

Experiences and Challenges of 1-hour SO₂ Compliance Demonstration and Designations Modeling

For Presentation at the: 10th Conference of Air Quality Modeling EPA-Research Triangle Park, NC March 15, 2012

Presented by ERM: Anand Yegnan Mark Garrison

Delivering sustainable solutions in a more competitive world

Topics

- New World: 1-hour SO₂ NAAQS It Goes Without Saying
- What is the Same? What is Different?
- Two Anecdotes
- Chernyshevsky: What is to be Done?

Sources to be Modeled SO₂ > 100 TPY ACTUAL Based on 2005 NEI

Delivering sustainable solutions in a more competitive world

Sensitivity Analysis – Auxiliary Boiler/Process Heater

Delivering sustainable solutions in a more competitive world

Background: Not Much Room

5

Delivering sustainable solutions in a more competitive world

Emissions Variability: Pseudo-nonattainment (not even 1,000 monitors)

SO2 Emissions Variability

Delivering sustainable solutions in a more competitive world

What is the Likely Outcome?

- Significantly greater nonattainment than current situation based on monitoring, due to conservative approach (modeling) plus conservative inputs (potential emissions) plus conservative background
- 1 hour modeling results tend to point directly at individual facilities, not to regional scale emissions (e.g. ozone, PM2.5)
- Modeled non-attainment tends to be limited to small geographic areas "hot spots"
- Potential for "pseudo" nonattainment areas

What is The Same?

• AERMOD is still "just a model"

- Extraordinarily complex atmospheric processes simulated by a simple steady state model
- Lagrangian processes "trapped" in a steady-state model
- Representativeness of meteorological data is still a difficult issue (always has been...)
- Inevitable that model sensitivities will produce results in some circumstances that are physically unrealistic

"Just a model"

Fort Meade, MD July 2002: Comparison of Profiler and MM5 data

Delivering sustainable solutions in a more competitive world

www.erm.com

What is Different?

- Low concentration levels of new 1-hour NAAQS
- Use of models for attainment designations
- More complex treatment of transport and dispersion in the boundary layer leads to more instances of unusual model behaviour
- Consequences of "pressing the easy (conservative) button" are considerably more severe than ever
- Leads to a more critical need for creative approaches, careful consideration of case-specific sensitivities, actual emissions, model performance

Anecdote # 1: Low Wind Speeds

Power Plant Stack; Urban Setting: hour typical of "design concentration"

Note Plume Travel Times:

0.39 m/s approx 9 hours;

1.0 m/s approx. 3 hours

а	b	С	
0.39	1.0	0.39	Wind Speed m/s
0.012	0.033	0.012	Friction Velocity m/s
3.0	14.0	3.0	Mixing Depth m
1.0	3.8	1.0	Monin-Obukhov length m
n/a	n/a	58	Sigma-theta
3.02	1.04	1.35	Max Concentration

Anecdote # 1: Low Wind Speeds

Rank	Concentration	Friction Velocity (m/s)	Mechanical mixing depth (meters)	Wind Speed (m/s)
1	11.56	0.012	3.0	0.37
2	11.56	0.012	3.0	0.35
3	11.01	0.013	3.0	0.41
4	11.00	0.012	3.0	0.29
5	10.21	0.014	4.0	0.40
6	9.68	0.015	4.0	0.50
7	9.32	0.016	5.0	0.45
8	9.31	0.016	5.0	0.36
9	9.20	0.016	5.0	0.46
10	9.17	0.016	5.0	0.38
90	5.57	0.029	12.0	0.70
91	5.54	0.028	11.0	0.79
92	5.50	0.028	14.0	0.62
93	5.45	0.031	13.0	0.67
94	5.43	0.029	11.0	0.82
95	5.42	0.029	11.0	0.80
96	5.41	0.012	3.0	0.36
97	5.36	0.031	13.0	0.69
98	5.34	0.028	11.0	0.84
99	5.32	0.028	11.0	0.87
100	5.28	0.030	12.0	0.79

Delivering sustainable solutions in a more competitive world

Anecdote # 2: Terrain (Tall Stack > Short Stack)

Tall Stack	Short Stack	Short Descr.	Description
0.00	0.70	FB	buoyancy flux
11.64	11.43	FM	momentum flux
3.13	2.41	UStk	Wind speed @ stack top
0.141	0.147	TGS	Temperature gradient @ stack top
0.141	0.147	TGP	Temperature gradient @ plume ht
0.00	9.84	DHP_St_use	Plume rise
3.11	2.41	UEFF_St	Effective wind speed
53.87	65.01	HE_Stable_Af	plume height
2.52	2.50	SZAMB_St	sigma z - ambient
36.22	57.17	SYAMB_St	sigma y - ambient
0.00	2.78	SZB_St	sigma z - buoyancy
36.22	57.24	SY_St	sigma y - effective
2.23	3.74	SZ_St	sigma z - effective
106.74	129.22	HILLHT	Hill height
58.32	90.70	HCRIT	Critical dividing streamline height
0.98	1.00	PHEE	percent of plume below hcrit
0.99	1.00	FOPT	wrap part of plume
571.19	300.87	CHIst_W	wrap concentration
564.63	300.87	CHIst_W*FOPT	wrap concentration - effective
0.00	0.00	CHIst_L	lift concentration
0.00	0.00	CHIst_L*FOPT	lift concentration - effective
564.63	300.87	Chi_st_TOT	Total concentration
564.63	300.87	Chi_Coherent	Coherent concentration
13.77	8.10	Chi_Random	Random concentration
0.01	0.02	FRAN	percent random
558.87	295.68	Chi_Overall	Final concentration prediction

Chernyshevsky: What is to be Done?

Some Simple Solutions

- Low Wind Speeds: Limit dilution speed to 1.0 m/s
- Background: Seasonal/hour approach is helpful; should use average (per Appendix W 8.2.2b):

For shorter averaging periods, the meteorological conditions accompanying the concentrations of concern should be identified. Concentrations for meteorological conditions of concern, at monitors not impacted by the source in question, should be *averaged* for each separate averaging time to determine the average background value.

14

Delivering sustainable solutions in a more competitive world

Chernyshevsky: What is to be Done?

Specifically for SO₂ 1-hour modeling:

- Always include sensitivity analyses; allow time for consideration of case-by-case model sensitivity
- Always pay close attention to meteorological conditions and model "details" associated with high concentrations
- Allow for use of actual emissions:
 - in the form of a distribution (e.g. max monthly for each month)
 - Monte Carlo simulations where data are available
- Modify AERMOD to more easily identify met conditions and model details
 - Promote broader understanding of sensitivites and case-specific model attributes