALAPCO Agencies
P. Hanrahan

Department of Energy
P. Lunn

Gas Research Institute
D. Blewitt

American Petroleum Institute
H. Feldman
K. Steinberg

Utility Air Regulatory Group
A. Field
R. Paine

Southern Company
S. Vasa

Trinity Consultants
R. Schulze

Personal Statement
M. Sharan
7th Conference on Air Quality Modeling

Questions EPA Asked on New Modeling Systems

Q1. Scientific Merit
Q2. Model Accuracy
Q3. Appropriate Regulatory Applications

Q4. Implementation Issues
Q5. Resource Constraints
Q6. Additional Analyses

Notes on Summary of Comments

- Public comment period is open until 8/21/00
- Summary is for oral comments only
Notes on Summary of Comments

- No responses have been formulated at this time
- Comments on the scientific merit of AERMOD, CALPUFF, and ISC-PRIME were generally favorable

Notes on Summary of Comments

- Summary of comments is based on the previous 6 questions
 - AERMOD
 - CALPUFF
 - Numerical Grid Models
 - Data from Meteorological Models
 - General Comments

Notes on Summary of Comments

- There were no specific oral comments on other models
AERMOD

Q1, Q2. Scientific Merit & Model Accuracy
 ▪ Improvements over ISC, especially regarding PBL dispersion and complex terrain, are desirable

AERMOD

Q3. Appropriate Regulatory Applications
 ▪ Add PRIME and deposition algorithms to AERMOD
 ▪ Develop AERSCREEN

AERMOD

Q4, Q6. Implementation Issues & Additional Analyses
 ▪ Define separate uses of AERMOD and ISC-PRIME
 ▪ Expand period for transition to AERMOD (>12 months)
AERMOD

Q5. Resource Constraints
- Application of PRIME -- separate from AERMOD or included with AERMOD
- Use of electronic terrain data -- need more training
- Additional EPA support

CALPUFF

Q1. Scientific Merit
- Significant advancement as State-of-Practice for long range transport
- Model flexibility provides room for growth

Q2. Model Accuracy
- Testing is adequate for inclusion in the Guideline
- More testing for short-range applications is desirable
CALPUFF

Q3. Appropriate Regulatory Applications
- Appropriate for long range transport (50 - 200km)
- Need more specific guideline language for other applications

Q4. Implementation Issues
- Clarify user's guide and default options

CALPUFF

Q5. Resource Constraints
- Computer requirements
- User skills
- Additional EPA support

CALPUFF

Q6. Additional Analyses
- Requirement for 5 years of meteorological data
- Dispersion coefficient treatment
- Example protocol
- Better chemistry for SO_x/NO_x
- Overall experience of dispersion model community
Numerical Grid Models for Urban/Regional Scales

Q1. Scientific Merit
 - Support removal of old grid model from guideline

Q6. Additional Analyses
 - Need more testing of Models-3/CMAQ
 - Insure that models are in the public domain

Data from Meteorological Models

Q1, Q2. Scientific Merit & Model Accuracy
 - Use of data from meteorological models (e.g., RUC, MM5) is desirable and meets needs

Data from Meteorological Models

Q3. Appropriate Regulatory Applications
 - Applications need a resolution finer than 80 km
Data from Meteorological Models

Q4. Implementation Issues
- Need detailed resolution of terrain and meteorological data
- CALMET can be used in conjunction with MM5 data
- What are the consequences of using these data bases in regulatory programs

Q5. Resource Issues
- Need more modelers using RUC & MM5 meteorological model products and greater exposure to data bases
- Need a repository of routine and easily accessible prognostic meteorological data (NCEP,RUC)
- Need training for MM5 and similar meteorological models
General Comments

Summary
- Public comment period is open until 8/21/00
- No responses have been formulated at this time
- Comments on the scientific merit of AERMOD, CALPUFF, and ISC-PRIME were generally favorable -- implementation / resource issues

Summary
- There were no specific comments on other models
- Next steps