

SCICHEM Development Update

Eladio M. Knipping, Ph.D. Senior Technical Manager, Environment Electric Power Research Institute

> EPA 10th Modeling Conference Research Triangle Park, NC March 15, 2012

Some Introductory Notes

• A new SCICHEM version is forthcoming in a few months

- A prior version SCICHEM has been described in previous presentations at this conference; this version has some of but not all the enhancement of the future version
- As such, it has seen limited distribution as a "pre-release" version
- This presentation will provide an update on the status of SCICHEM development

SCICHEM: Origin

- An overview of the SCICHEM system has been provided earlier in this conference
- Detailed presentations on SCICHEM have been given at past EPA Modeling Conferences and past CMAS Modeling Conferences, as well as other venues
- SCICHEM development started in the late 1990s
- All existing versions of SCICHEM are based on a 1998 version of the SCIPUFF model

SCICHEM: Early Testing and Availability

- Testing and evaluation of past SCICHEM versions has been documented in EPRI reports
 - These EPRI reports are publicly and freely available at EPRI.com
 - Contact the EPRI Customer Assistance Center for information on how to download these reports (as well as many other EPRI reports) and a "legacy" version of SCICHEM

SCICHEM: The APT Branch

- In the 2000s, EPRI embedded the SCICHEM model into the EPA CMAQ model as a plume-in-grid module for sub-grid treatment of industrial plumes
- This PiG version of SCICHEM is known by the name "Advanced Plume Treatment" or APT, i.e. CMAQ-APT
- A version of CMAQ-APT was publicly released via the CMAS Center based on CMAQ4.6
- This version was based on the sectional MADRID aerosol treatment

SCICHEM: The APT Branch (Continued)

- Further development of APT continued using CMAQ 4.7.x as the host model
 - Added the option of modal aerosol treatment consistent with EPA's CMAQ AERO modules
 - Added the ability to run in parallel processors
 - UNC tested this version and provided useful feedback to model development
 - CMAQ-APT based on CMAQ4.7.1 was not released publicly as development efforts focused on releasing APT with CMAQ5.0 as the host model
 - This will be released soon in a interim release of CMAQ5.x in upcoming months

SCICHEM: SCIPUFF and APT in the 2000s

- The chemistry elements of SCICHEM underwent refinement through continued development of APT in the 2000s
- Similarly, the transport and dispersion elements of SCICHEM underwent refinement though continued development of SCIPUFF in the 2000s
- Evaluation of APT and SCIPUFF during this period has been documented in the peer-reviewed scientific literature
- However, this branching of the code has led to an effort to reconcile the two codes into one uniform code for the standalone dispersion model

Reconciliation of SCIPUFF and SCICHEM

- At the end of this reconciliation, there will be only one standalone model
- However, the two names will remain in order to emphasize whether chemistry is "on" or "off"
- The SCIPUFF/SCICHEM equivalency may be thought of as:
 SCIPUFF is SCICHEM with chemistry off
 - SCICHEM is SCIPUFF with chemistry on

User Considerations of SCICHEM

- The pre-release version of SCICHEM does not have a graphics user interface (GUI)
 - The release version will include a basic GUI
- The release version will be available in Windows and Unix/Linux versions (which can also be run from a command line interface)
- The release version will be able to take advantage of multiple cores on a single machine
- It will include user manuals and documentation on evaluation and testing, as well as a test case

Availability of SCICHEM

- The new release of SCICHEM will become available to the community in upcoming months
- The model will be free, open-source and public-domain
- As derivative products of SCICHEM may be developed, EPRI will remain the "custodian" of the "core" SCICHEM model
 - Sage Management and ENVIRON are acknowledged as the current model developers

Distribution of SCICHEM and Comments

- Distribution of the "core" SCICHEM model will be through EPRI.com and through other linked portals
 - Potential portals include the websites of the model developers, CMAS Center and EPA Model Clearinghouse
- We encourage the community to test, evaluate and apply the model as appropriate and to provide feedback that will allow for future refinements

Selected SCICHEM Enhancements

Selected SCICHEM Enhancements

1. Allocatable Arrays

- Size limits are set in ini files
- Code does not have to be recompiled

2. Nested meteorology grid

• High resolution terrain and meteorology can be used in nested grid

3. Improve convective boundary layer diffusion

- represent non-Gaussian vertical diffusion
- "two-stream" model for skewness of vertical velocity pdf

Selected Enhancements (continued)

4. Dense gas effects

Takes account of dense gas and ground interaction

5. Simple flashing liquid model

 Instantaneous release of cryogenic liquids due rupture of pressurized tank treated as two-phase mixture

6. Simple liquid pool model

 Evaporation based on mass transfer theory with consideration for different modes of heat transfer

Selected Enhancements (continued)

4. New sampler file format capabilities

- Moving samplers
- Line of sight sampler
- Integrated concentration
- Time averaged concentration
- Meteorological samplers for outputting meteorological data

Skew Turbulence in the Convective Boundary Layer

Convective Layer Diffusion

- Vertical diffusion in convectively-driven turbulence is non-Gaussian
- PDF of vertical velocity fluctuations is skewed

$$- \qquad S = \left< w^3 \right> \left/ \left< w^2 \right>^{\frac{3}{2}}$$

- Can be represented by two "streams"
 - narrow, high velocity updrafts
 - wide, low velocity downdrafts

 $\ensuremath{\mathbb C}$ 2012 Electric Power Research Institute, Inc. All rights reserved.

Two-stream Model

- Represent skew-w PDF with 2 Gaussians
- From Luhar et al. (Atmos. Env., 30, 1996)

Puff Implementation

- Release 2 puffs ("u" and "d")
- Use appropriate *w*-statistics ($w_{d,u}$ and $\underline{\sigma}_{d,u}$) to advect and diffuse
- Switch type on reflection at ground or inversion

Comparison with Deardorff and Willis

ELECTRIC POWER RESEARCH INSTITUTE

Improvement for Copenhagen Data

- Elevated release at 115m under convective conditions
- Surface concentration measurements
- Arc max comparisons

Standard Model

Skew Model

